直角三角形全等的判定
三角形全等的判定方法6种

三角形全等的判定方法6种
1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。
5、RHS(Rightangle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。
2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。
两个直角三角形全等的判定条件

直角三角形具有一些特殊的性质 ,如直角边与斜边的关系(勾股 定理)。
直角三角形全等的定义
• 两个直角三角形如果满足一定的条件,它们的形状和大小 完全相同,则称为全等直角三角形。
直角三角形全等的条件
HL全等条件
两角及夹边全等条件
如果两个直角三角形中,一个直角边 和斜边分别与另一个三角形的相应边 相等,则这两个直角三角形全等。
THANKS.
来辅助证明。
HL全等的应用
在几何学中,HL全等是解决几何问题 的重要工具之一。
HL全等也是证明其他三角形全等判定 定理的基础,如SAS、SSS、ASA等。
在实际问题中,如建筑、工程等领域, 经常需要用到HL全等来判断两个直角 三角形是否全等,从而确定物体的形 状和大小。
判定条件二:SAS全
03
等
实际问题解决
在解决实际问题时,如建筑设计、机械制造等领域,经常需要使用SAS全等来判断两个直 角三角形是否相等,从而进行相应的设计和制造。
数学竞赛
在数学竞赛中,如奥林匹克数学竞赛等,SAS全等是重要的知识点之一,常常作为题目考 察的重点和难点。
判定条件三A全等是指两个直角三角形中,一个锐角和斜边分别与另一个三角形的锐角和 斜边对应相等,则这两个直角三角形全等。
2. 根据SSS全等条件,如果两 个三角形的三边分别相等,则
这两个三角形全等。
3. 因此,可以得出这两个直 角三角形全等。
SSS全等的应用
应用场景
当已知两个直角三角形的两边长度相等时,可以使用SSS全等条件来判断这两 个三角形是否全等。
应用实例
在几何图形中,如果两个直角三角形有两边相等,并且其中一个角为直角,则 可以使用SSS全等条件来判断这两个三角形是否全等。
19.7 直角三角形全等的判定

第19章 几何证明§19.7 直角三角形全等的判定学习目标 通过探索判定两个直角三角形全等的特殊的方法,体会特殊与一般的关系,掌握“斜边直角边”这一判定两个直角三角形全等的特殊方法;会利用“斜边直角边”判定方法和一般三角形全等的方法判定直角三角形全等;继续体会用“分析综合法”探求解题思路,在探索判定两个直角三角形全等的特殊的方法的过程中体验转化的思想。
知识概要1.直角三角形全等的判定定理如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。
(简记为H .L .) 在两个直角形中,“边、边、角”对应的情况有两种:“S .A .S ”和“H .L ”定理.注意:任意三角形全等的判定方法同样适用于直角三角形,而H .L 定理是直角三角形特有的全等判定方法。
使用该特有方法时,一定要指出直角三角形这一前提条件。
2.判定两个直角三角形全等的方法一共有5种方法判定两个直角三角形全等:S .A .S ,A .A .S ,A .S .A ,S .S .S ,H .L .。
经典题型精析(一)一般方法判定直角三角形全等例1.如图,已知DC AB //,=∠=∠D A 52°,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠.求证:DC AB BC +=.例2.如图,在ABC Rt ∆中,=∠ACB 90°,点E D 、分别在AC AB ,上,BC CE =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得到CF ,连接EF 。
(1)补充完成图形; (2)若CD EF //,求证:=∠BDC 90°。
(二) H .L .定理的应用例3.已知:如图,AC 平分BAD ∠,AB CE ⊥于点E ,AD CF ⊥于点F ,且DC BC =。
求证:DF BE =.试一试:已知:如图,CD AD ⊥,CD BC ⊥,C D 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,DF BC =。
直角三角形全等的判定

小结
拓展
• 直角三角形全等的判定定理: 定理:斜边和一条直角边对应相等的两个直角三角 形全等(斜边,直角边或HL). 公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等 (SAS). 公理:两角及其夹边对应相等的两个三角形全等 (ASA). 推论:两角及其中一角的对边对应相等的两个三角 形全等(AAS). • 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个吗?并说明理由: 1、两个锐角对应相等的两个直角三角形全等; 2、斜边及一个锐角对应相等的两个直角三角形全等; 3、两直角边对应相等的两个直角三角形全等; 4、一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等.
如图,已知∠ACB=∠BDA=90°,要使 △ACB与△BAD全等,还需要什么条件? 把它们分别写出来.
就是唯一的。
直角三角形全等的判定方法:
有斜边和一条直角边对应相等的两个 直角三角形全等(可以简写成“斜边、直 B 角边”或“HL”)
在Rt Δ ABC和Rt Δ A’B’C’中, AB=A’B’ AC=A’C’
A C
∴ Rt△ABC≌Rt△ A’B’C’
如图,已知CE ┴ AB,DF ┴ AB,AC=BD, AF=BE,求证:CE=DF。
回味无穷
作业:作业本
; 杏耀: ;
凤有些不知道该如何面对她の姑姑.但是,她の姑姑毕竟对他们兄妹二人有抚养の恩情,理应去探望.更何况,他们现在还到了绿野郡城地域.壹个多事辰后,两人就到了绿野郡城之外.“名不虚传!”鞠言看着前方整座绿色の城市,赞叹说道.那壹颗颗高耸の参天大树,直入云霄,从外面看,连里 面の建筑都很难看到.呐就难怪,大陆上の修行者,对绿野郡城
直角三角形全等的判定

直角三角形全等的判定

直角三角形全等的判定
直角三角形全等是指两个直角三角形的对边,对应边和
斜边分别相等。
在进行直角三角形全等的判定时,可以使用两种不同的方法,即SAS(边-角-边)和SSS(边-边-边)定理。
1. SAS定理:
SAS定理是指两个直角三角形的一条边、夹角和另一条边分别
相等,则这两个直角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的一条边相等。
c) 两个直角三角形的夹角(不是直角的角)相等。
d) 两个直角三角形的另一条边相等。
2. SSS定理:
SSS定理是指两个直角三角形的三条边分别相等,则这两个直
角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的三条边分别相等。
需要注意的是,在判定直角三角形全等时,必须要确定
其中一个角为直角。
因为如果两个直角三角形的所有边长相等,但没有一个角为直角,那么这两个三角形并不一定全等。
在解题时,需要根据给定的条件,判断所给的直角三角
形是否全等。
常见的判定方法包括测量边长和角度、利用勾股定理判断是否满足直角条件等。
判断过程中需要小心操作,确保测量准确、计算无误。
总之,直角三角形的全等判定是一种基本的几何判断方法,可以通过SAS定理或SSS定理来进行。
在解题时,要注意给定的条件,准确判断边长和角度是否相等,以确定两个直角三角形是否全等。
直角三角形全等的判定.

如果其中一组等边的对角是直角,它们还全等吗?
问题:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?
1.直角三角形全等的判定(“斜边、直角边”定理)
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′,使∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放到Rt△ABC上,它们能重合吗?
AD=BC
∠ DAB= ∠ CBA
BD=AC
∠ DBA= ∠ CAB
HL
HL
AAS
AAS
如图,AC、BD相交于点P,AC⊥BC,BD⊥AD,垂足分别为C、D,AD=BC.求证:AC=BD.
变式2:
HL
AC=BD
Rt△ABD≌Rt△BAC
【例2】如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.
1.2 直角三角形第1课时 直角三角形全等的判定
1.探索并理解直角三角形全等的判定方法“HL”.(难点)2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.(重点)
学习目标
如果已知在两个三角形中已知两边对应相等时, 附加一个什么条件可以说明这两个三角形全等?
两边的夹角也对应相等时,这两个三角形全等.
HL
×
SAS
AAS
AAS
判断
【例1】如图,AC⊥BC, BD⊥AD, AC﹦BD,求证:BC﹦AD.
证明: ∵ AC⊥BC, BD⊥AD, ∴∠C与∠D都是直角.
在 Rt△ABC 和Rt△BAD 中,
直角三角形全等的判定

已知:如图,AB=CD,DE⊥AC,BF⊥AC, 垂足分别为E,F,DE=BF. 求证: (1)AE=CF; D (2)AB∥CD.
E A
C F
B
例 如图,在△ABC与△A′B′C′中,CD, C′D′分别是高,并且AC=A’C′,CD= C’D′,∠ACB=∠A’C’B′. 求证:△ABC≌△A′B′C′.
小结
拓展
• 直角三角形全等的判定定理: 定理:斜边和一条直角边对应相等的两个直角三角 形全等(斜边,直角边或HL). 公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等 (SAS). 公理:两角及其夹边对应相等的两个三角形全等 (ASA). 推论:两角及其中一角的对边对应相等的两个三角 形全等(AAS). • 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
就是唯一的。
直角三角形全等的判定方法:
有斜边和一条直角边对应相等的两个 直角三角形全等(可以简写成“斜边、直 B 角边”或“HL”)
在Rt Δ ABC和Rt Δ A’B’C’中, AB=A’B’ AC=A’C’
A C
∴ Rt△ABC≌Rt△ A’B’C’
如图,已知CE ┴ AB,DF ┴ AB,AC=BD, AF=BE,求证:CE=DF。
回味无穷
作业:作业本
; / 酒店布草厂家
cth36dwc
天的神,说起居室太冷些,先叫关严了窗子、拉紧了帘子,还说冷,就移到里头拔步床里了。闺房里的事,悄没声儿的,外头也不知道。那鬼哭, 就挨着起居室的窗子响起。宝音惊醒,陪睡的是洛月,也早被吓醒了,抚慰宝音:“姑娘莫怕„„”自己牙关却打战来。手挨着宝音,指头也是 抖的。宝音笑了:“原来你比我还怕。”反过来搂着她,洛月觉着 的怀抱比自己温暖、手也比自己稳定,不由问:“姑娘您不怕?”宝音含笑道: “我有个不怕鬼的法子。”鬼哭声恰在此时停了。窗外沉寂得不怀好意。不知什么时候、从凭什么方向,又会来一次可怕袭击。洛月瑟缩着身子, 问:“什么法子?”“你我都会死,死了都会变成鬼,”宝音冷然,“被鬼所侵,大不了一死,死之后,又可与它斗一场。老鬼狠么?你只要死 得比它惨,大可比它更狠,届时谁强谁弱还不一定呢。”洛月闻所未闻,难免骇然,转念一想,却大大的有理,任它窗外鬼哭又起,胆子顿时肥 了,依偎在 身边,竟安然睡去。第二十三章 芙蓉泣血移宝屋(1)第二天早晨,明蕙急不可耐等韩毓笙垂危的消息,等来的却是她自己的人面青 唇白过来报告:“那花成精了!”饶明蕙胆大包天,脑子里也“嗡”一下:“胡说八道!什么精不精的?”“是真的呀!”那几个男女,都是走 刘四姨娘的路子进苏府做事的刘家人,园子里搬搬弄弄,赚了不少,都是刨土,合着比田里赚得多,平常唯刘四姨娘母女之马首是瞻,但这会儿, 再借他们八个胆子,看他们也不敢再到表 院子里去了!他们抽抽答答道:“昨天挖的那树„„流血了!”是天刚蒙蒙亮,起得最早的人就发现, 红白两棵芙蓉树,挖断的根须、剪断的枝子,断口都在渗出血来。“一派胡言!”明蕙怒道,“准是表姐在枝上抹了红颜料,吓唬你们!”刘家 人们很不满意的回答她:“姑娘!咱们吃了这么多年饭,抹上去的、还是渗出来的,那还是分得清的。”再说,那么多断口,大大小小、有的还 藏在泥土、其他根须或枝叶的里头,居然全能抹一遍?也近乎神迹了吧!明蕙自己也心慌,但再慌不能露出来,色厉内荏喝问:“那流出来的红 汁,有血腥味吗?”“这倒没有„„”“却又来!”明蕙找到了主意,“没有血味,叫什么血?你揉坏了指甲花、劈开西瓜,都有红汁,这怎么 能叫血呢?!”说是这么说的„„但又不是这么说的!刘家人不跟七姑娘吵,规规矩矩的告退,告退前劝一句话:“姑娘还是小心些罢!”明蕙 是要小心了,还用他们讲?芙蓉泣血,兹事体大,如何瞒得住?连着那“半夜鬼哭”,一下子传出去,并且到了老太太的耳朵边!不用宝音拜谒 老太太诉苦,老太太自己过问了:“那几棵树为什么要移?”下头回答:“生了虫病„„”老太太哼一声,都已经
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鱼市中学八年级数学下册导学案
第1章直角三角形
1.3直角三角形全等的判定
第1课时
课题:1.3直角三角形全等的判定课型:新授授课班级:142、143、144班
时间:2015年3月11日备课人:唐思梁、吴沅林
参与备课:杨树华、杨焕良、吴垚波、罗海建审核人:
学习目标:
A层、学习直角三角形全等的判定定理;
B层、运用“HL”(即斜边、直角边定理)进行计算和证明;
C层、运用对比思想比较直角三角形与一般三角形全等的异同。
学习重点:在已有判定的三角形全等知识基础上学习直角三角形全等判定定理。
学习难点:利用添加辅助线的方法证明三角形全等。
导学过程:
一、回顾已知引入新课
1、我们已经学习了三角形全等的判定方法,
即:边角边、角边角、角角边、边边边。
2、如图,已知ABCD为平行四边形,AC是对角线,
运用上面的四种方法证明ΔABC≌ΔADC.
(1)SAS (2)ASA (3)AAS (4)SSS
3、上个学期我们强调了用“边边角”的方法不能证明三角形全等,现在我们来想:如果在两个直角三角形中,“斜边和一条直角边对应相等、还有直角对应相等”能判定这两个直角三角形全等吗?今天我们来学习直角三角形全等的判定。
(导入课题)
二、自主学习探究新知
1、自主学习。
阅读第19-20面,了解直角三角形全等的判定——HL(斜边、直角边定理)。
2、归纳:斜边和直角边定理:斜边和一条直角边对应相等的两个直角三角形全等.简称“斜边、直角边”或“HL”.注意:这一定理强调“直角三角形、斜边、一条直角边”。
3、小组合作学习例1,然后展示。
4、如右图.(1)AD垂直且平分BF于O,若AB=AF,证明ΔABO≌∆AFO;
(2)分别连接BD、FD,若BD=FD,证明ΔBDO≌∆FDO;
C D E
(3)证明ΔABD≌∆AFD.
三、精讲点拨 精练提升
1、如图,AD BD ⊥于点D ,BC AC ⊥于点C ,且BD AC =.求证:BC AD =. D C
2、如图,AB=AC,AC 为
BC 的中线,AB DE
⊥,AC DF ⊥,求证:AE=AF. A
四、达标检测 当堂过关 A D
A 层:如图,DA
B ∠和
BCD ∠都是直角,BC AD =,
证明ABD ∆和CDB ∆全等。
B C
B 层、如图,已知AD
C ABC ∠=∠ 90=,E 是AC 上一点,A
D AB =,求证:ED EB =.
A
C 层:如图,ΔAB
D 中AB=AD,AC 垂直且平分BD ,求证:ΔABC ≌ΔADC.
B D C
五、布置作业 知识延伸
完成第20面练习题。
六、课后反思 教学相长
我的收获:
存在疑惑:
B
A
鱼市中学八年级数学下册导学案
第1章直角三角形
1.3直角三角形全等的判定
第2课时
课题:1.3直角三角形全等的判定课型:新授授课班级:142、143、144班时间:2015年3月12日备课人:唐思梁、吴沅林
参与备课:杨树华、杨焕良、吴垚波、罗海建审核人:
学习目标:
A层、利用HL(斜边、直角边定理)证明两个直角三角形全等;
B层、学习已知一直角边和斜边求作直角三角形的方法;
C层、综合运用所学知识证明两个三角形全等。
学习重点:掌握已知一直角边和斜边求作直角三角形的方法。
学习难点:证明三角形全等。
导学过程:
一、回顾已知引入新课
1、将四个全等的直角三角形(最短直角边为a、另一直角边为b、斜边
为c)拼成如右图所示的正方形,用两种求正方形ABCD的面积。
(1)正方形ABCD的边长为()
a b
+时,正方形ABCD的面积等于边长的平方,即
s=
(2)正方形ABCD的面积等于4个直角三角形面积加上中间那个小正方形面积,即
s=
(3)用这两种方法求得正方形ABCD面积应该相等,由此可证勾股定理成立,即
2、如图右所示将两个直角三角形拼成直角梯形,
可证勾股定理成立。
(1)梯形ABCD的面积等于
s=
(2)梯形ABCD的面积等于3个直角三角形面积之和,即
s=
(3)两种方法求得正方形ABCD面积应该相等,试证股定理成立。
A
二、自主学习探究新知
1、在等腰ΔABC中,,AD是顶角∠BAC的平分线,
试用两种方法证明RtΔADB≌RtΔADC. B D C
2、AB=BC ,∠A=67.5°,CD 是边AB 的高,E 是BC 的中点。
求证:ΔBED
≌Δ
3、已知两直角边分别为a 、b ,作出这个直角三角形。
4、若已知一直角边为a ,斜边为c ,怎样作这个直角三角形?(师生共探例2)
三、精讲点拨 精练提升
1、右图。
CD 、BF 分别是AB 、AC 上的高,F 是BC 的中点。
(1)求证DF=EF ;
(2)连接DE ,O 是DE 的中点,求证ΔDOF ≌ΔEOF.
2、作等腰三角形底边的中线,试证左右两个三角形全等。
C
四、达标检测 当堂过关A 层: 右图,CD 与AB 互为垂直平分线,
试证ΔAOC ≌ΔBOD. D
B 层、ABCD 是矩形,A
C 是对角线,BE ⊥AC ,DF ∥你能得到什么结论?
B C
C 层: 已知AD=BC,∠C 、∠
D 均为直角,求证ΔAOB 是等腰三角形。
五、布置作业 知识延伸
完成第21面习题。
六、课后反思 教学相长
我的收获:
存在疑惑:
F C B。