数轴相反数绝对值教案

合集下载

2.3绝对值与相反数(1)教案

2.3绝对值与相反数(1)教案

绝对值与相反数(1)教案教学目标:1.能借助数轴说出数的绝对值意义,理解绝对值的概念,会求一个有理数的绝对值;2.经历将实际问题数学化的过程,感受数学与生活的关系,贯彻数形结合的思想.教学重点会求已知数的绝对值;教学难点理解绝对值的概念,感受数形结合的思想方法教学流程课前导学:阅读课本P 22-23完成课本P 24 T1、2教学过程:情境创设小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?探究真学:做一做:用数轴上的点表示学校、小明家、小丽家的位置.1.画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km;2.设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度.数轴上表示一个数的点到原点的距离叫做这个数的绝对值.数a的绝对值记为|a|,读作“a的绝对值”.请你结合数轴,根据定义说出-3、2、0的绝对值.0的绝对值是0. 任何一个数的绝对值都是非负数.【交流展学】1. 学生在课前预习时已完成;2.以小组为单位交流;3. 邀请两个小组上来结合小黑板展示小组成果.议一议:你能说出数轴上的点A、B、C、D、E所表示的数的绝对值吗?【典型深学】例1 求4、5.3-的绝对值.解:如图,在数轴上分别画出表示4、-3.5的点A 、点B .因为点A 与原点的距离是4,所以4的绝对值是4;因为点B 与原点的距离是3.5,所以-3.5的绝对值是3.5.例2 已知一个数的绝对值是25,求这个数. 解:如图,数轴上到原点的距离是25的点有两个,它们是点A 和点B ,分别表示25、25-. 所以绝对值是25的数有两个,它们是25、25-. 小结与思考:绝对值的几何意义是数轴上表示一个数的点与原点的距离。

距离不可能是负数,所以绝对值不可能是负数。

相反数与绝对值教案

相反数与绝对值教案

相反数与绝对值教案教案:相反数与绝对值教学内容:1.相反数的概念2.相反数的性质3.绝对值的概念4.绝对值的性质教学目标:1.理解相反数的概念和性质,能够找出一个数的相反数。

2.理解绝对值的概念和性质,能够求出一个数的绝对值。

3.学会在实际问题中应用相反数和绝对值。

教学准备:1.课件或黑板2.教学板书工具3.相关数学试题和练习题教学过程:一、创设情境打开教学导入(10分钟)1.引入相反数的概念。

2.提问学生:“两个数互为相反数是什么意思?”3.给出具体的例子让学生理解相反数的概念。

4.引导学生思考:相反数之间有什么关系?二、学习相反数的性质(15分钟)1.教师给出定义:互为相反数的两个数的和为0,他们与0的距离相等。

2.出示示意图:-3和3在数轴上的位置。

3.定理:一个数的相反数的相反数仍是这个数本身。

4.出示示意图:-(-5)等于55.引导学生进行相关练习。

三、学习绝对值的概念(15分钟)1.引入绝对值的概念:一个数离0的距离。

2.出示示意图:5和-5在数轴上的位置。

3.引导学生发现:绝对值永远是正数,即使是0。

4.引导学生进行相关练习。

四、学习绝对值的性质(15分钟)1.出示示意图:,-3,等于32.学习绝对值的运算性质:,-a,=,a,对于任意的实数a。

3.出示示意图:,-(-2),等于24.教师出示练习题进行巩固。

五、应用相反数和绝对值解决实际问题(20分钟)1.分组活动:学生根据教师提供的实际问题,选择使用相反数或绝对值解决,并进行讨论和解答。

2.教师给出反馈和指导。

六、温故与总结(5分钟)1.找几个学生回答本节课学到了哪些内容。

2.教师进行总结。

教学延伸:1.学生可以设计一些有关相反数和绝对值的游戏或趣味活动,加深对概念和性质的理解。

2.学生可以解决一些与相反数和绝对值相关的实际问题,如温度计上的温度变化,海拔的正负,存取款等。

教学反思:本节课通过情境导入,让学生在具体实例中体会相反数和绝对值的概念,然后通过定义和性质的学习,让学生深入理解相反数和绝对值,并能够应用到实际问题中。

2.3《相反数与绝对值》教案

2.3《相反数与绝对值》教案

《相反数与绝对值》教案教学目标1.知识目标:要求从代数与几何两个角度,借助数轴理解相反数、绝对值的概念,会求一个数的相反数和绝对值.2.能力目标:通过应用相反数、绝对值解决实际问题,使学生体会相反数和绝对值的意义与作用.3.情感目标:培养学生运用数学的意识及合作交流的学习习惯.教学重难点重点:理解、掌握相反数、绝对值的概念、求法及运用.难点:若a<0时,则|a|=-a.教学过程一、创设情景,引入新课之前我们学习了负数,也学会了在数轴上表示有理数,如-4和4,它们有什么相同点和不同点?2.5和-2.5呢?二、探索新知1.将-4和4在数轴上表示出来,它们在数轴上所对应的点有什么关系?与同伴进行交流.如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.2.引入绝对值概念在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.给出几对相反数,让学生求出它们的绝对值后,引导学生思考:互为相反数的两个数的绝对值有什么关系?3.教学举例.求下列各数的绝对值:-3.5,7,-8,2/3,0.4.从代数角度理解绝对值定义.学生认识绝对值符号“||”,通过学生提问、观察、理解、总结,讨论出代数定义.正数的绝对值是它本身负数的绝对值是它的相反数0的绝对值是0设a为有理数,用字母a表示绝对值的代数定义a (a >0)| a | = 0 (a =0)-a (a <0)5.教学例1.比较43-与54-的大小. 6.做一做:(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5.(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?(老师可引导学生多举一些例子,让学生合作讨论完成)三、结论0的相反数和绝对值都是0.互为相反数的两个数的绝对值一定相等.绝对值为同一正数的数有两个,它们互为相反数. 两个负数,绝对值大的负数反而小.。

相反数与绝对值教案

相反数与绝对值教案

相反数与绝对值教案一、教学目标1. 让学生理解相反数的概念,能够求出一个数的相反数。

2. 让学生理解绝对值的概念,能够求出一个数的绝对值。

3. 培养学生运用相反数和绝对值解决问题的能力。

二、教学内容1. 相反数的概念及求法。

2. 绝对值的概念及求法。

3. 相反数和绝对值在实际问题中的应用。

三、教学重点与难点1. 重点:相反数和绝对值的概念及求法。

2. 难点:相反数和绝对值在实际问题中的应用。

四、教学方法1. 采用直观演示法,通过示例让学生直观地理解相反数和绝对值的概念。

2. 采用自主探究法,引导学生通过观察、思考、讨论,探索相反数和绝对值的求法。

3. 采用练习法,让学生通过多做练习,巩固所学知识。

五、教学准备1. 教学课件或黑板。

2. 练习题。

六、教学过程1. 导入:通过一个简单的例子,如5的相反数是-5,引导学生思考相反数的概念。

2. 讲解:讲解相反数的概念,强调一个数的相反数就是在这个数前面添上“-”号。

3. 练习:让学生做一些求相反数的练习,如-3的相反数是什么,2.5的相反数是什么等。

七、绝对值的概念及求法1. 导入:通过一个实际问题,如一个人向正北方向走了5米,又向正南方向走了3米,问他现在离出发点多少米,引导学生思考绝对值的概念。

2. 讲解:讲解绝对值的概念,强调一个数的绝对值就是这个数到原点的距离。

3. 练习:让学生做一些求绝对值的练习,如-3的绝对值是什么,2.5的绝对值是什么等。

八、相反数和绝对值在实际问题中的应用1. 举例:讲解相反数和绝对值在实际问题中的应用,如在数轴上表示两个数的位置关系。

2. 练习:让学生解决一些实际问题,如在数轴上表示两个数的距离,判断两个数的大小关系等。

2. 让学生反思自己在学习过程中遇到的困难和问题,并进行讨论。

十、作业布置1. 让学生做一些有关相反数和绝对值的练习题,巩固所学知识。

2. 让学生思考一下,相反数和绝对值在实际生活中有哪些应用,下次上课时分享。

绝对值与相反数教学案

绝对值与相反数教学案

绝对值与相反数⑴一.教授教养目的:1.借助数轴,初步懂得绝对值的概念,能求一个有理数的绝对值2.会应用绝对值比较两个有理数的大小3.让学生阅历将现实问题数学化的进程,感触感染数学与生涯的关系重 点:准确懂得绝对值的寄义难 点:会应用绝对值比较两个负数的大小 二.教授教养设计: 1. 情景创设:P23 . 小明.小丽上学所花时光问题(还可以创设相似情景为:乘车去某地.票价.耗油.行车的时光等与路的关系) 2. 给出绝对值概念及记法: 概念:,叫做这个数的绝对值举例:暗示-3的点A 与原点的距离是3,所以-3的绝对值是3. 暗示2的点B 与原点的距离是2,所以2的绝对值是2. 同窗们本身举例解释这类问题:3.请说出数轴上A,B,C,D,E 各点暗示数的绝对值──┴──┴─——→暗示办法:4 的绝对值记为|4| -3.5 的绝对值记为|-3.5|0 的绝对值记为|0|所以有: |4|=4 |-3.5|=3.5 |0|=04.例题讲授:例1.写出下列各数的绝对值:—5 3 2 1 0 —1 —2 —3 —4 5 4+2.6,-2.3, 0.35, 0,-9演习:写出下列各数的绝对值: 发明结论:1)0的绝对值是什么?2)绝对值的规模是什么?例2.已知有理数a,b 在数轴上暗示如图,则a,b,-a,-b 四个数的大小关系是什么?例3.比较下列各组数的大小(1) -0.01与0 (2)8与-100 思虑:两个数比较大小的办法是什么? 演习:《启》13 三.课后演习: 一.选择题1.下列各式中,准确的是( )A. -∣-16∣>0B. ∣∣>∣∣C. -74>-75 D.∣-6∣<02.在-0.1,-21,1,21这四个数中,最小的一个数是( ) A. -0.1 B. -21 C. 1 D.21ab3. 一个有理数的绝对值是()A.正数B.负数C.非正数D.非负数4. 假如一个有理数的绝对值是正数,那么这个数确定()A.是正数B.不是0 C.是负数D.以上答案都不合错误5. 在数轴上距原点的距离是3个单位长度的点暗示的数是()A.3 B.-3 C.3或-3 D.06. 下列说法中准确的是()A.有理数的绝对值必定是正数B.假如两个数的绝对值相等,那么这两个数相等C.假如一个数是正数,那么这个数的绝对值是它本身D.假如一个数的绝对值是它本身,那么这个数是正数7. 对于数轴上的点所暗示的两个数,下列说法中不准确的是()A.若划定向右为正偏向,则右边的数老是大于左边的数B.两个负数,较大的数离原点近C.小的有理数,离原点近D.绝对值越大的数,离原点越远8. 在数轴上点P 暗示的数是2,那么在统一数轴上与点P 相距5个单位的点暗示的数是( ) A .3 B .-3C .7D .-3或79. 下列结论准确的是( )A .-a 必定是负数B .-|a |必定长短正数C .|a |必定是正数D .-|a |必定是负数 10. 绝对值最小的数( ) A .不消失B .0 C .1 D .-1 11. 下列说法准确的是( )A .|5|=-|-5|B .任何有理数的绝对值都是正数C .|-7|=-(-7)D .0是绝对值最大的有理数 二.填空题1.(1)∣+51∣=;∣∣=;∣0∣=; (2)-∣-3∣= ;-∣∣= ;(3)∣-8∣+∣-2∣=;∣-6∣÷∣-3∣=;∣∣-∣-521∣= . 2.-321的绝对值是;绝对值等于321的数是. 3.绝对值最小的数是,绝对值最小的整数是. 4.绝对值小于4的整数有.5.∣x+1∣+∣y+2∣+∣z+3∣=0,则x+y+z=________.6. 若x为整数,且||2x ,则x为_______.7. 在数轴上与原点距离为1个单位的点暗示的数是_____,在数2轴上与3的距离为5个单位的点暗示的数是_____.三.在数轴上暗示下列各数:1∣;(2)∣0∣;(3)绝对值是1.5的负数;(4)绝(1)∣-123的负数.对值是4四.解答题1.已知∣a∣=2,∣b ∣=2, ∣c∣=4.且有理数a,b,c在数轴上的地位如下图所示,试盘算a+b+c的值.a 0b c2.某制衣厂本周筹划每日成产100套西服,因为工人实施轮休,每日上班人数不必定相等,实施每日临盆量与筹划量比拟情形如下表(增长的套数为正数,削减的套数为负数):请问:临盆量起码的是礼拜几?临盆量是若干?第16题. 某检修小组乘汽车沿公路检修线路,商定进步为正,撤退退却为负.某天自A地动身到收工时,所走旅程(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5⑴问收工时距A地多远?⑵若每千米耗油升,问从A地动身到收工时共耗油若干升?。

绝对值与相反数教案

绝对值与相反数教案

绝对值与相反数教案一、教学目标1.了解绝对值的概念及其在数轴上的表示方法;2.掌握求绝对值的方法;3.了解相反数的概念及其性质;4.掌握求相反数的方法;5.能够在实际问题中应用绝对值和相反数。

二、教学重点1.绝对值的概念及其在数轴上的表示方法;2.求绝对值的方法;3.相反数的概念及其性质;4.求相反数的方法。

三、教学难点1.在实际问题中应用绝对值和相反数。

四、教学过程1. 导入教师出示一张数轴,让学生观察并回答以下问题:1.数轴是什么?2.数轴有什么作用?3.数轴上的点代表什么?通过学生的回答,引出本节课的主题:绝对值和相反数。

2. 绝对值1.定义教师出示绝对值的定义:“一个数的绝对值是它到0的距离,用|a|表示。

”2.表示方法教师出示数轴上的点A和点B,让学生观察并回答以下问题:1.点A和点B的坐标分别是多少?2.点A和点B的距离是多少?通过学生的回答,引出绝对值在数轴上的表示方法:“一个数a的绝对值|a|等于它在数轴上对应的点到0点的距离。

”3.求绝对值的方法教师出示求绝对值的方法:“当a≥0时,|a|=a;当a<0时,|a|=-a。

”4.练习教师出示一些练习题,让学生自己计算绝对值。

3. 相反数1.定义教师出示相反数的定义:“两个数互为相反数,当且仅当它们的和为0,用-a 表示。

”2.性质教师出示相反数的性质:“一个数的相反数是唯一的,0的相反数是0。

”3.求相反数的方法教师出示求相反数的方法:“一个数a的相反数是-a。

”4.练习教师出示一些练习题,让学生自己计算相反数。

4. 应用教师出示一些实际问题,让学生应用绝对值和相反数进行计算。

例如:1.一个人从家出发,走了5公里到达学校,又走了3公里到达超市,最后又走了7公里回到家。

这个人一共走了多少公里?2.一个人的存款是-500元,他又借了-300元,这个人现在的财产是多少?5. 总结教师让学生回答以下问题:1.什么是绝对值?2.绝对值有什么作用?3.如何求一个数的绝对值?4.什么是相反数?5.相反数有什么性质?6.如何求一个数的相反数?7.如何在实际问题中应用绝对值和相反数?五、教学反思本节课通过数轴的引入,让学生更加直观地理解了绝对值和相反数的概念及其在数轴上的表示方法。

有理数正负数_数轴_相反数_绝对值复习课教案

有理数正负数_数轴_相反数_绝对值复习课教案

学员第阶段数学科目第次个性化教案授课时间教师姓名备课时间学员年级课题名称有理数(一)学员教学需求分析学生学习特点分析教学目标教学内容负数,数轴,相反数,绝对值个性化学习问题解决1.掌握正负数的意义,能够正确进行有理数的分类。

2.掌握与有理数有关的概念,如数轴、相反数、绝对值、倒数等,会求有理数的相反数、绝对值和倒数,会用数轴上的点表示有理数,能利用数轴或绝对值比较有理数的大小.教学重点数形结合,理解相反数及绝对值的意义。

教学难点相反数及绝对值,及比较有理数的大小。

教学过程教师活动学生活动教学过程:一、基础知识1)、【正负数】_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

正确理解非负和非正。

有理数的分类:[基础练习]1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …}; 负有理数集{ …}负整数集{ …}; 自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。

2)、【数轴】规定了 、 、 的直线,叫数轴 数轴上两点A(a)、B(b)的距离公式: ,中点公式: 。

[基础练习]1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”有理数有理数号连接起来。

4,-|-2|, -4.5, 1, 03、下列语句中正确的是( ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

相反数与绝对值教案

相反数与绝对值教案

相反数与绝对值教案第一章:相反数的定义与性质1.1 教学目标了解相反数的定义掌握相反数的性质学会求一个数的相反数1.2 教学内容相反数的定义:一个数a的相反数是一个数-b,使得a + (-b) = 0。

相反数的性质:1) 每个数都有唯一的相反数。

2) 一个数的相反数的相反数等于它本身。

3) 任何数与它的相反数相加等于零。

1.3 教学活动通过实例讲解相反数的定义和性质。

让学生通过练习题来加深对相反数概念的理解。

教师提问,学生回答,共同总结相反数的性质。

1.4 练习题1. -5的相反数是什么?2. 证明:任何数a加上它的相反数-a等于零。

第二章:绝对值的定义与性质2.1 教学目标理解绝对值的定义掌握绝对值的性质学会求一个数的绝对值2.2 教学内容绝对值的定义:一个数a的绝对值是数轴上表示a的点到原点的距离。

绝对值的性质:1) 任何数的绝对值都是非负数。

2) 非零数的绝对值等于它的相反数的绝对值。

3) 零的绝对值是零。

2.3 教学活动通过数轴解释绝对值的定义和性质。

让学生通过练习题来加深对绝对值概念的理解。

教师提问,学生回答,共同总结绝对值的性质。

2.4 练习题1. -3的绝对值是多少?2. 证明:对于任意实数a,|a| = |-a|。

第三章:相反数与绝对值的关系3.1 教学目标理解相反数与绝对值之间的关系学会利用相反数和绝对值解方程3.2 教学内容相反数与绝对值的关系:一个数的相反数的绝对值等于它本身的绝对值。

3.3 教学活动通过实例讲解相反数与绝对值的关系。

让学生通过练习题来加深对相反数与绝对值关系的理解。

教师提问,学生回答,共同总结相反数与绝对值的关系。

3.4 练习题1. 如果一个数的绝对值是4,这个数的相反数是什么?2. 解方程:|x 2| = |x + 2|。

第四章:相反数与绝对值的应用4.1 教学目标掌握相反数和绝对值的基本运算学会解决实际问题中涉及相反数和绝对值的问题4.2 教学内容相反数和绝对值在实际问题中的应用,如距离问题、温度问题等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 轴
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。

直线也不一定是水平的。

第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O ,叫做原点,用这点表示数0;(相当于温度计上的0℃。


第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。

相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。


第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。

(相当于温度计上1℃占1小格的长度。


在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,…。

例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
分析:原点、正方向、单位长度这数轴的三要素缺一不可。

解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。

例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,3
23 ,+3.5 (2)―5,0,+5,15,20;
(3)―1500,―500,0,500,1000。

例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。

通过数轴,我们可以得到:正数都大于0;负数都小于0;正数大于一切
负数。

例4:比较―3,0,2的大小。

分析一:先在数轴上分别找到表示―3、0、2的点,由“右边的数总比左边的数大”得到―3<0<2;
分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出―3<0<2。

例5:把下列各组数用“<”号连接起来.
(1) ―10, 2,―14; (2) ―100,0,0.01; (3) 543,―4.75,3.75。

说明:按题意用“<”号连接,解题中不能用“>”号连接,否则与题意不符,更不能把“<”与“>”混用,如第(1)小题不能写成“―10<2>―14”或者写成“2>―14<―10”的形式。

例6: 将有理数3,0,6
51,―4按从小到大顺序排列,用“<”号连接起来。

解:正数651<3,由正、负数大小比较法则,得―4<0<6
51<3。

例7:比较下列各数的大小: ―1.3,0.3,―3,―5
解:将这些数分别在数轴上表示出来:
所以 ―5<―3<―1.3<0.3
比较有理数大小法则是:在数轴上表示的两个数,右边的数总比左边的数大。

根据法则先在同一个数轴上表示出同一组数的位置,然后用“<”号连接,这种方法比较直观,但画图表示数较麻烦。

另一种方法是利用数轴上数的位置得出比较大小规律,即正数都大于0,负数都小于0,正数大于一切负数,则比较更方便些。

相 反 数
1.发现、总结相反数的定义:
象这样只有符号不同的两个数称互为相反数 (opposite number)。

理解:
代数定义:只有符号不同的两个数互为相反数。

0的相反数是0。

几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。

0的相反数是0。

说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。

“0的相反数是0”是相反数定义的一部分。

这是因为0既不是正
数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。

2.例题;
例1:判断下列说法是否正确:
①―5是5的相反数; ( )
②5是―5的相反数; ( ) ③5与―5互为相反数; ( ) ④―5是相反数; ( )
⑤正数的相反数是负数,负数的相反数是正数。

( ) 例2:(1)分别写出5、―7、―32
1、+11.2的相反数; (2)指出―2.4是什么数的相反数。

我们通常把在一个数前面添上“―”号,表示这个数的相反数。

例如―(―
4)=4, ―(+5.5)=―5.5,同样,在一个数前面添上“+”号,表示这个数本身。

例如 +(―4)=―4,+(+12)=12。

例3:化简下列各数:
(1)―(+10); (2)+(―0.15); (3)+(+3); (4)―(―20)。

小结:
1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;
2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;
3.正号“+”的功能是对一个数的符号予以确认;而负号“―”的功能是对一个数的符号予以改变。

绝 对 值
1.发现、总结绝对值的定义:
我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值( absolute value )。

记作|a |。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ;(3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的
数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:
1. 一个正数的绝对值是它本身;
2. 0的绝对值是0;
3. 一个负数的绝对值是它的相反数。

即:①若a >0,则|a |=a ; ②若a <0,则|a |=–a ; ③若a =0,则|a |=0;
3.绝对值的非负性:
由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0。

4.例题;
例1:求下列各数的绝对值:217
-,101,―4.75,10.5。

解:
217-=217;101+=101;|―4.75|=4.75;|10.5|=10.5。

例2: 化简:(1)
⎪⎪⎭⎫ ⎝⎛+-21; (2)311--。

解:(1)
2121211=-=⎪⎪⎭⎫ ⎝⎛+-; (2) 311311-=--。

例3:计算:(1)|0.32|+|0.3|; (2)|–4.2|–|4.2|; (3)|–32|–(–32)。

分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。

在(3)中要注意区分绝对值符号与括号的不同含义。

解答:(1)0.62; (2)0; (3)34。

小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

2.求一个数的绝对值注意先判断这个数是正数还是负数。

相关文档
最新文档