圆的有关性质

合集下载

园的有关性质

园的有关性质
在绘画中:圆是一种基本的形状元素,可以用于创造各种不同的纹理和效果。例如, 梵高的《星夜》中就运用了许多圆形来描绘星星和月亮的形态
在雕塑中:圆也是一种常见的形状元素,可以用于创造各种不同的纹理和效果。例如 ,古希腊雕塑家普拉克西特列斯的《赫尔墨斯像》中就运用了许多圆形来描绘赫尔墨 斯的头饰和身姿
在建筑中:圆形也是一种常见的形状元素,可以用于创造各种不同的建筑风格和 效果。例如,罗马斗兽场的建筑风格就运用了许多圆形来描绘观众席和表演场地
在日常生活中:圆形物品的制造和设计也十分常见,如餐具(碗、盘子)、家电(电 灯泡、风扇)、工艺品等。此外,圆形在自然界中也很常见,如星球、花朵、昆虫的 复眼等
在物理学中:许多自然现象可以用圆形来描述,例如行星运动轨迹、电磁波传播方向 等。同时,许多物理实验也涉及到圆形的设置和测量,例如测量重力加速度、磁场强 度等
园的有关性质
圆的特性
目录
圆的应用
圆的特性
1
1.1 圆的位置特性
圆是平面内与一个定点(通常为原点) 距离等于定长的所有点的集合:定长称 为半径
圆的位置由圆心决定:圆心是圆上任意 两点的中垂线的交点
圆心到圆上任意一点的距离都相等
1.2 圆的特性
圆是一个连续曲线:没有断裂,因此它 没有拐点
圆是一个封闭图形:没有开口或断裂的 地方
在地理学中:地球的形状是一个类球体,采用椭圆形来描述其形态。此外,河流和海 洋的形态也是采用圆形或类圆形来描述的
THANKS
圆的应用
2
2.1 几何学中的应用
圆是几何学中最基本和最重要的图形之 一
圆的位置和形状可以通过从不同角度截 取线段和图形得到
在解析几何中:圆可以用方程来表示, 从而可以方便地研究它的性质和与其它 图形的交点

圆的概念和性质

圆的概念和性质

圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。

无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。

本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。

一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。

这个定点称为圆心,到圆心的距离称为半径。

以圆心为中心、以半径为半径的线段称为圆的半径。

圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。

二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。

直径是圆中最长的线段,并且它的长度等于半径的两倍。

2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。

圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。

根据定义,圆周的长度等于直径乘以π(圆周率)。

3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。

圆的面积也是通过圆的半径与圆周率之间的关系来计算。

根据定义,圆的面积等于半径平方乘以π。

4. 圆的切点两个圆相切时,它们有一个共同的切点。

切点是两个圆相切时,位于两个圆的切线上的点。

5. 圆的切线圆的切线是与圆只有一个公共点的直线。

圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。

三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。

同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。

2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。

例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。

同时,圆也可以与其他几何图形相交,形成复杂的图形结构。

3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。

例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。

圆的基本性质

圆的基本性质

圆的基本性质1.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;900的圆周角所对的弦是直径.2.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心: (3)三角形的内心:3. 圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.【例题精讲】例1. AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cm C. D .9cm 例2、BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..(1)仔细观察图形并写出四个不同的正确结论:①___ ___,②___ _____ ,③_____ _,④________(不添加其它字母和辅助线) (2)A ∠=30°,CDO ⊙的半径r .例3、如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 长.P B CEA 例3题图直线与圆、圆与圆的位置关系【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°练习、1.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O •的位置关系是____2.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.3、如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 。

圆的性质与圆的方程

圆的性质与圆的方程

圆的性质与圆的方程圆是几何中常见的图形,具有独特的性质和方程。

本文将探讨圆的性质以及圆的方程。

一、圆的性质1. 圆的定义:圆是平面上所有到定点距离相等的点的集合。

定点称为圆心,相等的距离称为半径。

任意一点到圆心的距离都等于半径。

2. 圆的直径与半径:直径是连接圆上任意两点且通过圆心的线段,长度为两点间的距离的最大值。

直径的长度是半径长度的两倍。

3. 圆的弦:弦是圆上任意两点之间的线段。

4. 圆的切线:切线是与圆仅有一个交点的直线。

切线与半径垂直,且切点在圆上。

5. 圆的弧:弧是圆上两点之间的一段,由弦确定。

圆的弧可通过圆心角或圆周角进行度量。

6. 圆的面积:圆的面积可以通过半径来计算,公式为:面积= π ×半径²,其中π近似等于3.14159。

二、圆的方程圆的方程是用来描述圆的数学表达式,常用的一种形式是标准方程:(x - h)² + (y - k)² = r²。

其中,(h, k)表示圆心的坐标,r表示半径的长度。

通过标准方程,可以得到圆的一些重要信息:1. 圆心坐标:方程中的h和k分别为圆心的横坐标和纵坐标。

2. 半径长度:方程中的r表示半径的长度。

3. 圆的位置:通过观察方程中的符号和数值,可以确定圆的位置关系。

当h和k为正值时,圆心位于第一象限;当h为负值、k为正值时,圆心位于第二象限;当h和k为负值时,圆心位于第三象限;当h为正值、k为负值时,圆心位于第四象限。

4. 圆的半径与直径:通过方程中的r可以得到半径的长度,而半径的两倍即为直径的长度。

5. 圆与坐标轴的交点:将x等于0或y等于0代入圆的方程,可以解得圆与x轴和y轴的交点坐标。

值得注意的是,也存在其他形式的圆的方程,如一般方程:x² + y²+ ax + by + c = 0,其中a、b、c为常数。

这种形式的方程可以用于描述圆心不在原点的情况。

综上所述,圆具有独特的性质和方程。

圆的性质及相关定理

圆的性质及相关定理

圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。

在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。

一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。

圆心是圆上所有点的中心位置,通常用字母O表示。

半径是从圆心到圆上的任意点的距离,通常用字母r表示。

2. 直径:直径是通过圆心的任意两点间的线段。

直径的长度等于半径的两倍。

3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。

圆上的弧可以根据其长度分为弧长和弧度。

4. 弦:弦是连接圆上任意两点的线段。

直径是最长的弦。

5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。

角度是以度为单位的度量,用符号°表示。

二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。

2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。

3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。

4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。

5. 弧长定理:同样大小的圆心角所对应的弧长相等。

6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。

三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。

2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。

3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。

4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。

总结:本文介绍了圆的基本性质和相关定理。

通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。

希望本文对读者有所帮助,并在几何学学习中起到指导作用。

圆形的性质与应用

圆形的性质与应用

圆形的性质与应用圆形是几何学中最基本的形状之一,具有许多独特的性质和广泛的应用。

无论是数学、物理还是工程领域,圆形都扮演着至关重要的角色。

在本文中,我们将介绍圆形的几个性质,并探讨一些实际应用。

一、圆形的性质1. 圆周率(π)圆形的一个重要性质是它的周长与直径之间的关系。

在任何一个圆中,圆周长度都是直径长度的约3.14159倍,这个比例被称为圆周率π。

π是一个无理数,它的小数部分是无限不循环的。

2. 半径(r)和直径(d)圆形也有两个重要的长度特征,即半径和直径。

半径是从圆心到圆周上的任意一点的距离,而直径则是通过圆心的两个相对点之间的距离。

直径是半径的两倍。

3. 圆心和圆周圆形由一个中心点(圆心)和与圆心等距的所有点(圆周)组成。

圆心是圆形的对称中心,对于所有的点来说,到圆心的距离都是相等的。

4. 弧度制在讨论圆形时,经常使用弧度制来度量角度。

一圆周含有360度,但在弧度制中,一个完整的圆周被定义为2π弧度。

因此,一个角度等于π/180弧度。

二、圆形的应用1. 圆形的几何应用圆形在几何学中有广泛的应用。

它是许多数学证明和定理的基础,如圆的面积和周长的计算,切线与弧的关系等等。

圆形还被广泛应用于测量和绘图中,例如绘制圆弧、圆形曲线等。

2. 圆形的物理应用圆形在物理学中也发挥着重要作用。

物体的运动轨迹往往是圆形,如行星绕太阳的轨道、电子绕原子核的轨道等。

圆形的对称性也使得它在电磁学和光学中得到广泛应用,例如光学透镜。

3. 圆形的工程应用圆形在工程领域的应用是多种多样的。

圆形的结构具有坚固和稳定的特性,因此在建筑和桥梁设计中被广泛采用。

汽车零部件如轮胎、刹车盘等也常采用圆形设计,以提供更好的性能和安全性。

4. 圆形的计算机图形学应用在计算机图形学中,圆形是绘制和渲染二维和三维图形的基本形状之一。

通过数学算法和计算机技术,我们可以轻松绘制出精确的圆形,使图形更加逼真和真实。

总结:圆形的性质和应用在数学、物理和工程等领域都起着重要作用。

圆的性质:认识圆的属性

圆的性质:认识圆的属性认识圆的属性在几何学中,圆是一种特殊的几何图形,它具有独特的性质和属性。

本文将介绍几个关于圆的重要性质,帮助读者更好地了解和认识圆。

一、圆的定义圆是由平面上距离中心点相等的所有点构成的图形。

其中,中心点是圆的具体位置,而距离中心点相等的线段称为半径,半径的两个端点则位于圆上。

圆没有边界,它的周长被称为圆周。

二、圆的直径和半径圆的直径是通过圆心并且两端点都位于圆上的线段,即两端点同时也是圆的直径的两个半径。

圆的直径是圆周的两倍,可以通过直径计算圆的周长和面积。

而半径简单地指从圆心到圆周上的一点的线段,它的长度是圆周的一半。

三、圆的周长和面积圆的周长是圆周的长度,即沿着圆的边界一周的距离。

圆的周长可以通过直径或半径来计算,公式为:周长= 2πr,其中π是一个常数,近似等于3.14,r是圆的半径。

圆的面积是圆内部区域的大小,可以通过半径计算,公式为:面积= πr²。

四、圆的切线和弦圆上的切线是指与圆周只有一个公共点的直线。

切线与半径垂直,并且与半径的夹角是90度。

另外,圆内部的任意两点可以通过一条直线连接,这条直线称为圆的弦。

直径是一种特殊的弦,它经过圆心并且将圆分为两个相等的部分。

五、圆的相交关系当两个圆的圆周相交,且有公共的交点时,它们被称为相交圆。

相交圆有可能相交于一个点、两个点或没有交点。

如果一个圆完全位于另一个圆的内部,它们被称为内切圆;如果一个圆完全包围着另一个圆,即两个圆的圆心之间的距离等于内切圆的半径与外切圆的半径之和,它们被称为外切圆。

总结起来,圆是由距离中心相等的所有点组成的图形,圆的直径是通过圆心的线段,圆的半径是从圆心到圆上一点的线段。

圆的周长和面积可以通过直径或半径计算,圆上的切线与半径垂直,切线与半径夹角为90度,圆内的两点可以通过一条弦连接。

当两个圆相交时,它们可以形成相交圆,或者是内切圆和外切圆。

这些性质和属性帮助我们更好地认识和理解圆,同时也为解决与圆相关的几何问题提供了基础。

圆的性质与定理

圆的性质与定理圆是一种具有特殊几何性质的几何图形,它由一条曲线组成,这条曲线上的每一点到圆心的距离都相等。

在数学中,关于圆的性质和定理有很多,它们帮助我们深入理解圆的特点和应用。

一、圆的基本性质1. 圆心和半径:圆心是圆上所有点的中心,用字母O表示。

半径是圆心到圆上任意一点的距离,用字母r表示。

2. 直径和周长:直径是穿过圆心的两个点之间的距离,等于半径的两倍。

周长是圆的边界长度,等于直径乘以π(圆周率)。

二、圆的重要定理1. 同圆弧定理:如果两条弧所对应的圆心角相等,则这两条弧是同圆弧。

2. 同弦定理:如果两条弦所对应的圆心角相等,则这两条弦是同弦。

3. 弧长定理:圆内任意一段圆弧的长度等于这段圆弧所对应的圆心角的弧度数乘以半径的长度。

即弧长 = 圆心角的弧度数 ×半径。

4. 切线定理:切线与半径垂直。

5. 相切弦定理:从外部一定点引圆的两条切线,这两条切线所夹的弦的长度相等。

6. 弦切角定理:圆内的弦所夹的角等于这条弦所对应的圆心角的一半。

7. 弧切角定理:圆内一条弧与这条弧所对应的切线所夹的角等于这段弧所对应的圆心角的一半。

三、圆的应用1. 圆周率π的计算:π是无理数,它代表了圆的周长与直径的比值。

在计算中常用3.14或22/7作为π的近似值。

2. 圆的面积计算:圆的面积等于半径的平方乘以π。

即面积= π ×半径的平方。

3. 圆的几何画图:在平面几何中,圆的几何画图是重要的基础知识,它包括圆的作图、切线的作图等。

4. 圆与三角形的关系:圆与三角形之间存在着多个重要的性质和定理,如圆内切等著名定理。

综上所述,圆的性质与定理是数学中重要的内容,它们帮助我们更深入地了解圆的特点与应用。

通过学习圆的性质与定理,我们可以解决与圆相关的问题,同时也为进一步学习几何学奠定了坚实基础。

圆的基本认识和性质

圆的基本认识和性质圆是几何中最基本的图形之一,它在我们的日常生活中无处不在。

本文将围绕圆的基本认识和性质展开讨论,帮助读者更好地理解和应用圆的知识。

一、圆的定义圆是由与一个点距离相等的所有点构成的集合。

这个点被称为圆心,与圆心距离相等的线段被称为半径,而通过圆心且连接两个不同点的线段被称为直径。

二、圆的性质1. 圆的特征每一个圆都具有以下几个特征:A. 圆的周长:圆的周长是圆上所有点到圆心的距离之和,由于所有这些距离相等,因此圆的周长等于圆周率π乘以直径。

用公式表示为:C = πd,其中C为圆的周长,d为直径。

B. 圆的面积:圆的面积是圆内部所有点与圆心的距离之和。

用公式表示为:S = πr²,其中S为圆的面积,r为半径。

C. 圆的弧长:圆上的弧是两个点之间的连续线段。

圆的弧长是指圆上弧的长度,其计算方法与周长类似。

2. 圆的内角性质在圆上的任意一条弦所对的圆心角都是相等的,且都等于该弦所对的弧所对的圆心角。

此外,圆上任意一点到圆心的连线,与该点处的切线所构成的角是直角。

3. 圆的切线性质圆上任意一点处的切线与半径的夹角是直角。

此外,切线与半径的夹角是切线切到点的圆弧所对的圆心角的一半。

三、圆的应用1. 圆的测量通过测量圆的直径、半径或弧长,我们可以计算出圆的周长和面积。

这在实际应用中非常重要,例如在建筑、制造和工程等领域。

2. 圆形物体的运动和旋转许多物体在运动或旋转时可近似认为是圆形的,比如车轮、盘子、风车等。

研究这些圆形物体的运动规律对于工程师和物理学家而言是至关重要的。

3. 圆的几何定理运用圆的几何定理,我们可以解决一些复杂的几何问题。

比如,利用圆的内角性质可以证明三角形的内角和等于180度;利用圆的切线性质可以解决与切线相关的问题等。

四、总结通过对圆的基本认识和性质的讨论,我们可以看到圆在几何学中的重要性和广泛应用。

准确理解圆的定义、特征和性质,对于我们解决实际问题和学习更高级的数学概念都具有重要意义。

圆的性质和定理

圆的性质和定理圆是几何中的重要概念之一,它具有许多独特的性质和定理。

在本文中,我们将探讨圆的基本性质以及一些与圆相关的重要定理。

一、圆的性质1. 定义:圆是由平面上与一定点的距离相等的所有点组成的集合。

圆心是圆上所有点的中心,半径是从圆心到圆上任意一点的距离。

2. 圆周率:圆的周长与直径的比值被定义为圆周率π(pi),它是一个无理数,约等于3.14159。

根据这个定义,圆的周长C可以表示为C = 2πr,其中r是圆的半径。

3. 直径和半径的关系:直径是一条通过圆心的线段,它的长度等于半径的两倍。

换句话说,d = 2r,其中d代表直径,r代表半径。

4. 弧和弦:在圆上,弧是圆上的一段弯曲的部分,而弦则是连接圆上两个点的线段。

任何一条弦对应的弧都是唯一确定的,且弦总是小于或等于圆的直径。

5. 弦的性质:如果两条弦互相垂直,则它们所对应的弧互补。

二、圆的定理1. 弧度制和角度制:在计量角度时,常见的有两种制度,一种是弧度制,另一种是角度制。

弧度制是以圆的半径为单位,角度制是以度为单位。

两者之间的转换关系是2π弧度等于360度。

2. 弧度与圆周角的关系:一条弧所对应的圆周角的弧度数等于这条弧所对应的圆心角的弧度数。

这个定理揭示了圆弧度的重要性,为许多相关问题的解决提供了便利。

3. 切线定理:与圆相切的直线(切线)与半径的相交点处的角是一个直角。

4. 弧长和扇形面积:弧长是弧上的一部分的长度,可以由弧度数乘以半径得到。

扇形面积是由相邻两条半径和其所夹的弧组成的图形的面积,它可以通过半径和所夹的圆心角的弧度数计算得出。

5. 割线定理:在与圆相交的直线上,两个相交点分割的弦的乘积等于这条直线外部线段与这条直线在圆上的切点分割的弦的乘积。

总结:圆具有许多独特的性质和定理,对于几何学的研究和应用有着重要的意义。

掌握了圆的性质和定理,我们可以更好地理解和解决与圆相关的问题。

在实际应用中,圆的性质和定理也被广泛应用于建筑、机械、地理等领域,为问题的解决提供了有效的方法和准确的计算依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:如图,矩形ABCD的对角线AC和BD相交与点
O.
求证:A,B,C,D4个点在以O为圆心的同一个圆上
D
C
O
A
B
课堂练习:
求证:菱形各边的中点在同一个圆上.
课外作业
作业:教材P67页中2,3,4.
• 设AB=3厘米,画图说明具有下列性质的点的集 合是怎样的图形.

(1)和点A的距离等于2厘米的点的集合;

(2)和点B的距离等于2厘米的点的集合;

(3)和点A,B的距离都等于2厘米的点的集合;

(4)和点A,B的距离都小于2厘米的点的集合
动画演示
求证: 矩形的四个顶点在以对角线的交点为
圆心的同一个圆上
如图:
o
r A
由圆的定义可知: (1) 圆上的各点到定点(圆心圆上
也就是说:
圆是到定点的距离等于定 长的点的集合
Or P
Q
课堂练习:
填空: 已知⊙O的半径r=5厘米,A为线段
OP的中点,当OP=6厘米时,点A在 ⊙O______;当OP=10厘米时,点A 在⊙O______;当OP=14厘米时, 点A在⊙O_____
圆的有关性质
授课人: 孙孝荣
制作:金湖县金南中学数学组
问题: 为什么自古到今从古代的马车到现在
的自行车他们的轮子都做成圆的,而不做成 方形了或三角形了 ?
F
要在操场上画一个半径为5米的大圆,如何画?
动画
圆的定义: 在一个平面内,线段OA 饶它的一个端点O旋转一周,另一个端点 A随之旋转所形成的的图形叫做圆
相关文档
最新文档