高三数学一轮复习圆锥曲线 抛物线
圆锥曲线中的定点、定值问题课件-2025届高三数学一轮复习

有lMN:x=2+1=3,也过定点(3,0), 故直线MN过定点,且该定点为(3,0).
(2)设G为直线AE与直线BD的交点,求△GMN面积的最小值.
解:由A(x1,y1),B(x2,y2),E(x3,y3),D(x4,y4), 则 lAE:y=yx33- -yx11(x-x1)+y1,由 y21=4x1,y22=4x2, 故 y=yy4323--yy4121x-y421+y1=y3+4xy1-y3+y21 y1+y1=y3+4xy1+y3y+1y3y1, 同理可得 lBD:y=y4+4xy2+y4y+2y4y2,
(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M, N,证明:线段MN的中点为定点.
解:证明:由题意可知:直线PQ的斜率存在, 设PQ:y=k(x+2)+3, P(x1,y1),Q(x2,y2), 联立方程
y=k(x+2)+3, y92+x42=1, 消去y得(4k2+9)x2+8k(2k+3)x+16(k2+3k)=0, 则Δ=64k2(2k+3)2-64(4k2+9)(k2+3k)=-1 728k>0,解得k<0,
[kx1+(2k+3)](x2+2)+[kx2+(2k+3)](x1+2) (x1+2)(x2+2)
=2kx1x2+x(14xk2++32)((xx11++xx22))++44(2k+3)
=32k4(kk22++19364k(kk)-22++893kk(4)-k4+1k263+4k)k((2292+kk++933))++44(2k+3)=13068=3, 所以线段MN的中点是定点(0,3).
综合①②知,|MN|=4 3,为定值.
规律方法
由特殊到一般法求定值问题的两个常用技巧
高三数学一轮复习必备:圆锥曲线方程及性质

~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
2023年新高考数学大一轮复习专题六解析几何第6讲圆锥曲线的定点问题(含答案)

新高考数学大一轮复习专题:第6讲 定点问题 母题 已知椭圆C :x 24+y 2=1,点P (0,1),设直线l 不经过P 点且与C 相交于A ,B 两点,若直线PA 与直线PB 的斜率的和为-1,求证:l 过定点.思路分析❶l 斜率k 存在时写出l 的方程↓❷联立l ,C 的方程,设而不求↓❸计算k PA ,k PB 并代入k PA +k PB =-1↓❹分析直线方程,找出定点证明 设直线PA 与直线PB 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22, 则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2 =kx 1+m -1x 1+kx 2+m -1x 2 =2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0,即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2),所以l 过定点(2,-1).[子题1] 已知抛物线C :y 2=4x 的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点.若点E (-2,0),直线l 不与坐标轴垂直,且∠AEO =∠BEO ,求证:直线l 过定点. 证明 设A (x 1,y 1),B (x 2,y 2),由题意可设直线l 的方程为x =ny +b (n ≠0),由⎩⎪⎨⎪⎧ x =ny +b ,y 2=4x ,得y 2-4ny -4b =0, 则y 1+y 2=4n ,y 1y 2=-4b .由∠AEO =∠BEO ,得k EA =-k EB ,即y 1x 1+2=-y 2x 2+2, 整理得y 1x 2+2y 1+x 1y 2+2y 2=0,即y 1(ny 2+b )+2y 1+(ny 1+b )y 2+2y 2=0,整理得2ny 1y 2+(b +2)(y 1+y 2)=0,即-8bn +4(b +2)n =0,得b =2,故直线l 的方程为x =ny +2(n ≠0),所以直线l 过定点(2,0).[子题2] (2020·湖南四校联考)已知抛物线C :y 2=4x 与过点(2,0)的直线l 交于M ,N 两点,若MP →=12MN →,PQ ⊥y 轴,垂足为Q ,求证:以PQ 为直径的圆过定点. 证明 由题意可知,直线l 的斜率不为0,设其方程为x =my +2(m ∈R ),将x =my +2代入y 2=4x ,消去x 可得y 2-4my -8=0,显然Δ=16m 2+32>0,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-8,因为MP →=12MN →,所以P 是线段MN 的中点, 设P (x P ,y P ),则x P =x 1+x 22=m y 1+y 2+42=2m 2+2, y P =y 1+y 22=2m ,所以P (2m 2+2,2m ),又PQ ⊥y 轴,垂足为Q ,所以Q (0,2m ),设以PQ 为直径的圆经过点A (x 0,y 0),则AP →=(2m 2+2-x 0,2m -y 0),AQ →=(-x 0,2m -y 0),所以AP →·AQ →=0,即-x 0(2m 2+2-x 0)+(2m -y 0)2=0,化简可得(4-2x 0)m 2-4y 0m +x 20+y 20-2x 0=0,①令⎩⎪⎨⎪⎧ 4-2x 0=0,4y 0=0,x 20+y 20-2x 0=0,可得⎩⎪⎨⎪⎧ x 0=2,y 0=0,所以当x 0=2,y 0=0时,对任意的m ∈R ,①式恒成立,所以以PQ 为直径的圆过定点,该定点的坐标为(2,0).规律方法 动线过定点问题的两大类型及解法(1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. 跟踪演练1.(2020·北京东城区模拟)已知椭圆C :x 26+y 22=1的右焦点为F ,直线l :y =kx +m (k ≠0)过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为P ′,求证:直线P ′Q 过x 轴上的定点.证明 ∵c =6-2=2,∴F (2,0),直线l :y =kx +m (k ≠0)过点F ,∴m =-2k ,∴l :y =k (x -2).由⎩⎪⎨⎪⎧ x 2+3y 2=6,y =k x -2,得(3k 2+1)x 2-12k 2x +12k 2-6=0. 依题意Δ>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=12k 23k 2+1,x 1x 2=12k 2-63k 2+1. ∵点P 关于x 轴的对称点为P ′,则P ′(x 1,-y 1).∴直线P ′Q 的方程可以设为y +y 1=y 2+y 1x 2-x 1(x -x 1),令y =0,x =x 2y 1-x 1y 1y 1+y 2+x 1=x 2y 1+x 1y 2y 1+y 2 =kx 2x 1-2+kx 1x 2-2k x 1+x 2-4=2x 1x 2-2x 1+x 2x 1+x 2-4=2×12k 2-63k 2+1-2×12k 23k 2+112k 23k 2+1-4=3. ∴直线P ′Q 过x 轴上的定点(3,0).2.已知P (0,2)是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 的离心率e =33. (1)求椭圆的方程;(2)过点P 的两条直线l 1,l 2分别与C 相交于不同于点P 的A ,B 两点,若l 1与l 2的斜率之和为-4,则直线AB 是否经过定点?若是,求出定点坐标;若不过定点,请说明理由.解 (1)由题意可得⎩⎪⎨⎪⎧ b =2,c a =33,a 2=b 2+c 2,解得a =6,b =2,c =2,∴椭圆的方程为x 26+y 24=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +t (t ≠2),A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =kx +t ,x 26+y 24=1,消去y 并整理, 可得(3k 2+2)x 2+6ktx +3t 2-12=0,∴Δ=36(kt )2-4×(3k 2+2)(3t 2-12)>0,即24(6k 2-t 2+4)>0,则x 1+x 2=-6kt 3k 2+2,x 1x 2=3t 2-123k 2+2, 由l 1与l 2的斜率之和为-4,可得y 1-2x 1+y 2-2x 2=-4, 又y 1=kx 1+t ,y 2=kx 2+t ,∴y 1-2x 1+y 2-2x 2=kx 1+t -2x 1+kx 2+t -2x 2=2k +t -2x 1+x 2x 1x 2=2k +t -2·-6kt 3k 2+23t 2-123k 2+2=-4, ∵t ≠2,化简可得t =-k -2,∴y =kx -k -2=k (x -1)-2,∴直线AB 经过定点(1,-2).当直线AB 的斜率不存在时,设直线AB 的方程为x =m ,A (m ,y 1),B (m ,y 2),∴y 1-2m +y 2-2m =y 1+y 2-4m=-4, 又点A ,B 均在椭圆上,∴A ,B 关于x 轴对称,∴y 1+y 2=0,∴m =1,故直线AB 的方程为x =1,也过点(1,-2),综上直线AB 经过定点,定点为(1,-2).专题强化练1.已知椭圆C :x 22+y 2=1,设直线l 与椭圆C 相交于A ,B 两点,D (0,-1),若直线AD 与直线BD 的斜率之积为16.证明:直线l 恒过定点. 证明 ①当直线l 斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,-y A ),因为点A (m ,y A )在椭圆x 22+y 2=1上, 所以m 22+y 2A =1,即y 2A =1-m 22, 所以k AD ·k BD =y A +1m ·-y A +1m =1-y 2A m 2=m 22m 2=12≠16,不满足题意. ②当直线l 斜率存在时,设l :y =kx +b (b ≠-1),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +b ,x 2+2y 2-2=0,整理得 (1+2k 2)x 2+4kbx +2b 2-2=0,依题意得,Δ>0,所以x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2,则k AD ·k BD =y 1+1x 1·y 2+1x 2 =kx 1+b kx 2+b +[k x 2+x 1+2b ]+1x 1x 2 =k 2x 1x 2+kb +k x 1+x 2+b 2+2b +1x 1x 2. 将x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k2, 代入上式化简得,k AD ·k BD =y 1+1x 1·y 2+1x 2=b +122b +1b -1=16,即b +1b -1=13,解得b =-2.所以直线l 恒过定点(0,-2).2.已知点H 为抛物线C :x 2=4y 的准线上任一点,过H 作抛物线C 的两条切线HA ,HB ,切点为A ,B ,证明直线AB 过定点,并求△HAB 面积的最小值.解 设点A (x 1,y 1),B (x 2,y 2),H (t ,-1),由C :x 2=4y ,即y =14x 2,得y ′=12x , 所以抛物线C :x 2=4y 在点A (x 1,y 1)处的切线HA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -12x 21+y 1,因为y 1=14x 21,所以y =x 12x -y 1, 因为H (t ,-1)在切线HA 上,所以-1=x 12t -y 1,① 同理-1=x 22t -y 2,② 综合①②得,点A (x 1,y 1),B (x 2,y 2)的坐标满足方程-1=x 2t -y ,即直线AB 恒过抛物线的焦点F (0,1), 当t =0时,此时H (0,-1),可知HF ⊥AB ,|HF |=2,|AB |=4,S △HAB =12×2×4=4, 当t ≠0时,此时直线HF 的斜率为-2t,得HF ⊥AB , 于是S △HAB =12×|HF |×|AB |, 而|HF |=t -02+-1-12=t 2+4,把直线y =t 2x +1代入C :x 2=4y 中,消去x 得 y 2-(2+t 2)y +1=0,|AB |=y 1+y 2+2=t 2+4, 即S △HAB =12(t 2+4)t 2+4=()322142t +>4,综上所述,当t =0时,S △HAB 最小,且最小值为4.。
高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。
2023年高考数学(文科)一轮复习课件——圆锥曲线的综合问题 第一课时 定点问题

(2)过点 S-13,0的动直线 l 交椭圆 C 于 A,B 两点,试问:在 x 轴上是否存 在一个定点 T,使得无论直线 l 如何转动,以 AB 为直径的圆恒过点 T?若存 在,求出点 T 的坐标;若不存在,请说明理由. 解 当直线 l 不与 x 轴重合时,设直线 l 的方程为 x=my-31, A(x1,y1),B(x2,y2),T(t,0), 由xy22=+mxy2=-113,消去 x 并整理,得 (18m2+9)y2-12my-16=0,
索引
所以 y1+y2=-m22m+n9,y1y2=mn22-+99. 代入③式,得(27+m2)(n2-9)-2m(n+3)mn+(n+3)2(m2+9)=0. 解得 n=-3(舍去)或 n=23. 故直线 CD 的方程为 x=my+32, 即直线 CD 过定点32,0. 若 t=0,则直线 CD 的方程为 y=0,过点32,0. 综上,直线 CD 过定点32,0.
索引
(2)过点 P13,0的直线 l 交椭圆 C 于 A,B 两点,试探究以线段 AB 为直径的圆是 否过定点.若过,求出定点坐标;若不过,请说明理由. 解 当 AB⊥x 轴时,以线段 AB 为直径的圆的方程为x-132+y2=196. 当AB⊥y轴时,以线段AB为直径的圆的方程为x2+y2=1. 可得两圆交点为Q(-1,0). 由此可知,若以线段AB为直径的圆过定点,则该定点为Q(-1,0). 下证Q(-1,0)符合题意. 设直线l的斜率存在,且不为0, 其方程设为 y=kx-13,代入y22+x2=1,
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2)为抛物线C上一点. (1)求抛物线C的方程; 解 若抛物线的焦点在x轴上,设抛物线方程为y2=ax,代入点A(1,2),可得 a=4,所以抛物线方程为y2=4x. 若抛物线的焦点在y轴上,设抛物线方程为x2=my,代入点A(1,2), 可得 m=21,所以抛物线方程为 x2=21y. 综上所述,抛物线 C 的方程是 y2=4x 或 x2=12y.
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
高三数学人教版A版数学(理)高考一轮复习教案1 直线与圆锥曲线的位置关系1

第九节 圆锥曲线的综合问题 第一课时 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)能解决直线与椭圆、抛物线的位置关系等问题. (2)理解数形结合的思想. (3)了解圆锥曲线的简单应用. 2.定值(定点)与最值问题理解基本几何量,如:斜率、距离、面积等概念,掌握与圆锥曲线有关的定值(定点)、最值问题.3.存在性问题能够合理转化,掌握与圆锥曲线有关的存在性问题.知识点一 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.易误提醒 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[自测练习]1.若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:结合图形(图略)分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0),故选C.答案:C2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案:A知识点二 弦长问题设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2. 必备方法 遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.[自测练习]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:则由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=14.已知抛物线y =ax 2的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析:由题设p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1.直线过焦点F ,联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6, ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案:8考点一 直线与圆锥曲线的位置关系|1.(2016·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0解析:∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B.答案:B2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 解析:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1. 答案:D考点二 弦长问题|已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P ⎝⎛⎭⎫-1,22在椭圆上,且PF 1→·F 1F 2→=0,⊙O 是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA →·OB →=λ,且满足23≤λ≤34时,求弦长|AB |的取值范围.[解] (1)依题意,可知PF 1⊥F 1F 2,∴c =1,1a 2+12b 2=1,a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1.∴椭圆的方程为x 22+y 2=1.(2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切,则|m |k 2+1=1,即m 2=k 2+1,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-2=0, ∵直线l 与椭圆交于不同的两点A ,B . 设A (x 1,y 1),B (x 2,y 2). ∴Δ>0⇒k 2>0⇒k ≠0,x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k 2=1-k 21+2k 2,∴OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ∴23≤1+k 21+2k 2≤34,∴12≤k 2≤1, ∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 4+k 2)4(k 4+k 2)+1设u =k 4+k 2⎝⎛⎭⎫12≤k 2≤1, 则34≤u ≤2,|AB |=22u4u +1=212-12(4u +1),u ∈⎣⎡⎦⎤34,2, ∵|AB |(u )在⎣⎡⎦⎤34,2上单调递增, ∴62≤|AB |≤43. 解决弦长问题的注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长.(2)涉及焦点弦长时要注意圆锥曲线定义的应用.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( ) A.12 B .1 C .2D .4解析:设P (x 1,y 1),Q (x 2,y 2),由题意可知, |PF |=x 1+2,|QF |=x 2+2,则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4,联立直线与抛物线方程消去y 得,k 2x 2-(4k 2+8)x +4k 2=0,可知x 1x 2=4,故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12.故选A.答案:A考点三 中点弦问题|弦的中点问题是考查直线与圆锥曲线位置关系的命题热点.归纳起来常见的探究角度有:1.由中点弦确定直线方程. 2.由中点弦确定曲线方程. 3.由中点弦解决对称问题. 探究一 由中点弦确定直线方程1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.答案:x +2y -8=0探究二 由中点弦确定曲线方程2.过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p (x-x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p=12,解得p =1或p =2.答案:x 2=2y 或x 2=4y探究三 由中点弦解决对称问题3.已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( )A.32 B.52 C .2D .3解析:由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m=32,选A. 答案:A对于中点弦问题,常用的解题方法是平方差法.其解题步骤为 ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解.28.设而不求整体变换思想在圆锥曲线结合问题中的应用【典例】 (2016·台州模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.[思维点拨](1)待定系数法求a ,b .(2)注意判断l 的斜率是否存在.(3)利用弦长公式表示出|AB |,|MN |后整体变形得结论.[解] (1)椭圆的顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1. (2)由题可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0), 且M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-5k 2-123+4k 2=-2,解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1). (3)证明:设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4), 由(2)可得|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8k 23+4k 22-4⎝ ⎛⎭⎪⎫4k 2-123+4k 2=12(k 2+1)3+4k 2,由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx 消去y 并整理得x 2=123+4k 2,|AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k 2=4,为定值. [方法点评] 对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.A 组 考点能力演练1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.答案:A2.(2016·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x解析:设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x ,故选B.答案:B3.已知双曲线 x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B .(-3,3) C.⎣⎡⎦⎤-33,33 D .[-3,3]解析:由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.答案:C4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2D .2解析:如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA →·MB →=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM=90°,则MF ⊥AB ,所以k =-1k MF=2. 答案:D5.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3解析:由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3. 答案:D6.抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析:y 2=-12x 的准线方程为x =3,双曲线x 29-y 23=1的渐近线为y =±33x . 设抛物线的准线与双曲线的两条渐近线的交点分别为A ,B ,由⎩⎪⎨⎪⎧ x =3,y =33x ,求得A (3,3),同理B (3,-3),所以|AB |=23,而O 到直线AB 的距离d =3,故所求三角形的面积S =12|AB |×d =12×23×3=3 3. 答案:3 3 7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:如图,由题知OA ⊥AF ,OB ⊥BF 且∠AOB =120°,∴∠AOF =60°.又OA =a ,OF =c ,∴a c =OA OF =cos 60°=12, ∴c a=2. 答案:28.直线l 过椭圆x 22+y 2=1的左焦点F ,且与椭圆相交于P ,Q 两点,M 为PQ 的中点,O 为原点.若△FMO 是以OF 为底边的等腰三角形,则直线l 的方程为________.解析:法一:由椭圆方程得a =2,b =c =1,则F (-1,0).在△FMO 中,|MF |=|MO |,所以M 在线段OF 的中垂线上,即x M =-12, 设直线l 的斜率为k ,则其方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,得x 2+2k 2(x +1)2-2=0, 即(2k 2+1)x 2+4k 2x +2(k 2-1)=0,∴x P +x Q =-4k 22k 2+1,而M 为PQ 的中点, 故x M =12(x P +x Q )=-2k 22k 2+1=-12, ∴k 2=12,解得k =±22. 故直线l 的方程为y =±22(x +1),即x ±2y +1=0. 法二:设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),由题意知k PQ =-k OM ,由P 、Q 在椭圆上知⎩⎨⎧ x 212+y 21=1,x 222+y 22=1,两式相减整理得k PQ =y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-x 02y 0,而k OM =y 0x 0,故x 02y 0=y 0x 0, 即x 20=2y 20,所以k PQ =±22,直线PQ 的方程为y =±22(x +1),即x ±2y +1=0. 答案:x ±2y +1=09.(2016·洛阳模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),且椭圆C 经过点P ⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m (m >a )于M 点,若k P A ,k PM ,k PB 成等差数列,求实数m 的值.解:(1)由题意,⎩⎪⎨⎪⎧ a 2-b 2=3,3a 2+14b 2=1,得a 2=4,b 2=1. ∴椭圆C 的方程为x 24+y 2=1. (2)设直线l :y =k (x -3),A (x 1,y 1),B (x 2,y 2),M (m ,y m ).将直线方程代入椭圆方程x 2+4y 2=4中,得(1+4k 2)x 2-83k 2x +12k 2-4=0,则x 1+x 2=83k 21+4k 2,x 1·x 2=12k 2-41+4k 2. 此时k P A =y 1-12x 1-3=k -12(x 1-3),k PB =y 2-12x 2-3=k -12(x 2-3). ∴k P A +k PB =⎣⎢⎡⎦⎥⎤k -12(x 1-3)+⎣⎢⎡⎦⎥⎤k -12(x 2-3) =2k -x 1+x 2-232[x 1x 2-3(x 1+x 2)+3]=2k -83k 21+4k 2-232⎝ ⎛⎭⎪⎫12k 2-41+4k 2-3·83k 21+4k 2+3=2k - 3.又M (m ,y m )在直线l 上,∴y m =k (m -3),则k PM =y m -12m -3=k -12(m -3).若k P A ,k PM ,k PB 成等差数列,则2k PM =k P A +k PB ,则2k -1m -3=2k -3,解得m =433. 10.已知抛物线C :y 2=2px (p >0)上一点P (x 0,-2)到该抛物线焦点的距离为2,动直线l 与C 交于两点A ,B (A ,B 异于点P ),与x 轴交于点M ,AB 的中点N ,且直线P A ,PB 的斜率之积为1.(1)求抛物线C 的方程;(2)求|AB ||MN |的最大值. 解:(1)因为点P (x 0,-2)在抛物线上,所以2px 0=4⇒x 0=2p. 由抛物线的定义知,2p +p 2=2⇒(p -2)2=0⇒p =2, 故抛物线C 的方程为y 2=4x .(2)由(1)知,x 0=1,得P (1,-2).设A (x 1,y 1),B (x 2,y 2),设直线P A ,PB 的斜率分别为k 1,k 2,设直线AB 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,消去x 得y 2-4my -4t =0. Δ=16m 2+16t >0⇒m 2+t >0,①y 1+y 2=4m ,y 1y 2=-4t ,因为k 1=y 1+2x 1-1=y 1+2y 214-1=4y 1-2. 同理k 2=4y 2-2.所以k 1k 2=4y 1-2·4y 2-2=1,即y 1y 2-2(y 1+y 2)-12=0,即-4t -8m -12=0⇒t =-2m -3.代入①得m 2-2m -3>0⇒m <-1或m >3.因为|AB |=1+m 2|y 1-y 2| =1+m 2·(y 1+y 2)2-4y 1y 2 =1+m 2·16m 2+16t =41+m 2·m 2-2m -3,又y M =0,y N =y 1+y 22=2m , 则|MN |=1+m 2|y M -y N |=21+m 2|m |. 所以|AB ||MN |=2m 2-2m -3|m |=21-2m -3m 2 =2-3⎝⎛⎭⎫1m +132+43, 故当m =-3时,|AB ||MN |取到最大值433. B 组 高考题型专练1.(2015·高考福建卷)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 由已知|AF |=3,得2+p 2=3, 解得p =2,所以抛物线E 的方程为y 2=4x .(2)法一:如图,因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.法二:设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0,从而r =|22+22|8+9=4217. 又直线GB 的方程为22x +3y +22=0,所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.2.(2015·高考重庆卷)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解:(1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1. (2)法一:连接QF 1,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,求得x 0=±a c a 2-2b 2,y 0=±b 2c. 由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a ,于是(2+2)(1+2e 2-1)=4,解得e=12⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫42+2-12=6- 3.法二:连接QF1,如图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=2|PF1|,因此,4a-2|PF1|=2|PF1|,则|PF1|=2(2-2)a,从而|PF2|=2a-|PF1|=2a-2(2-2)a=2(2-1)a,由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=ca =|PF1|2+|PF2|22a=(2-2)2+(2-1)2=9-62=6- 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑥
x1+x2 x1x2 由⑤⑥得 MA, MB 的交点 M(x0, y0)的坐标为 x0= , y0= , 2 4 因为点 M(x0,y0)在 C2 上,即 x2 0=-4y0,
2 x1 +x2 2 所以 x1x2=- . ⑦ 6
4 由③④⑦得 x = y,x≠0. 3
p [听课记录] 依题意, 设抛物线方程是 y =2px(p>0),则有 2+ = 2
2
3,得 p=2, 故抛物线方程是 y2=4x,点 M 的坐标是(2,± 2 2), |OM|= 22+8=2 3. 答案 B
[规律方法] 1 . 求抛物线的方程一般是利用待定系数法, 即求p但要注意判断标准方程的形式. 2 .研究抛物线的几何性质时,一是注意定义 转化应用;二是要结合图形分析,同时注意平 面几何性质的应用.
[典题导入] (1)(2013·新课标全国Ⅱ高考)设抛物线C: y2 = 2px(p > 0) 的焦点为 F ,点 M 在 C 上, |MF| = 5 ,若以 MF 为直径的圆过点 (0 , 2) ,则 C 的 方程为 ( ) A.y2=4x或y2=8x B . y2 = 2x 或 y2 =8x C.y2=4x或y2=16x D . y2 = 2x 或 y2 =16x
2
当 x1=x2 时,A,B 重合于原点 O,AB 中点 N 为 O,坐标满足 x2 4 = y. 3 4 因此线段 AB 中点 N 的轨迹方程为 x = y. 3
2
[规律方法] 1.设抛物线方程为y2=2px(p>0),直线Ax+ By + C = 0 ,将直线方程与抛物线方程联立, 消去x得到关于y的方程my2+ny+q=0. (1)若m≠0,当Δ>0时,直线与抛物线有两个 公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点. (2) 若 m = 0 ,直线与抛物线只有一个公共点, 此时直线与抛物线的对称轴平行.
2
)
1 B [抛物线的标准方程为 x = y. a 1 1 则 a<0 且 2=- ,得 a=- .] 4a 8
x2 y 2 2. (2014· 济南模拟)抛物线的焦点为椭圆 + =1 的下焦点, 顶点 4 9 在椭圆中心,则抛物线方程为( A.x2=-4 5y C.x2=-4 13y )
B.y2=-4 5x D.y2=-4 13x
[跟踪训练] 2.(2014· 南京模拟)已知抛物线 x2=4y 的焦点为 F,准线与 y 轴的 3 交点为 M,N 为抛物线上的一点,且|NF|= |MN|,则∠NMF 2 =________.
解析 如图,过 N 作准线的垂线,垂足为 H, 3 则|NF|=|NH|= |MN|, 2 3 ∴cos∠MNH= , 2 π π ∴∠MNH= ,∴∠NMF= . 6 6 π 答案 6
7 当 PA⊥l 时,|PA|+d 最小,最小值为 , 2 7 即|PA|+|PF|的最小值为 , 2 此时 P 点纵坐标为 2,代入 y2=2x,得 x=2, ∴P 点的坐标为(2,2).
[规律方法] 涉及抛物线上的点到焦点(准线)的距离问题, 可优先考虑利用抛物线的定义转化为点到准线 (焦点)的距离问题求解.
(1)求p的值; (2)当M在C2上运动时,求线段AB中点N的轨 迹方程(A,B重合于O时,中点为O).
[听课记录]
(1)因为抛物线 C1:x2=4y 上任意一点(x,y)的切线
x 1 斜率为 y′= ,且切线 MA 的斜率为- , 2 2 所以 A
1 点坐标为-1,4 ,
4.(2014· 郑州模拟)已知斜率为 2 的直线 l 过抛物线 y2=ax(a>0) 的焦点 F,且与 y 轴相交于点 A,若△OAF(O 为坐标原点)的面 积为 4,则抛物线方程为________. a 解析 依题意得, |OF|= , 又直线 l 的斜率为 2, 可知|AO|=2|OF| 4 a 1 a2 = ,△AOF 的面积等于 ·|AO|·|OF|= =4,则 a2=64.又 a 2 2 16 >0,所以 a=8,该抛物线的方程是 y2=8x. 答案 y2=8x
范围
x≥0,y∈R
x≤0,y∈R
对称轴
x轴
顶点坐标
原点 O(0,0)
标准方程
y2=2px(p>0)
p , 0 2
y2=-2px(p>0) p ຫໍສະໝຸດ - , 0 2 焦点坐标
准线方程
p x=- 2 e=1
p x= 2
离心率
图形
范围
y≥0,x∈R
y≤0,x∈R
抛物线的定义及应用
[典题导入] (1)(2013· 江西高考)已知点 A(2,0),抛物线 C:x2=4y 的焦点为 F, 射线 FA 与抛物线 C 相交于点 M, 与其准线相交于点 N,则|FM|∶|MN|= ( A.2∶ 5 C.1∶ 5 B.1∶2 D.1∶3 )
[听课记录] 射线 FA 的方程为 x+2y-2=0(x≥0). 1 如图所示,知 tan α= , 2 5 ∴sin α= . 5 由抛物线的定义知|MF|=|MG|, |FM| |MG| 5 1 ∴ = =sin α= = . |MN| |MN| 5 5 答案 C
标准方 程 对称轴
顶点坐 标
x2=2py(p>0)
y轴
x2=-2py(p>0)
原点O(0,0)
焦点坐标
p 0 , 2
p 0 ,- 2
准线方程
p y=- 2
p y= 2
离心率
e=1
[基础自测自评] 1.(教材习题改编)抛物线 y=ax2 的准线方程是 y=2,则 a 的值是 ( 1 A. 8 C.8 1 B.- 8 D.-8
D [设点 A(x1,y1),B(x2,y2),则依题意得焦点 F(0,1),准线 方程是 y=-1,直线 l:y=
y= 3x+1, 3x+1,由 2 消去 x =4y,
x 得 y2
-14y+1=0, y1+y2=14, |AB|=|AF|+|BF|=(y1+1)+(y2+1)=(y1 +y2)+2=16.]
解析 由椭圆方程知,a2=9,b2=4,焦点在 y 轴上,下焦点 坐标为(0,-c),其中 c= a2-b2= 5,∴抛物线焦点坐标为 (0,- 5),∴抛物线方程为 x2=-4 5y. 答案 A
3.已知倾斜角为 60°的直线 l 通过抛物线 x2=4y 的焦点,且与 抛物线相交于 A,B 两点,则弦 AB 的长为( A.4 C.10 B.6 D.16 )
x= , y = 2 2 ( x - 1 ), 又 2 解得 2 y =4x, 1 由图知,点 B
1 的坐标为 2,-
y=- 2,
2 ,
x=2, 或 y=2 2.
1 3 ∴|BF|= -(-1)= . 2 2 3 答案 2
抛物线的标准方程及几何性质
第七节
抛物线
[主干知识梳理] 一、抛物线定义 平面内与一个定点F和一条定直线l(l不经过 点相等的点 F)距离 的轨迹叫做抛物线,点 F 准线 叫做抛物线的焦点,直线l叫做抛物线 的 .
二、抛物线的标准方程与几何性质 标准方 程 y2=2px(p>0) y2=-2px(p>0)
图形
选 A. 答案 A
1 2 2 + 2 = 2
17 , 2
[互动探究] 在本例条件下,求点 P 到点 A(3,2)的距离与点 P 到抛物线焦点 F 距离之和的最小值,并求出取最小值时 P 点的坐标. 解析 将 x=3 代入抛物线方程 y2=2x,得 y=± 6. ∵ 6>2,∴A 在抛物线内部. 设抛物线上点 P 到准线 l: 1 x=- 的距离为 d, 2 由定义知|PA|+|PF|=|PA|+d,
1 1 故切线 MA 的方程为 y=- (x+1)+ . 2 4 因为点 M(1- 2,y0)在切线 MA 及抛物线 C2 上, 3-2 2 1 1 于是 y0=- (2- 2)+ =- , ① 2 4 4 (1- 2)2 3-2 2 y0=- =- . ② 2p 2p
由①②得 p=2. (2)设
2.与焦点弦有关的常用结论.(以右图为依据)
2 p (1)y1y2=-p2,x1x2= . 4
=4. 由 y2 0=2px0,得
p 16=2p5-2 ,解之得
p=2,或 p=8.
所以C的方程为y2=4x或y2=16x,故选C. 答案 C
(2)(2012· 四川高考)已知抛物线关于 x 轴对称,它的顶点在坐标原 点 O,并且经过点 M(2,y0).若点 M 到该抛物线焦点的距离为 3, 则|OM|= ( A.2 2 C.4 B.2 3 D.2 5 )
直线与抛物线的位置关系
[典题导入] (2013· 辽宁高考)如图, 抛物线 C1: x2=4y, C2: x2=-2py(p>0). 点 M(x0,y0)在抛物线 C2 上,过 M 作 C1 的切线,切点为 A,B(M 为 原点 O 时,A,B 重合于 O).当 x0=1- 2时,切线 MA 的斜率为 1 - . 2
2 2 x x 1 2 x , x , N(x,y),A , B 1 2 ,x1≠x2, 4 4
x1+x2 由 N 为线段 AB 中点知 x= , 2
2 x2 1+x2 y= . 8
③
④ ⑤
x1 x2 1 切线 MA,MB 的方程为 y= (x-x1)+ , 2 4
[跟踪训练] 1. (2012· 安徽高考)过抛物线 y2=4x 的焦点 F 的直线交该抛物线于 A,B 两点.若|AF|=3,则|BF|=________. 解析 由题意知,抛物线的焦点 F 的坐标为(1, 0),又∵|AF|=3,由抛物线定义知,点 A 到准线 x=-1 的距离为 3,∴点 A 的横坐标为 2. 将 x=2 代入 y2=4x 得 y2=8,由图知,y=2 2, ∴A(2,2 2),∴直线 AF 的方程为 y=2 2(x-1).