中职数学(高教版)授课教案复数的几何意义和三角形式
3.3《复数的几何意义》教案(1).doc

3.3《复数的几何意义》教案(1)教学目标了解复数的几何意义,会用复平面内的点和向量来表示复数。
了解复数加、减法的几何意义,进一步体会数形结合的思想。
教学重、难点重点:复数的几何意义难点:复数加、减法的儿何惫义教学过程一.问题引入:我们知道实数可以用数轴上的点来表示。
——对应实数 < ----------- > 数轴上的点(数) (形); - 片实数的几何模型:----- J---那么,类比实数的表示,可以用什么来表示复数?一个复数由什么确定?二、知识新授:复平面、实轴、虚轴:复数m+bi(a、b^R)与有序实数对(a, b)是 ------ 对应关系这是因为对于任何一个复数z=a+bi(a. b^R),由复数相等的定义可知,、可以由一个有序实数对(a, b)惟一确定,如z=3+2i可以由有序实Z=a+bi数对(3, 2)确定,又如z=-2+i可以由有序实数对(一2, 1)來确定;Z(a,bf ............................ 匕I又因为有序实数对(d,历与平面直角坐标系中的点是一一对应的, 1 ____a 0 —如有序实数对(3, 2)它与平血直角坐标系中的点4,横坐标为3,纵坐标为2,建立了一一对应的关系由此可知,复数集与平面直角坐标系屮的点集Z间可以建立一一对应的关系•点Z的横坐标是e纵坐标是4复数Z=a+bi(a. b^R)可用点Z(a, b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0, 0),它所确定的复数是込=()+0匸0表示是实数.故除了原点外,虚轴上的点祁表示纯虚数在复平面内的原点(0, 0)表示实数0,实轴上的点(2, 0)表示实数2,虚轴上的点(0, —1)表示纯虚数T,虚轴上的点(0, 5)表示纯虚数5,非纯虚数对应的点在四个象限,例如点(一2, 3)表示的复数是一2+3z, z=—5—3:对应的点(一5, —3)在第三象限等等..例题应用:例1、(1)下列命题屮的假命题是(D ) (A)在复平面内,对应于实数的点都在实轴上;(B) 在复平面内,对应于纯虚数的点都在虚轴上;(C) 在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。
复数的几何意义与三角形式

复数的几何意义与三角形式复数是数学中重要的概念,它包含了一个实部和一个虚部,可以表示为$a+bi$,其中$a$是实部,$b$是虚部,$i$是虚数单位,满足$i^2=-1$。
复数的几何意义是指将复数表示在复平面上的点。
复平面是一个平面直角坐标系,实轴表示实部,虚轴表示虚部。
复数$a+bi$在复平面上的位置可以由其实部和虚部决定。
例如,复数$3+4i$在复平面上的位置是实轴上3的位置,再向上移动4个单位。
使用复数的三角形式可以更方便地表示复数在复平面上的位置。
复数$a+bi$的三角形式可以表示为$r(\cos\theta+i\sin\theta)$,其中$r$是复数的模长,表示复数到原点的距离,$\theta$是复数的辐角,表示复数与实轴的夹角。
这种表示方法的优势在于可以使用三角函数来直接计算复数的运算,更加简洁和直观。
在三角形式中,可以使用指数形式进一步简化复数的运算。
根据欧拉公式,$e^{i\theta}=\cos\theta+i\sin\theta$,将三角形式中的$\cos\theta$和$\sin\theta$替换为指数形式可以得到$r \cdote^{i\theta}$。
这种形式方便了复数的乘法和幂运算。
例如,两个复数$r_1 \cdot e^{i\theta_1}$和$r_2 \cdot e^{i\theta_2}$的乘积可以表示为$r_1r_2 \cdot e^{i(\theta_1+\theta_2)}$,两个复数的幂可以表示为$(r \cdot e^{i\theta})^n=r^n \cdot e^{in\theta}$。
复数的几何意义在很多数学和工程应用中都非常重要。
首先,复数可以用来表示平面上的向量。
向量有大小和方向,复数的实部可以表示向量的大小,复数的虚部可以表示向量与实轴的夹角。
复数在向量运算中具有很好的性质,可以方便地进行加法、减法、乘法和除法。
其次,复数的几何意义在电路分析中扮演了重要角色。
(完整版)17.3复数的几何意义和三角形式

教学重点
用复平面上的点、向量和三角形式表示复数;复数的模和辐角、辐角主值的概念.
教学难点
复数几何表示法的理解;复数几种表示形式的互化;复数辐角的求法.
教学资源
课本,教学参考书,学习指导书,网络
教法与学法
教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。
解:(1) =1,辐角主值
=
(3) ,由 和点 在第四象限,得
,
所以 =
想一想:怎样把复数 表示成三角形式?
复数的代数形式 化为复数的三角形式一般方法步骤是:
①求复数的模: ;②由 及点 所在象限求出复数的一个辐角(一般情况下,只须求出复数的辐角主值即可);③写出复数的三角形式。
南京商业学校教案
授课日期
2015年月 日第周
时 数
课型
新课
课题
§17。3复数的几何意义和三角形式
教学
目标
知识目标:了解复平面的概念;掌握复数的几何表示和向量表示;理解复数的模、辐角及辐角主值的概念;掌握复数的三角形式及其特征。
能力目标:会在复平面内描出表示复数的点及向量;会求复数的模和辐角、和辐角主值(特殊角);会进行复数的三角形式与代数形式的互化。
2.复数的几何表示
有序实数对( 与直角坐标系内的点一一对应的,由复数代数形式 可以知道,任何一个复数 ,都可以有一个有序的实数对( )唯一确定,即复数 图1
与有序实数对( )之间一一对应.由此可知,复数 与复平面内的点 之间是一一对应的(如图1所示),即任何复数 都可以用复平面内的点 来表示。我们把这种表示形式叫做复数的几何表示.
学情分析
(含更新、补充、删节内容)
复数的三角形式与指数形式详细教案

复数的三角形式与指数形式详细教案教案主题:复数的三角形式与指数形式教学目标:1.理解复数的三角形式与指数形式的概念;2.学会将复数转换为三角形式和指数形式;3.掌握复数的三角形式和指数形式的运算法则;4.能够在实际问题中灵活应用复数的三角形式和指数形式;5.培养学生的逻辑思维和解决实际问题的能力。
教学内容:1.什么是复数的三角形式和指数形式。
2.如何将复数转换为三角形式和指数形式。
3.复数的运算法则和性质。
4.如何将复数的三角形式和指数形式应用于实际问题。
教学步骤:Step 1:复习复习复数的定义和基本运算法则,并介绍复数的表示形式:直角坐标形式。
Step 2:引入介绍复数的三角形式和指数形式的概念,并解释为什么引入这两种形式。
Step 3:三角形式3.1解释复数的三角形式的定义和表示方法;3.2解释如何将复数转换为三角形式;3.3练习题与讲解。
Step 4:指数形式4.1解释复数的指数形式的定义和表示方法;4.2解释如何将复数转换为指数形式;4.3练习题与讲解。
Step 5:三角形式与指数形式的关系5.1解释三角形式与指数形式之间的转换关系;5.2练习题与讲解。
Step 6:运算法则和性质6.1复数的加法和减法规则;6.2复数的乘法和除法规则;6.3复数的幂运算规则;6.4复数的共轭和模长的计算;6.5练习题与讲解。
Step 7:应用实际问题7.1解释如何将复数的三角形式和指数形式应用于实际问题;7.2解答一些实际问题,并帮助学生理解如何运用三角形式和指数形式解决问题;7.3练习题与讲解。
Step 8:总结与评价总结本节内容,并进行班级讨论和答疑解惑。
教学方法:1.讲授法:通过讲解理论知识,帮助学生理解复数的三角形式和指数形式的概念和定义。
2.演示法:通过示例演示如何将复数转换为三角形式和指数形式。
3.练习法:通过练习题的讲解和解答,巩固学生对知识点的理解和运用能力。
4.案例分析法:通过解答实际问题,帮助学生理解复数的三角形式和指数形式的实际应用。
高中数学备课教案复数的指数形式与三角形式的应用

高中数学备课教案复数的指数形式与三角形式的应用高中数学备课教案复数的指数形式与三角形式的应用一、引言在数学中,复数是由实部和虚部组成的数,它在各种数学领域中都有着广泛的应用。
本文将介绍复数的指数形式和三角形式,并探讨它们在数学中的实际应用。
二、复数的指数形式1. 复数的定义复数是由实部和虚部组成的数,通常表示为a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
复数的指数形式是指采用指数的形式来表示复数。
2. 复数的极坐标形式复数可以用极坐标形式表示为z=r(cosθ+isinθ),其中r为复数的模,θ为辐角。
复数的极坐标形式与直角坐标形式可以相互转化,具体的转换公式为:- 直角坐标形式转换为极坐标形式:r=sqrt(a²+b²),θ=arctan(b/a);- 极坐标形式转换为直角坐标形式:a=r*cosθ,b=r*sinθ。
3. 复数的指数形式复数的指数形式可以表示为z=Re^(iθ),其中R为复数的绝对值,θ为辐角。
复数的指数形式与极坐标形式也可以相互转化,具体的转换公式为:- 极坐标形式转换为指数形式:R=e^r,θ=arctan(b/a);- 指数形式转换为极坐标形式:r=ln(R),θ=arctan(b/a)。
三、复数的三角形式1. 复数的三角形式定义复数的三角形式是指通过正弦、余弦函数表示复数,具体形式为z=r*cosθ+r*sinθ,其中r为复数的模,θ为辐角。
2. 复数的三角形式与指数形式的转换- 三角形式转指数形式:根据欧拉公式,e^(iθ)=cosθ+isinθ,将复数的三角形式代入得到对应的指数形式;- 指数形式转三角形式:根据欧拉公式,cosθ=(e^(iθ)+e^(-iθ))/2,sinθ=(e^(iθ)-e^(-iθ))/(2i),将复数的指数形式代入得到对应的三角形式。
四、复数的应用复数的指数形式和三角形式在数学中有着广泛的应用,主要包括以下几个方面:1. 电路分析复数广泛应用于电路分析中,可以用来表示电流、电压、阻抗等。
复数的几何意义教案

复数的几何意义教案【最新精选】第一章:复数的概念1.1 引入复数的概念讲解实数和虚数的概念,引入复数的概念。
通过实际例子,让学生理解复数是由实部和虚部组成的数。
1.2 复数的表示方法讲解复数的代数表示法,即a + bi 的形式。
讲解复数的字母表示法,如z = a + bi。
1.3 复数的实部和虚部讲解复数的实部和虚部的定义。
讲解实部和虚部的性质和运算规则。
第二章:复数的几何表示2.1 引入复数的几何表示讲解复数在复平面上的表示方法。
讲解复数的实轴和虚轴的概念。
2.2 复数的几何图形讲解复数的圆和螺旋图形。
讲解复数的四叶草图形。
2.3 复数的几何性质讲解复数的旋转性质。
讲解复数的缩放性质。
第三章:复数的运算3.1 复数的加法和减法讲解复数的加法和减法的运算规则。
通过实际例子,让学生掌握复数的加法和减法的运算方法。
3.2 复数的乘法和除法讲解复数的乘法和除法的运算规则。
通过实际例子,让学生掌握复数的乘法和除法的运算方法。
第四章:复数的三角表示4.1 引入复数的三角表示讲解复数的三角表示方法,即r(cosθ+ isinθ) 的形式。
讲解复数的三角函数的概念。
4.2 复数的三角性质讲解复数的三角性质,如复数的模和辐角的概念。
讲解复数的三角函数的性质和运算规则。
4.3 复数的三角变换讲解复数的三角变换方法,如复数的乘法和除法的三角表示。
通过实际例子,让学生掌握复数的三角变换方法。
第五章:复数的应用5.1 复数在信号处理中的应用讲解复数在信号处理中的应用,如复数表示交流电信号。
讲解复数在通信系统中的应用,如复数表示调制和解调。
5.2 复数在电路分析中的应用讲解复数在电路分析中的应用,如复数表示电阻、电容和电感元件。
讲解复数在交流电路分析中的应用,如复数表示相位和阻抗。
5.3 复数在其他领域的应用讲解复数在数学分析中的应用,如复数表示复平面上的点。
讲解复数在其他科学和工程领域的应用,如复数表示量子力学中的波函数。
《复数的几何意义》示范课教学设计【高中数学教案】

《复数的几何意义》教学设计第2课时1.理解复平面、实轴、虚轴、共轭复数等概念.2.掌握复数的几何意义,并能适当应用.3.掌握复数模的定义及求模公式.教学重点:复平面、实轴、虚轴、共轭复数、复数的模等概念.复数的几何意义的简单应用.教学难点:一、问题导入问题1:能怎样建立起复数与几何模型中点的一一对应关系?师生活动:学生先回忆初中实数几何意义等.【想一想】否为复数找一个几何模型呢?设计意图:通过对实数几何意义的回顾,提出复数几何意义的问题,引导学生进行类比思考.引语:要解决这个问题,就需要进一步学习复数的几何意义.(板书:复数的几何意义)【新知探究】1.分析实数几何意义,感知复数几何意义.问题2:实数几何意义是什么?如何定义复数几何意义?复平面如何定义?师生活动:实数几何意义是:对每一个实数,总能在数轴上找到唯一点与之的对应.反之,对数轴上任意一个点,总能确定一个唯一的实数值.一方面根据复数相等的定义,复数Z=a+b i(a,b∈R)被它的实部与虚部唯一确定,即复数Z被有序实数对(a,b)唯一确定;另一方面,有序实数对(a,b)在平面直角坐标系中对应着唯一的点Z (a,b),因此不难发现,可以在复数集与平面直角坐标系的点集之间建立一一对应关系,即复数Z=a+b i 与点Z (a,b)具有一一对应关系.建立了直角坐标系来表示复数的平面,也称为复平面, x 轴上的点对应的都是实数,因此x 轴称为实轴, y 轴上的点除了原点以外,对应的都是纯虚数,为了方便起见,称y 轴为虚轴.追问:联系向量,复数还可以有什么几何意义?预设的答案:因为平面直角坐标系中的点 Z (a ,b )能唯一确定一个以原点O 为始点, Z 为终点的向量OZ ,所以复数也可以用向量OZ 来表示,这样以来也就能在复数集与平面直角坐标系中以O 为始点的向量组成集合之间建立一一对应关系,即复数Z a bi =+↔向量OZ = (a ,b )设计意图:类比实数几何意义,感知复数几何意义,发展学生逻辑推理和直观想象的核心素养.2.在实例感知的基础上,总结出共轭复数的概念.问题3:两个复数的实部相等,而虚部互为相反数,它们有什么关系?师生活动:一般地,如果两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数Z 的共轭复数用OZ 表示,因此,当(,)Z a bi a b R =+∈时,有OZ =a -b i追问:一般地,当a ,b ∈ R 时,复数a +b i 与a -b i 在复平面内对应的点有什么位置关系?预设的答案:在复平面内,表示两个共轭复数的点关于实轴对称;反之,如果表示两个复数的点在复平面内关于实轴对称,则这两个复数互为共轭复数.设计意图:培养学生分析和归纳的能力.问题4:自主阅读教材,回答:复数的模如何定义?师生活动:一般的向量的长度称为复数的模(或绝对值),复数的模用表示,因此. 可以看出,当b =0时, 说明复数的模是实数绝对值概念的推广. 追问:两个共轭复数的模什么关系?预设的答案:一般地两个共轭复数的模相等,即.设计意图:通过联系向量知识,体会复数与向量的对应关系,进而提出模长的概念.发展学生数学抽象、数学运算、逻辑推理、直观想象的核心素养. 【巩固练习】 例1. 设复数134=+z i 在复平面内对应的点为1Z ,对应的向量为1OZ ;复数2z 在复平面内对应的点为2Z ,对应的向量为2OZ .已知1Z 与2Z 关于虚轴对称,求2z 并判断1OZ 与2OZ 的大小关系.师生活动:学生分析解题思路,给出答案.预设的答案:由题意可知1(3,4)Z ,又因为1Z 与2Z 关于虚轴对称,所以2(3,4)-Z . 从而有234=-+z i .因此222(3)45=-+=z . 又因为2211||345==+=OZ z ,225==OZ z . 所以12||||=OZ OZ . 设计意图:通过典例解析,加深对复数几何意义的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.例2. 若复数z 1=(x -3)+(x +2y+1)i 与z 2=2y +i(x ,y ∈R )互为共轭复数,求x 与y.师生活动:学生分析解题思路,给出答案.预设的答案:z 2=2y +i(x ,y ∈R )的共轭复数=2y -i(x ,y ∈R ) 根据复数相等的定义,得3221()-=⎧⎨++=-++⎩x y x y x y z . 解这个方程组,得39,77==-x y . 设计意图:通过典例解析,加深对共轭复数的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.例3. 设复数z 在复平面内对应的点为Z ,说明当z 分别满足下列条件时,点Z 组成的集合是什么图形,并作图表示.(1)||2=z ;(2)1||3<≤z . 师生活动:学生分析解题思路,给出答案. 预设的答案:(1)由||2=z 可知向量OZ 的长度等于2,,即点Z 到原点的距离始终等于2,因此点Z 组成的集合是圆心在原点、半径为2的圆.如图(1)所示.(2)不等式1||3<≤z 等价于不等式组31⎧≤⎪⎨>⎪⎩z z .又因为满足||3≤z 的点Z 的集合,是圆心在原点、半径为3的圆及其内部. 而满足||1>z 的点Z 的集合,是圆心在原点、半径为1的圆的外部.所以满足条件的点Z 组成的集合是一个圆环(包括外边界但不包括内边界).如图(2)所示.设计意图:通过典例解析,加深对复数模的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.【课堂小结】问题:(1)复数的几何意义包含哪两种情况?(2)如何理解复数的模? 互为共轭复数的两个复数的模是什么关系?师生活动:学生尝试总结,老师适当补充.预设的答案:1.复数的几何意义包含两种情况:(1)复数与复平面内点的对应:复数的实、虚部是该点的横、纵坐标,利用这一点,可把复数问题转化为平面内点的坐标问题.(2)复数与复平面内向量的对应:复数的实、虚部是对应向量的坐标,利用这一点,可把复数问题转化为向量问题.(3)根据复数与复平面内的点一一对应,复数与向量一一对应,可知复数z =a +b i 、复平面内的点Z (a ,b )和平面向量OZ 之间的关系可用下图表示:2.复数的模(1)复数z=a+b i(a,b∈R)的模|z|=a2+b2;(2)从几何意义上理解,复数z的模表示复数z对应的点Z和原点间的距离.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算.(3)互为共轭复数的两个复数的模相等且在复平面内对应的点关于实轴对称.(4)两个复数不能比较大小,但它们的模可以比较大小.设计意图:通过梳理本节课的内容,能让学生更加明确集合的有关知识.布置作业:【目标检测】1.判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.()(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.()(3)复数的模一定是正实数.( )设计意图:巩固理解复数的几何意义.2.在复平面内,复数z=1-i对应的点的坐标为()A.(1,i)B.(1,-i) C.(1,1) D.(1,-1)设计意图:3.已知复数z=3+2i,则z=________;|z|=________.设计意图:巩固理解复数的几何意义.4.已知复数z=x+y i(x,y∈R)的模是22,则点(x,y)表示的图形是________.设计意图:巩固理解复数的模及几何意义.5.实数x取什么值时,复平面内表示复数z=x2+x-6+(x2-2x-15)i的点Z:(1)位于第三象限;(2)位于第四象限;(3)位于直线x-y-3=0上.设计意图:巩固理解复数的几何意义.参考答案:1. (1)√ (2)× (3)×2.复数z =1-i 的实部为1,虚部为-1,故其对应的坐标为(1,-1).故选D . 3.∵z =3+2i ,∴z =3-2i ,|z |=32+22=13.4.∵|z |=22,∴x 2+y 2=22,∴x 2+y 2=8.则点(x ,y )表示以原点为圆心,以22为半径的圆.5.因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎪⎨⎪⎧ x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0,即2<x <5时,点Z 位于第四象限. (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时. 点Z 位于直线x -y -3=0上.。
中职数学教案:复数的几何意义及三角形式(全2课时)

江苏省XY中等专业学校2021-2022-2教案编号:教学环节教学活动内容及组织过程个案补充教学内容我们把横轴和纵轴分表叫做实轴和虚轴,这样的平面直角坐标系叫做复平面。
用复平面内的点来表示复数,叫做复数的几何表示法。
三、例题选讲解:这些复数分别用点坐标Z1=(0,4),Z2=(4,0),Z3=(2,1),Z4=(-2,2),Z5=(2,-3),Z6=(-2,-2)来表示。
教学环节教学活动内容及组织过程个案补充教学内容例 2 指出如图所示复平面内个点所表示的复数。
练习:P70练习2.复数的模与辐角一般的,复平面内表示复数z=a+bi的点Z (a,b)到原点的距离叫做复数的模,记作z,即:22z a b=+,以x轴正半轴为始边,OZ为终边的角α叫做复数z的辐角。
复数的辐角不是唯一的,事实上,若α是复数z的辐角,那么2kπ+α也是辐角,所以,我们把复数z在(-π,π】内的辐角叫做辐角的主值,记作arg z,以后所说的辐角一般指的是他的主值。
规定:复数0的辐角是任意值。
江苏省XY中等专业学校2021-2022-2教案编号:备课组别数学上课日期主备教师授课教师课题:17.3.1复数的几何意义及三角形式教学目标1.理解掌握复数的三角形式2.会进行复数代数形式和三角形式间的互化重点理解掌握复数的三角形式难点会进行复数代数形式和三角形式间的互化教法讲练结合数形结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一引入有了复数的模和辐角后,可以用另一种方式来表示复数。
二新授若设复数z=a+bi,其模z,rθ=辐角为,如图所示,试用r,θ表示复数z的实部和虚部。
若复数z的模为r,辐角为θ,则z=r(cosθ+isinθ)一般的,将z=r(cosθ+isinθ)叫做复数的三i+6(cos60sin60)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.3复数的几何意义和三角形式
教学目标
1. 理解复数的几何意义,会用复平面内的点和向量来表示复数,体会通过图形来讨论复数问题;
2. 知道实轴、虚轴上及各象限内的点所对应的复数的特征,掌握复数的模、幅角的概念及其计算公式,会用计算器求复数的模和幅角。
教学重点 复数的几何意义 复数的模和幅角
教学难点 复数与向量的关系;复数模的几何意义。
【教学过程】
一、问题情景
问题1:对于复数a+bi 和c+di(a,b,c,d ∈R),你认为满足什么条件时,这两个复数相等? (a=c 且b=d ,即实部与虚部分别相等时,这两个复数相等。
)
问题2:若把a,b 看成有序实数对(a,b ),则(a,b )与复数a+bi 是怎样的对应关系?有序实数对(a,b )与平面直角坐标系中的点是怎样的对应关系?(一一对应关系)
实数可以用数轴上的点来表示
实数
一一对应 实数轴上的点
(几何模型
)
问题3:类比实数的性质,你能否找到用来表示复数的几何模型?还能得出复数其他的一些性质吗?
二、建构数学
1、复平面的概念
把建立的直角坐标系来表示复数的平面叫做_________,x 轴叫做_______,y 轴叫做______。
实轴上的点都表示实数,除原点外,虚轴上的点都表示虚数。
2、复数的几何意义
复数a+bi ,即点Z (a,b )(复数的几何形式)、即向量OZ (复数的向量形式。
以O 为始点的向量,规定:相等的向量表示同一个复数。
)
三者的关系如右上图
练习
1.下列命题中的假命题是()
(A)在复平面内,对应于实数的点都在实轴上;
(B)在复平面内,对应于纯虚数的点都虚轴上;
(C)在复平面内,实轴上的点所对应的复数都是实数;
(D)在复平面内,虚轴上的点所对应的数都是纯虚数。
2.“a=0”是“复数a+bi (a , b∈R)所对应的点在虚轴上”的()。
(A)必要不充分 (B)充分不必要条件
(C)充要条件 (D)不充分不必要条件
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。
二.复数的模和幅角
向量的模叫做复数Z=a+bi的模(或绝对值),记作或。
如果b=0,那么Z=a+bi就是实数a,它的模等于(即实数a的绝对值)。
模的计算公式:_______________________
注意:1._____________________________
2.____________________________
3._________________________________________________________________
例3 求下列复数的模:
(1)z1=-5i (2)z2=-3+4i (3)z3=5-5i
(4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0)
思考:1)满足|z|=5(z ∈R)的z 值有几个?
(2)满足|z|=5(z ∈C)的z 值有几个?这些复数对应的点在复平面上构成怎样的图形?
3)满足3<|z|<5(z ∈C)的复数z 对应的点在复平面上将构成怎样的图形?
复数z 的幅角:__________________________.复数的幅角不唯一。
事实上,若
是复数z 的幅角,那么
也是z 的幅角。
幅角的主值:_________________________,记作:________________.
规定:复数0的辐角是任意值。
当复数z=a+bi ≠0时,辐角可以由对应点Z (a,b )的位置确定,分别有如下两种情况:
1、 当点Z (a,b )在某个象限内时,其辐角可以由__________________和点Z (a,b )所在象限确定;
2、 当点Z (a,b )分别在正半实轴,负半实轴,正半虚轴,负半虚轴上时,其辐角分别为: _________________________________________________.
例4求复数1+i 的模与辐角。
学生练习
1、求下列复数的模和辐角。
(2)设 _____________________________.
学生小结
作业布置
课堂作业:2题,3题(1)(5)(8)
课后作业:教学新方案17.3第一课时
θ)(2z k k ∈+θπ2)5(2321)4(3)3(22)2(3)1(---+i i i =-=z i i z 则,21
17.3.3复数的三角形式
学习目标:掌握复数的代数形式和三角形式的相互转化。
教学重难点:
一、复习提问。
1、 复数的模,辐角的主值
2、 复数z=a+bj 的模和主辐角的计算公式
二.新课讲授
复数的三角形式:__________________________________ 注意点:1.___________________
2.___________________
3.___________________
4.___________________
例1:把下列复数代数式化成三角式:
练习
把下列复数化成三角形式:
(1)6 (2)-5 (3)2i
(4)-i (5)-2+2i
想一想:代数式化三角式的步骤
1.___________________
2.___________________
3.___________________
4.___________________
【自我检测】
1.计算
2.设z 的幅角是 ,实部是 ,则z=_____________.
学生小结
作业布置
()i
+31()i -12)2
321)(65sin 65(cos 2i i --+ππ65π32-。