16.4.3分式方程的应用复习

合集下载

分式方程及应用复习教案

分式方程及应用复习教案

分式方程及应用复习教案一、教学目标1. 理解分式方程的概念和性质。

2. 掌握解分式方程的方法和技巧。

3. 能够应用分式方程解决实际问题。

二、教学内容1. 分式方程的概念和性质分式方程的定义分式方程的解法分式方程的解的性质2. 解分式方程的方法和技巧去分母法移项法合并同类项法化简法3. 分式方程的应用线性分式方程的应用非线性分式方程的应用分式方程在实际问题中的应用三、教学重点与难点1. 教学重点:分式方程的概念和性质解分式方程的方法和技巧分式方程的应用2. 教学难点:解分式方程的方法和技巧的灵活运用分式方程在实际问题中的应用四、教学方法与手段1. 教学方法:讲授法:讲解分式方程的概念和性质、解分式方程的方法和技巧、分式方程的应用案例分析法:分析实际问题中的分式方程练习法:让学生通过练习题来巩固所学知识和技巧2. 教学手段:投影仪:展示分式方程的图像和实际问题练习题:提供给学生进行练习和巩固五、教学安排1. 第一课时:分式方程的概念和性质讲解分式方程的定义讲解分式方程的解法讲解分式方程的解的性质2. 第二课时:解分式方程的方法和技巧讲解去分母法讲解移项法讲解合并同类项法讲解化简法3. 第三课时:分式方程的应用讲解线性分式方程的应用讲解非线性分式方程的应用讲解分式方程在实际问题中的应用4. 第四课时:练习题讲解和总结讲解练习题总结分式方程的概念、方法和应用5. 第五课时:综合练习和拓展提供综合练习题给学生进行练习讲解拓展问题,引导学生思考分式方程在其他领域的应用六、教学评价1. 课堂参与度评价:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。

2. 练习题完成情况评价:评估学生在练习题中的表现,包括解题的正确性、速度和思路。

3. 小组讨论评价:评估学生在小组讨论中的参与程度和合作能力,以及对分式方程的理解和应用。

4. 课后作业评价:评估学生课后作业的完成质量,包括解题的正确性、思路和书写规范。

七、教学反思在教学过程中,教师应不断反思自己的教学方法和效果,根据学生的反馈和表现调整教学策略,以提高教学效果。

初三数学中考数学专题讲义复习资料归纳第16讲 分式方程及其应用

初三数学中考数学专题讲义复习资料归纳第16讲  分式方程及其应用

第16讲分式方程及其应用考点·方法·破译1.分式方程(组)的解法解分式方程的一般步骤:⑴去分母,将分式方程转化为整式方程;⑵解整式方程;⑶验根.有的分式方程也要依据具体的情况灵活处理.如分式中分子(整式)的次数高于等于分母(整式)的次数时,可利用分拆思想,把分式化为“整式+分式”的形式,化简原方程再解;或将分式方程两边化为分子(或分母)相等的分式,再利用分母(或分子)相等构成整式方程求解;或利用换元法将分式方程化为整式方程,或利用倒数法使方程更简便.2.分式方程增根在解分式方程时,通常将分式方程两边同时乘以最简公分母(化为整式方程),这就扩大了未知数的取值范围,可能产生增根.因此,解分式方程时一定要验根.又如求分式方程的解的取值范围(解是正数,或解是负数)时,要注意剔除正数解或负数解中的增根(因为增根不是分式方程的根).3.列分式方程解应用题列分式方程解应用题同运用整式方程解应用题的方法和步骤是类似的,但要注意分式方程求出的未知数的解要双重检验,①检验是否是增根,②检验解是否符合实际意义.经典·考题·赏析【例1】解下列方程:⑴22xx-+-2164x-=1⑵12x+-2244xx--22x-=4⑶45xx--+89xx--=78xx--+56xx--【解法指导】对于方程⑴、⑵只需先将分母分解因式,找到最简公分母,然后将分式方程转化为整式方程,求解并验根.对于方程⑶如果按常规方法去分母则计算复杂,若注意到将这四个分式的分母均比分子小这个特点,先化简,如45xx--=515xx-+-=1+15x-,按照上述变形,原方程可变为15x-+19x-=18x-+16x-再移项后分组通分求解较简单.解: ⑴22xx-+-()()1622x x-+=1(x-2) 2-16=(x+2) (x-2)x2-4x+4-16=x2-4x=-2当x=-2时(x+2) (x-2)=0,∴x=-2是增根,原分式方程无解.⑵12x ++()()2422x x x +--22x -=4x -2+4x 2-2(x +2)=4(x +2) (x -2) ∴x =10当x =10时, (x +2) (x -2) ≠0, ∴原分式方程的解为x =10.⑶原方程变形为515x x -+-+919x x -+-=818x x -+-+616x x -+-1+15x -+1+19x -=1+18x -+1+16x -∴15x -+19x -=18x -+16x - 15x --16x -=18x --19x - 两边分别通分得:()()156x x ---=()()189x x ---∴(x -5) (x -6)=(x -8) (x -9)∴x =7 检验知x =7是原方程的解.【变式题组】 ⑴12x x --=12x--2⑵2x x -+2=3(2)x x-⑶14x --23x -=32x --41x -⑷12x ++242x x -+22x-=1【例2】当m 为何值时,分式方程1m x +-21x -=231x -会产生增根? 【解法指导】我们很容易测出分式方程可能产生的增根是x =1或x =-1,只要把猜测的增根分别代入去分母后的整式方程,即可求出相应的字母的值.解:原方程去分母并整理得 (m -2) x =5+m假设产生增根x =1,则有: m -2=5+m ,方程无解,所以不存在m 的值,使原方程产生增根x =1;假设产生增根x =-1,则有:2-m =5+m ,解得m =-32. ∴m =-32时,分式方程1m x +-21x -=231x -产生增根.【变式题组】 01.分式方程22x x -+-22x x +-=2164x -的增根是__________. 02.若分式方程()()611x x +--1mx -=1有增根,则它的增根为( ) A.0 B.1 C.-1 D.1,-103.(绥化)若关于x 的方程23x -=1-3m x -无解.则m 的值为___________. 04.分式方程1m x +-21x -=232x -无解,则m 的值为___________.【例3】(杭州)已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_________.【解法指导】求出方程的解x >0且x ≠2即可 解:22x mx +-=3 2x +m =3x -6 x =m +6 ∴6062m m +>⎧⎨+≠⎩ ∴m >-6且m ≠-4【变式题组】 01.(孝感)关于x 的方程21x ax +-=1的解是正数,则a 的取值范围是( ) A.a >-1 B. a >-1,且a ≠0 C. a <-1 D. a <-1,且a ≠-2 02.当m 为何值时,关于x 的方程22m x x --= 1x x +- 12x x --的解是正数?【例4】(山东青岛)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.⑴该商场两次共购进这种运动服多少套?⑵如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【解法指导】 ⑴设商场第一次购进x 套运动服,由题意得: 68000x -32000x=10 解这个方程,得x =200,经检验, x =200是原方程的解. 2x +x =600∴商场两次共购进这种运动服600套.⑵设每套运动服的售价为y元.则有60032000680003200068000yx--+≥20%,y≥200∴每套运动服售价至少200元.【变式题组】01.(泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为()A.160x+()400120%x+=18 B.160x+()400160120%x-+=18C.160x+40016020%x-=18 D.400x+()400160120%x-+=1802.(河池)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销的2倍.⑴试销时该品种苹果的进货价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?03.(广西梧州)由甲、乙两个工程队承包某校校园绿化工程, 甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.⑴求两队单独完成此项工程各需多少天?⑵此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?演练巩固·反馈提高01.(牡丹江)关于x 的分式方程5mx -=1,下列说法正确的是( ) A.方程的解是x =m +5 B. m >-5时,方程的解是正数 C. m <-5时,方程的解是负数 D.无法确定02.(安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A.8 B.7 C.6 D.5 03.(上海)用换元法解分式方程1x x --31x x -+1=0时,如果设1x x-=y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A. y 2+y -3=0 B. y 2-3y +1=0 C. 3y 2-y +1=0 D. 3y 2-y -1=004.有两块面积相同的试验田,分别收获蔬菜900㎏和1500㎏.已知第一块试验田每亩收获蔬菜比第二块少300㎏,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x ㎏,根据题意,可得方程( )A.900300x +=1500x B. 900x =1500300x -C.900x =1500300x +D.900300x -=1500x05.(牡丹江)若关于x 的分式方程1x a x ---3x=1无解,则a =___________.06.方程1x x ++3=21x +的解为___________.07.若x =1是方程21x a ++22x a -=0的解,则a =___________.08.若A =1x x -,B =231x -+1,当x =___________时,A =B.09.若x =3是方程102x ++2k =0的解,则3k k +-269k -÷23k -的值为___________.10.如果关于x 的方程1+2x x -=224m x -的解,也是不等式组1222(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解,求m 的取值范围.11.关于x 的分式方程61x -=()31x x x +--k x有解,求k 的取值范围.12.要使关于x、y的二元一次方程组21620x ayx y+=⎧⎨-=⎩有正整数解,求整数a的值.13.某工程准备招标,指挥部接到甲、乙两个工程队的标书,从标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍,该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.⑴求甲、乙两队单独完成这项工程各需要多少天?⑵已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.14.(桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.⑴乙队单独完成这项工程需要多少天?⑵甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?培优升级·奥赛检测01.(江西决赛试题)若实数x 、y 、z 满足方程组:122232xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则有( ) A. x +2y +3z =0 B. 7x +5y +3z =0 C. 9x +6y +3z =0 D.10x +7y +z =002.(天津初赛试题)某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为V 1、V 2、V 3,则此辆汽车在这段公路上行驶的平均速度为( )A.1233V V V ++ B.1231113V V V ++ C.1231111V V V ++ D. 1233111V V V ++03.(第十八届“希望杯”初二)解分式方程31x ++51x -=21mx -会产生增根,则m =___________. 04.方程()11x x ++()()112x x +++…+()()120102011x x ++=1+1x 的解是___________.05.(全国初中数学竞赛试题)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟. 06.解下列方程:⑴ 12x x ++-17x +=23x x ++-16x + ⑵ 432x x +-+324x x -+=207.已知方程组22xy x y +=23,32yz y z -=-9, 53xyzxy yz zx -+=157恰好有一组解为x =a ,y =b ,z =C.求a 2+b 2+c 2的值.08.设x、y都是整数,1x-1y=12010.求y的最大正整数的解.09.(莆田)国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?⑴设购买电视机x台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总额(元)每台补贴返还金额(元)冰箱40000 13%电视机x 15000 13%⑵列出方程(组)并解答.10.(齐齐哈尔)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.⑴今年三月份甲种电脑每台售价多少元?⑵为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?⑶如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使⑵中所有方案获利相同, a值应是多少?此时,哪种方案对公司更有利?。

(完整)分式方程专题复习

(完整)分式方程专题复习

丹桂分式方程《分式方程》复习指导一、课标要求1、了解分式方程的概念,会解可化为一元一次方程的分式方程.2、了解产生增根的原因,会检验一个数是不是分式方程的增根。

3、能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。

4、通过实际问题抽象、概括分式方程这一“数学化”的思想,培养我们努力寻找解决问题的方法的进取心,体会数学的应用价值。

二、知识要点回顾1、分式方程的概念分式方程是分母中含有未知数的方程.①分母中是否含有未知数是分式方程与整式方程的根本区别,是区分分式方程和整式方程的依据,如2x1x=和x=1是不同的方程,前者是分式方程,后者是整式方程(一元一次方程)。

②判断一个方程是不是分式方程,应看这个方程的分母中是否含有未知数,而不是含不含有宇母。

如方程x1a=(a是常数,且a≠0,x是未知数)就不是分式方程。

2、分式方程的解的意义使分式方程左右两边相等的值叫做分式方程的解,也可以叫做根。

注意:①由于分式方程都可以化为一元一次的整式方程,故它的解至多一个,也可能无解;②可用代入法检验一个数是否是分式方程的解,或进一步确定待定常数。

3、如何解分式方程?(1)解分式方程的基本思想—-—“转化"思想,即把分式方程的分母去掉,使分式方程化为整式方程,就可以利用整式方程的解法求解了.(2)解分式方程的步骤:分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验。

因为解分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根。

4、去分母的技巧去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母;当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母。

5、“增根"是怎样产生的?解分式方程时,由于在方程的左右两边同时乘含有未知数的公分母(含未知数的整式),得到了一个整式方程,从而使原分式方程中未知数的取值范围扩大了。

分式方程的复习课件

分式方程的复习课件
交通流问题
在交通流问题中,分式方程可以用来描述车辆的行驶规律和交通状况,例如,一个高速公 路上的车流量,我们可以用分式方程来表示车流量和时间的关系。
04
分式方程的注意事项
解的检验
检验解是否符合原方程
在解分式方程时,得到解后需要回代到 原方程中进行检验,确保解是正确的。
VS
检验解是否符合实际意义
分式方程的解还需要符合实际情况,比如 在物理、化学等学科中的问题,解需要符 合物理定律和化学原理。
总结词
解分式方程的基本思路是消去分母,将其转化为整式方程。
详细描述
解分式方程的基本思路是消去分母,将其转化为整式方程。具体方法包括通分 、约分、整体代入等。在解分式方程时,需要注意消除分母可能带来的增根和 假根问题,以及检验解的合理性。
02
分式方程的解法
公式法
总结词
公式法是一种通用的解分式方程的方法,适用于所有可解的分式方程。
几何问题可以用来计算图形的面积和体积,例如,一个圆 的面积,我们可以用分式方程来表示面积和半径的关系。
角度和边的关系
在几何问题中,分式方程可以用来描述角度和边的关系, 例如,一个三角形的三个内角之和等于180度,我们可以 用分式方程来表示角度之间的关系。
坐标几何问题
,一个物体以恒定速度运动,我们可以用分式方程来表示时间与距离的
关系。
02
力学问题
在力学问题中,分式方程可以用来描述物体的受力情况和运动状态,例
如,一个物体在重力作用下自由落体,我们可以用分式方程来表示物体
的位移和时间的关系。
03
波动问题
在波动问题中,分式方程可以用来描述波的传播规律,例如,声波在空
气中的传播,我们可以用分式方程来表示波的强度和距离的关系。

分式方程及应用复习教案

分式方程及应用复习教案

分式方程及应用复习教案一、教学目标1. 理解分式方程的概念和性质2. 掌握解分式方程的基本方法3. 能够应用分式方程解决实际问题4. 提高学生的数学思维能力和解决问题的能力二、教学内容1. 分式方程的定义和性质2. 解分式方程的基本方法3. 分式方程的应用实例三、教学重点与难点1. 重点:分式方程的概念、性质和解法2. 难点:应用分式方程解决实际问题四、教学方法1. 讲授法:讲解分式方程的定义、性质和解法2. 案例分析法:分析分式方程的应用实例3. 练习法:让学生通过练习题巩固所学知识五、教学过程1. 引入:复习分式方程的概念和性质2. 讲解:讲解解分式方程的基本方法3. 案例分析:分析分式方程的应用实例4. 练习:让学生解答练习题5. 总结:回顾本节课所学内容,强调重点和难点教案内容待补充六、教学练习练习一:判断题1. 分式方程就是含有未知数的分式。

()2. 分式方程的解就是使分式等于零的未知数的值。

()3. 解分式方程时,可以直接将分式方程转化为整式方程。

()练习二:选择题A. 去分母B. 去括号C. 移项D. 合并同类项)2. 下列哪个方程不是分式方程?(A. 2x + 3 = 7B. (x + 1)/2 = 3C. 3(x 1) = 2(x + 2)D. (x 2)/3 = 4)七、应用拓展案例一:小明种苹果树和梨树,苹果树的数量是梨树的3倍。

如果小明一共种了24棵树,苹果树和梨树各有多少棵?案例二:一家工厂生产A产品和B产品,生产A产品需要2小时,生产B产品需要3小时。

如果工厂每天有8小时的生产时间,工厂一天可以生产多少A产品和B产品?八、教学总结本节课我们复习了分式方程的概念、性质和解法,重点掌握了如何解分式方程和应用分式方程解决实际问题。

通过练习和案例分析,希望大家能够巩固所学知识,提高解题能力。

在的学习中,我们将继续深入探讨分式方程的更多应用,希望大家能够积极参与。

九、课后作业1. 请总结分式方程的概念和性质,并简要说明解分式方程的基本方法。

中考复习 分式方程及其应用课件

中考复习 分式方程及其应用课件

• (2)分式方程
x 1 x 1 x

3
(x 1)( x 2)
的解是
(C)
A.x=1 B.x=-1 C.无解 D.x=-2

(3)解方程:
x2
3 3x

1 x 3
1
原方程的解为x=-1
2020/3/2
例题讲解

例1、(1)若分式方程
2

1 kx x2

2
1

x
有增根,则k=___k_=_1___.
2020/3/2
二、题型、方法
• 考点1 分式方程的概念
热身练手:1、指出下列关于x的方程中,是分式方程的是(4)、(5()只 填序号).
(1) x y 5 ;(2)
x
5
2

2
y 3
z
;(3) 1 ;
x
(4)
x
y
5

0

(5)
1 2x 5 x
3/2
考点2 分式方程的解法
变式1、若关于x分式方程
x
x
2

2

m 2
x
的解为正数,
求满足条件的正整数m的值?
m的值为1、3
变式2、若关于x的方程 m 1 x 0无解,求m的值?
x4 4x
m=3
2020/3/2
考点3 分式方程的应用 • 热身练手:某校甲、乙两组同学同时出发去距离学校4 km的植物园参观,
热身练手:2、解方程:
2 x
x 3

3
1
x

1
解:去分母,两边同时乘以(x-3),得 2-x-1=x-3, 解得x=2, 检验:当x=2时x-3 ≠0,

最新初中数学第十六章《分式》第二单元《分式方程及其应用》常见考点归类

最新初中数学第十六章《分式》第二单元《分式方程及其应用》常见考点归类

初中数学第十六章《分式》第二单元《分式方程及其应用》常见考点归类新人教版初中数学第十六章《分式》第二单元《分式方程及其应用》(常见考点归类)一、分式方程:1、分式方程的定义:已知下列方程:(1)123x +=;(2)113x x x =-+;(3)21134x x +-=+;(4)213x =+. 其中分式方程有( )A 1个B 2个C 3个D 4个2、解分式方程:1、22333x x x -+=--;2、21124x x x -=-- 3、增根问题:(补充)1、若分式方程223242mx x x x +=--+有增根,求m 的值; 2、若分式方程2221151k k x x x x x --+=--+有增根x =1-,求k 的值. 4、含有字母的分式方程问题:(补充)1、111x a b=+ 2、()n m m n m n x x+=+≠ 3、()20a b b a a b x a b +--=+≠ 5、待定系数法求值问题:(选学)1、已知()21(2)323x B C A x x x x -=++----,求A 、B 、C 的值. 2、已知()()231212x A B x x x x -=+-+-+,求A 、B 的值. 二、分式方程应用题:6、行程问题:1、教材31页第1题;变形1:某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达。

已知汽车的速度是自行车速度的2.5倍,求这两种车的速度各是多少?变形2:某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果甲班只比乙班提前20分钟到达植树地点。

已知汽车的速度是自行车速度的2.5倍,求这两种车的速度各是多少?(只列式,不求解)变形3:某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果乙班却比甲班提前20分钟到达植树地点。

分式方程应用题复习PPT课件

分式方程应用题复习PPT课件
分式方程应用题复习PPT课件
contents
目录
• 引言 • 分式方程基本概念 • 典型应用题解析 • 解题思路与方法 • 常见错误与避免方法 • 练习题与答案解析 • 总结与展望
01
引言
目的和背景
帮助学生回顾和巩固 分式方程的应用题解 法
为学生提供足够的练 习和案例,以便更好 地掌握分式方程的应 用
2. 现进货价降低了6.4%,则现进 货价为a(1 - 6.4%),现售价为a(1 - 6.4%)(1 + (x + 8)%)。
03
3. 利用售价不变的条件,列出方 程求解x的值。
04
07
总结与展望
复习内容总结
分式方程的基本概念
01
包括分式方程的定义、分式方程的解、增根等概念。
分式方程的解法
02
04
解题思路与方法
审题与建模
仔细阅读题目,理解题意,明 确已知条件和未知条件。
分析题目中的数量关系,确定 问题类型,建立数学模型。
根据问题类型,选择合适的解 题方法,如直接法、间接法等 。
设定未知数
根据题意设定未知数,注意未知数的 设定要合理、简洁。
在设定未知数时,要考虑问题的实际 情况和限制条件。
题目3
某商店经销一种商品,由于进货 价降低了6.4%,使得利润率提高 了8%,那么原来经销此种商品的 利润率是多少?
答案解析
题目1解析 1. 根据题意列出方程:mx + ny = 6000
2. 利用A、B两种产品的数量之比为2:3,得到x/y = 2/3
答案解析
3. 联立以上两个方程解得m、n的值。
题目2解析
1. 设乙的速度为x千米/时,则甲的速度为(x + 0.5)千 米/时。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识回顾
1、审题分析题意 2、设未知数 3、根据题意找相等关系,列出方程;
列分式方程解应用题的方法和步骤如下:
4、解方程,并验根(对解分式方程尤 为重要) 5、写答案
1、甲、乙两车同时从A地出发,到相距 120千米的B地去,若甲车与乙车速度 之比为2︰3,且甲车比乙车晚到2.5 小时,求两车速度.
30 24 48 = 1.5X X 60
6、 甲、乙两种商品,已知甲的价格每 件比乙多6元,买甲90件所用的钱和买 乙60件所用钱相等,求甲、乙每件商品 的价格各多少元?
解:设甲商品的价格为X元/件,则乙商品 的价格为(X-6)元/件
90 60 = x x -6
45 30 = 由题意得: X X-3
答:甲每小时做9个零件,乙每小时做6个零件。
3、某市从2007年6月1日起调整居民用水 价格,每立方米水费上涨四分之一, 2007年某户4月份的水费是18元,而8 月份水费则是27元,已知该户8月份的 用水量比4月份的用水量多3m3,求该 市2007年6月1日起的居民用水价格. 解:设该市2007 年 6 月 1 日前的居民用 3 水价格为x元/m 18 27 +3 = 5 x x 4
解:设甲、乙两车的速度分别为2x千米/时, 3x千米/时
120 120 -2.5 = 2x 3x
2、甲、乙两人做某种零件,已知甲每小时 比乙多做3个,甲做45个零件的时间与乙做 30个零件的时间相同问甲、乙每小时各做 多少个? 解:设甲每小时做X个零件
则乙每小时做(X-3)
解这个方程得:X = 9 经检验:X = 9是所列方程的解 由X = 9,得 X – 3 = 6
4、二(7)班的学生到距学校15千米的地 方秋游,一部分同学骑自行车先走,40分 钟后,其余同学乘汽车去,结果同时到达, 已知汽车的速度是自行车的三倍, 求两种车的速度。
解:设自行车的速度为每小时x千米, 则汽车的为每小时3x千米
15 15 2 = + x 3x 3
5、我部队到某桥头阻击敌人,出发时敌 军离桥头的1.5倍,结果 比敌人提前48分钟到达,求我部队急行军 的速度。 解:设敌军的速度为X千米/时,则我军为 1.5X千米/时。
相关文档
最新文档