谈谈数学模型之一:一次函数在方案设计问题中的应用
一次函数的应用

一次函数的应用一次函数(也叫线性函数)是指形如y = kx + b的函数,其中k和b 是常数,x和y分别表示自变量和因变量。
一次函数在数学中有广泛的应用,可以用来描述线性关系,解决实际问题以及进行数据分析。
本文将探讨一次函数在不同领域中的应用。
一、经济学领域的应用一次函数在经济学领域有着重要的应用。
以供求关系为例,假设某商品的市场需求量和价格之间存在一次函数的关系,即D = kP +b,其中D表示需求量,P表示价格,k和b为常数。
通过研究这个一次函数,我们可以了解价格上涨/下跌对需求量的影响,从而指导市场调控和经济决策。
二、物理学领域的应用在物理学中,一次函数同样具有重要的应用。
例如,描述匀速直线运动的位移和时间之间的关系就可以用一次函数来表示。
假设一个物体沿直线轨迹匀速运动,其位移与时间之间存在一次函数的关系,即S = Vt + S0,其中S表示位移,t表示时间,V和S0为常数。
通过研究这个一次函数,可以揭示速度和位移的关系,进而预测物体的运动轨迹。
三、生物学领域的应用一次函数在生物学中也有广泛的应用。
例如,研究生长过程中身高与年龄之间的关系,可以使用一次函数来描述。
假设一个人的身高与年龄之间存在一次函数的关系,即H = kA + H0,其中H表示身高,A表示年龄,k和H0为常数。
通过研究这个一次函数,可以了解人体生长的规律,为儿童生长发育提供科学依据。
四、工程学领域的应用在工程学领域,一次函数同样有着重要的应用。
例如,研究电阻和电流之间的关系,可以使用一次函数来描述。
假设电阻与电流之间存在一次函数的关系,即R = kI + R0,其中R表示电阻,I表示电流,k 和R0为常数。
通过研究这个一次函数,可以了解电路中电阻的特性,为电路设计和优化提供依据。
综上所述,一次函数在经济学、物理学、生物学和工程学等领域中都有着广泛的应用。
通过研究一次函数的特性和关系,可以深入探索相关问题,并为实际应用提供科学依据。
一次函数的应用

一次函数的应用一次函数,也称为线性函数,是数学中常见的一种函数类型。
它的特点是函数的表达式可以表示为 y = kx + b,其中 k 和 b 分别表示斜率和截距。
一次函数在各个领域中都有着广泛的应用,本文将探讨一次函数在实际问题中的应用。
一、经济学中的一次函数应用在经济学中,一次函数被广泛用于描述供需关系、成本收益分析等经济问题。
以供需关系为例,我们可以通过一次函数来描述市场上商品的价格与需求量之间的关系。
假设某商品的价格为 p,需求量为 q,则可以用一次函数 y = mx + b 的形式来描述供需关系。
其中,m 表示需求量对价格的弹性,b 表示市场的需求量。
二、物理学中的一次函数应用一次函数在物理学中也具有重要的应用。
以速度和时间的关系为例,我们可以使用一次函数来描述一个运动物体的速度随时间的变化。
对于匀速直线运动,速度 v 和时间 t 的关系可以表示为 v = kt + c,其中 k 表示匀速运动的速度。
三、工程学中的一次函数应用在工程学中,一次函数用于描述一些电路、自动化控制、力学结构等问题。
以电路分析为例,我们可以通过一次函数来描述电路中电流和电压之间的关系。
根据欧姆定律,电流 i 和电压 v 的关系可以表示为i = rv + b,其中 r 表示电阻。
四、生物学中的一次函数应用生物学领域也广泛使用一次函数来进行各类模型分析。
以生物种群增长为例,我们可以用一次函数来描述种群数量随时间的变化。
假设某种生物种群的数量为 N,时间为 t,则可以使用一次函数 N = mt + c来表示种群数量的变化趋势。
五、教育学中的一次函数应用在教育学中,一次函数也有着重要的应用。
教育研究中经常使用一次函数来分析学生的学习成绩与时间的关系。
假设学生的学习成绩为G,学习时间为 T,则可以用一次函数 G = mT + b 来描述学习成绩的预测模型。
六、环境科学中的一次函数应用在环境科学领域,一次函数被广泛应用于各类环境参数的测量和分析中。
一次函数的应用

一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。
特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。
2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。
在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。
3. 计划和预测:一次函数可以用来预测未来的趋势或变化。
通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。
4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。
通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。
5. 材料科学:一次函数可以用来描述材料的线性弹性特性。
材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。
总之,一次函数在很多领域中都有着广泛的应用。
通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。
一次函数的应用与解析

一次函数的应用与解析一、引言一次函数是数学中最基本的函数之一,也是数学建模和实际问题解决中常见的一种函数类型。
本文将探讨一次函数的应用和解析,通过实际案例来说明其在日常生活和科学领域中的重要性。
二、一次函数的定义和特点一次函数,又称线性函数,是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
一次函数的特点包括直线图像、斜率和截距。
三、一次函数在经济学中的应用1. 成本和收益预测一次函数可应用于经济学中的成本和收益预测。
例如,某公司制造某种产品的成本可以表示为 y = mx + b,其中 x 表示生产数量,y 表示总成本,m 表示单位成本,b 表示固定成本。
通过拟合一次函数模型,可以根据生产数量预测总成本,并做出相应的决策。
2. 市场需求和供应分析一次函数还可用于市场需求和供应分析。
如果市场需求或供应的变化可以用一次函数来近似,就可以通过函数的斜率和截距来分析市场的变化趋势。
这有助于企业制定合理的定价策略和库存管理策略。
四、一次函数在物理学中的应用1. 物体的运动分析在物理学中,一次函数可以用来描述物体的运动。
例如,一个物体的位移与时间的关系可以表示为 y = kx + b,其中 y 表示位移,x 表示时间,k 表示速度,b 表示初始位移。
通过解析一次函数,可以计算物体的速度和初始位移,从而深入了解物体的运动规律。
2. 电流和电压的关系一次函数还可应用于电路分析。
例如,欧姆定律描述了电流和电压之间的关系,可以表示为 y = kx + b,其中 y 表示电流,x 表示电压,k 表示电阻,b 表示电流的截距。
通过解析一次函数,可以计算电阻的大小以及电路的特性参数。
五、一次函数在社会学中的应用1. 人口增长预测一次函数可应用于社会学中的人口增长预测。
例如,某个地区的人口增长可以表示为 y = kx + b,其中 y 表示人口数量,x 表示时间,k 表示增长率,b 表示初始人口数量。
用一次函数解决问题压轴题四种模型全攻略(解析版)

用一次函数解决问题压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一一次函数的应用——分配方案问题】 (1)【考点二一次函数的应用——最大利润问题】 (5)【考点三一次函数的应用——行程问题】 (8)【考点四一次函数的应用——几何问题】 (12)【过关检测】 (16)【典型例题】【考点一一次函数的应用——分配方案问题】【答案】(1)() 504500010120y x x=+≤≤;(2)见解析【分析】(1)根据A市的120吨物资运往甲乡x吨,运往乙乡()120x−吨,B市的130吨物资运往甲乡()140x−吨,运往乙乡()110120x−+吨的费用求和,即可确定y与x的函数关系式;(2)根据一次函数的性质即可确定运费最低的运送方案和最低运费.【详解】(1)解:由题意可得,()()()3001501202001401001101205045000y x x x x x =+−+−+−+=+, 0x ≥,1200x −≥,1400x −≥,1101200x −+≥,x ∴的取值范围是10120x ≤≤,y ∴与x 的函数解析式为()504500010120y x x =+≤≤;(2)500>,y ∴随着x 增大而增大,当10x =时,y 取得最小值,最小值为50104500045500(⨯+=元),此时从A 市往甲乡运送10吨物资,从A 市往乙乡运送110吨物资,从B 市往甲乡运送130吨物资物资,从B 市往乙乡运送0吨物资,答:运费最低的运送方案是:从A 市往甲乡运送10吨物资,从A 市往乙乡运送110吨物资,从B 市往甲乡运送130吨物资物资,从B 市往乙乡运送0吨物资,最低运费为45500元.【点睛】本题考查了一次函数的应用,根据题意建立一次函数关系式是解题的关键.【变式训练】【答案】(1)小明用方案一购书更划算;计算见解析;(2)120.5,0.650y x y x ==+;(3)见解析.【分析】(1)当150x =时,根据方案一和方案二计算出实际花费,然后比较即可;(2)根据题意给出的等量关系即可求出答案;(3)根据y 关于x 的函数解析式,求出两种方案所需费用相同时的书本数量,从而可判断哪家书店省钱.【详解】(1)解:当150x =时,方案一:1500.8120⨯=(元),方案二:501500.80.755090140+⨯⨯=+=(元),∵120140<,∴小明用方案一购书更划算;(2)解:由题意得:方案一:10.8y x =;方案二:2500.80.750.650y x x =+⨯=+;∴1y 与x 的函数关系式为10.8y x =;2y 与x 的函数关系式为20.650y x =+;(3)解:当12y y >时,即0.80.650x x >+,解得250x >;当12y y <时,即0.80.650x x <+,解得250x <;当12y y =时,即0.80.650x x =+,解得250x =.∴当250x <时,方案一更划算,当250x >时,方案二更划算,当250x =时,方案一和方案二一样划算.【点睛】本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型. 2.(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.【答案】(1)k1的实际意义是:打六折后的每次健身费用为15元.b 的实际意义是:每张学生暑期专享卡的价格为30元(2)打折前的每次健身费用为25(元),220k =(3)选择方案一所需费用更少.理由见解析【分析】(1)直接根据函数的图象结合实际意义进行解答;(2)根据方案一打折后每次健身费用是15元,因为是打六折,故可求打折前的费用;然后根据方案二再打八折即可求得k2 ;(3)根据(1)(2)即可得到1122y k x b y k x =+=,,当12y y =时,解得:6x =.即可得到答案. 【详解】(1)解:11y k x b =+的图象过点()030,和点()10180,,∴130,18010.b k b =⎧⎨=+⎩∴115,30.k b =⎧⎨=⎩.k1的实际意义是:打六折后的每次健身费用为15元.b 的实际意义是:每张学生暑期专享卡的价格为30元.(2)打折前的每次健身费用为150.625÷=(元)2250.820k =⨯=.(3)选择方案一所需费用更少.理由如下:由(1)知11530k b ==,, ∴11530y x =+.由(2)知220k =,∴2.当12y y =时,153020x x +=,解得:6x =.结合函数图象可知,小华暑期前往该俱乐部健身7次,选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,看懂图象,理解题意,理解两种优惠方案之间的关键是解题的关键.【考点二 一次函数的应用——最大利润问题】【答案】(1)5500y x =+(2)当购进甲种商品20件,乙种商品70件时,可使得甲、乙商品全部销售完后获得的利润最大为600元【分析】(1)设购进甲商品x 件,则购进乙商品()100x −件,根据题意即可列出y 与x 之间的函数关系式;(2)根据购进乙商品的件数不少于甲商品件数的4倍,可得当20x =时,y 取得最大值,即可求解.【详解】(1)解:由题意可得:()()()504015*********y x x x =+−−=+-,∴y 与x 之间的函数关系式为5500y x =+;(2)解:由题意,得1004x x −≥,解得20x ≤.∵5500y x =+,∴,∴y 随x 增大而增大,∴当20x =时,y 的值最大,520500600y =⨯+=,此时1002070−=,答:当购进甲种商品20件,乙种商品70件时,可使得甲、乙商品全部销售完后获得的利润最大为600元.【点睛】本题主要考查了一次函数的实际应用,明确题意,准确列出函数关系式是解题的关键.【变式训练】(1)第一次小冬用550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共45个,应如何设计进货方案才能获得最大利润,最大利润是多少?【答案】(1)A 款玩偶购进20个,B 10个(2)按照A 款玩偶购进15个、B 款玩偶购进30个的方案进货才能获得最大利润,最大利润是270元【分析】(1)根据题意和表格中的数据,可以列出相应的方程,然后求解即可;(2)根据题意,可以写出利润与购进A 款玩偶数量的函数关系式,再根据网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半,可以得到A 款玩偶数量的取值范围,然后根据一次函数的增减性分析,即可得到答案.【详解】(1)解:设A 款玩偶购进x 个,B 款玩偶购进()30x −个, 由题意得:()201530550x x +−=,解得:20x =,30x ∴−=302010−=(个),答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进()45a −个,获利y 元, 由题意得:()()()28202015453225y a a a =−+−−=+, A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.()1452a a ∴≤−,解得15a ≤,3225y a =+,由30k =>,可知y 随a 的增大而增大,∴当15a =时,315225270y =⨯+=最大(元),B ∴款玩偶为:451530−=(个),答:按照A 款玩偶购进15个、B 款玩偶购进30个的方案进货才能获得最大利润,最大利润是270元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用一次函数的性质求最值.【答案】(1)A 、B 两种模型每件分别需要25元,150元(2)800090w b =−,购进A 模型226件,B 模型29件利润最大为5390元【分析】(1)设购进A ,B 两种模型每件分别需要x 元,y 元,列方程组求解即可.(2)设购买A 种模型a 件,购买B 种模型b 件,由题意列出方程组,求出b 的范围,再列出W 与b 的函数关系式,求最值即可.【详解】(1)设购进A 、B 两种模型每件分别需要x 元,y 元,由题意得:105100043550x y x y +=⎧⎨+=⎩,解得25150x y =⎧⎨=⎩答:A 、B 两种模型每件分别需要25元,150元.(2)设购买A 种模型a 件,B 种模型b 件,25150100008a b a b +=⎧⎨≤⎩, 解得2007b ≥则购买A 种模型为1000015025b−件,即(4006)b −件,则20(4006)30w b b −+⨯=,即800090w b =−∵900−<,∴当b 取最小值时总利润最大,由(2)得2007b ≥,b 为整数,∴当29b =时,800090295390w =−⨯=,∴购进A 模型226件,B 模型29件利润最大为5390元【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,找准数量关系,正确列出方程组,函数关系式,不等式组是解题的关键.【考点三 一次函数的应用——行程问题】 (1)求线段CD 对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【答案】(1)线段CD 对应的函数解析式为110195y x =−(2)货车从甲地出发后3.9小时被轿车追上,此时离甲地的距离是234千米(3)轿车到达乙地后,货车距乙地30千米【分析】(1)设线段CD 对应的函数解析式为y kx b =+,由待定系数法求出其解即可;(2)设OA 的解析式为1y k x =货,由待定系数法求出解析式,由一次函数与一元一次方程的关系建立方程求出其解即可.(3)先由函数图象求出货车在轿车到达乙地是时需要的时间,由路程=速度⨯时间就可以求出结论.【详解】(1)解:设线段CD 对应的函数解析式为y kx b =+,由题意,得 80 2.5300 4.5k b k b =+⎧⎨=+⎩,解得:110195k b =⎧⎨=−⎩.则110195y x =−.答:线段CD 对应的函数解析式为110195y x =−;(2)设OA 的解析式为1y k x =货,由题意,得 13005k =,解得:160k =,60y x ∴=货.∴当y y =货时,11019560x x −=,解得: 3.9x =.离甲地的距离是:3.960234⨯=千米.答:货车从甲地出发后3.9小时被轿车追上,此时离甲地的距离是234千米;(3)由题意,得()605 4.530⨯−=千米.答:轿车到达乙地后,货车距乙地30千米.【点睛】本题考查了一次函数的图象的性质的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【变式训练】 1.(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a 米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b 米,两架航模距离地面的高度y 米与时间x 分钟的关系如图.两架航模都飞行了20分钟.(1)直接写出a 、b 的值;(2)求出两架航模距离地面高度y 甲、y 乙(米)与飞行时间x (分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?【答案】(1)20a =,140b =;(2)2020y x =+甲,1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米【分析】(1(2)根据一次函数中一次项系数和常数项的实际意义直接列函数关系式即可.(3)令25y y −=乙甲,解方程得到x 的值,即可得到答案.【详解】(1)6分钟时,乙型航模距离地面高度为:50156140+⨯=(米),140b ∴=.14020206a −∴==.20a ∴=,140b =.(2)由题意可得:1550y x =+乙,设20y kx =+甲,把(6,140)代入得,620140k +=,解得20k =,2020y x ∴=+甲.(3)()20201550530y y x x x −=+−+=−乙甲, 令25y y −=乙甲,则53025x −=,或53025x −=−,解得11x =,或1x =.答:飞行1分钟或者11分钟时,两架航模飞行高度相差25米.【点睛】本题考查一次函数的实际应用,理解函数图象表示的意义是解题的关键.【答案】(1)80,6(2)120600y x =−+(3)甲车出发经过1.7h ,2.3h ,3.5h ,两车相距60千米.【分析】(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;(2)找到甲车到达C 地和返回A 地时x 与y 的对应值,利用待定系数法可求出函数解析式;(3)分三种情况,甲和乙相距前,甲和乙相距后,甲返回A 地时,根据甲、乙两车相距60千米分情况讨论即可求解.【详解】(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,∴乙车速度为:80千米/时,乙车行驶全程的时间480806t =÷=(小时);故答案为:80,6;(2)根据题意可知甲从出发到返回A地需5小时,∵甲车到达C地后因立即按原路原速返回A地,∴结合函数图象可知,当52x=时,300y=;当5x=时,=0y;设甲车从C地按原路原速返回A地时,即552≤≤x,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y kx b=+,将5(,300),(5,0)2函数关系式得:5+=30025+=0k bk b⎧⎪⎨⎪⎩,解得:120600kb=−⎧⎨=⎩,故甲车从C地按原路原速返回A地时,甲车距它出发地的路程y与它出发的时间x的函数关系式为:120600y x=−+;(3)由题意可知甲车的速度为:6001205=(千米/时),设甲出发经过m小时两车相距60千米,有以下三种情况:①()12080160480m m+++=,解得 1.7m=②()12080148060m m++=+,解得 2.3m=③()()120 2.560 2.5100m m−+=−+,解得 3.5m=综上,甲车出发经过1.7h,2.3h,3.5h,两车相距60千米,【点睛】本题主要考查了一次函数的应用问题,解答此题的关键是要理解分段函数图象所表示的实际意义,准确找到等量关系.【考点四一次函数的应用——几何问题】例题:(2023春·河南南阳·八年级校考阶段练习)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是D C B A→→→,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A .B .C .D .【答案】B【分析】根据动点从点D 出发,首先向点C 运动,此时y 随x 的增加而增大,当点P 在DC 上运动时,y 不变,当点P 在AB 上运动时,y 随着x 的增大而减小,据此作出选择即可.【详解】解:当点P 由点D 向点C 运动,即04x ≤≤时,114222y AD x x x ==⨯=; 当点P 在BC 上运动,即48x <≤时,14482y =⨯⨯=,是一个定值;当点P 在BA 上运动,即812x <≤时,y 随x 的增大而减小.故选:B .【点睛】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.【变式训练】1.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P 从B 点出发,以每秒2cm 的速度在图①的边(相邻两边互相垂直)上按B C D E F A →→→→→的路线移动,相应的ABP 的面积()2cm S 与点P 的运动时间()t s 的图象如图②所示,且6cm AB =.当230cm S =时,t = .【答案】7s 或11s【分析】从图象上分析可知,由于速度是2cm/s ,图中04~的过程为P 点在线段BC 上,故428cm BC =⨯=,46~为4CD =,69为6DE =,910~为2EF =,10到b 为FA ,14FA BC DE =+=,1014217b =+÷=,根据ABP ∆的面积为230cm ,底边6cm AB =可知高为10cm ,也就是P 点距离AB 的距离是10cm ,从数据上可知,P 在线段DE 上有一个符合条件的点,在线段AF 上有一个符合条件的点,求出对应的t 值.【详解】解:由图可知, P 点的运动速度为2cm/s , ()428cm BC ∴=⨯=,()224cm CD =⨯=,()326cm DE =⨯=,()122cm EF =⨯=,()14cm FA BC DE =+=, 2cm 30S =,6cm AB =,∴点P 到AB 的距离为()302610cm ⨯÷=,故可知P 在线段DE 上和线段AF 上各有一个P 点满足条件,当1P 在线段DE 上时:110PD BC +=,()11082cm PD ∴=−=,1()27(s)t BC CD DP ∴=++÷=,当1P 在线段AF 上时:210P F AF =−, ()214104cm P F ∴=−=,2()211(s)t BC CD DE EF FP =++++÷=, 故答案为:7s 或11s .【点睛】本题考查了动点问题的图象,一次函数和动点问题的应用,三角形的面积公式.2.(2023春·安徽宿州·七年级校考期中)如图,在长方形ABCD 中,8BC =,6CD =,点E 为边AD 上一动点,连接CE ,随着点E 的运动,DCE △的面积也发生变化.(1)写出DCE △的面积y 与AE 的长()08x x <<之间的关系式;(2)当3x =时,求y 的值.【答案】(1)324y x =−+(2)15【分析】(1)可求8DE x =−,由12y CD DE =⋅即可求解;(2)将3x =代入解析式即可求解.【详解】(1)解:由题意得:8DE x =−,∴12y CD DE =⋅16(8)2x =⨯⨯−324x =−+.答:DCE △的面积y 与AE 的长()08x x <<之间的关系式为324y x =−+.(2)解:当3x =时,92415y =−+=, 答:当3x =时,15y =.【点睛】本题主要考查了一次函数在动点问题中的应用,掌握“化动为静”的方法解决动点问题的方法是解题的关键.【过关检测】一、单选题 1.(2023秋·安徽亳州·八年级校考阶段练习)甲,乙两车在笔直的公路AB 上行驶,乙车从AB 之间的C 地出发,到达终点B 地停止行驶,甲车从起点A 地与乙车同时出发到达B 地休息半小时后立即以另一速度返回C 地并停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车相距的路程(y 千米)与乙车行驶的时间(x 小时)之间的关系如图所示,下列说法中正确的有( )①甲车行驶的速度为每小时20千米;②AB 两地之间的距离为420千米;③甲车返回C 地的速度为每小时80千米;④甲车返回C 地比乙车到B 地时间晚2小时.【答案】B【分析】根据第三段函数图象甲车到达B 地后休息半小时,求出乙车的速度,然后根据第一段函数图象,求出甲去B 地速度;求出甲车从A 到B 所用的时间,即可求出AB 的长度;根据返回时,两车在870.50.5−−=小时内行驶的路程为60千米,算出甲返回C 的速度,求出BC 间的长度,即可求出返回C 地时甲用的时间,算出乙到达目的地B 比甲到达B 地多用的时间,即可求出甲车返回C 地比乙车到B 地时间晚3小时.【详解】解:乙车速度80604012−=(千米/时), 甲车去B 地的速度为:40360603⨯+=(千米/时),甲车去B 地时,两车速度差,60203=(千米/时),第一次相遇后甲车到达B 地时间,80420=(小时),∴甲车从A 地到B 地所用时间为347+=(小时),∴AB 两地之间的距离为607420⨯=(千米),故②正确; 甲车返回时速度,604080870.5−=−−(千米/时),故①错误,故③正确;∴A 、B 两地距离420千米,∴B 、C 两地相距,42060360−=(千米),甲车返回C 地用时,3609802=(小时),乙车比甲车晚到达B 地时间,80240=(小时), 甲车比乙车晚到达目的地时间,192322+−=(小时),故④错误;综上分析可知,正确的有2个,故选:B .【点睛】本题主要考查了从函数图象中获取信息,解决行程问题,解决问题的关键是熟练掌握甲、乙两车行驶路程与速度、时间的关系. AB DC ,B Ð,ABP 的面积为所示,则ACD 面积为 A .10B .16C .18D .20【答案】A 【分析】由题意知:49455BC DC AD ==−==,,,进而根据三角形的面积公式,即可求解.【详解】解:根据图2可知当点P 在CD 上运动时,ABP 的面积不变,与ABC 面积相等;且不变的面积是在4x =,9x =之间;所以在直角梯形ABCD 中4BC =,5CD =,5AD =.连接AC ,∴ACD 面积为11541022CD BC ⨯=⨯⨯=故选:A .【点睛】考查了动点问题的函数图象,解决本题的关键是读懂图意,得到相应的直角梯形中各边之间的关系.此题考查了学生从图象中读取信息的数形结合能力.A .第25天的销售量为200件B .第6天销售一件产品的利润是19元C .第20天和第30天的日销售利润相等D .第18天的日销售利润高于第25天的日销售利润【答案】C【分析】根据函数图象分别求出当020t ≤≤,一件产品的销售利润w (单位:元)与时间t (单位:天)的函数关系为25w t =−+,当025t ≤≤时,产品日销售量y (单位:件)与时间t (单位;天)的函数关系为4100y t =+,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【详解】A 、根据图①可得第25天的销售量为200件,故此选项正确,不符合题意;B 、设当020t ≤≤,一件产品的销售利润w (单位:元)与时间t (单位:天)的函数关系为w kt b =+,把025205(,),(,)代入得:252020b k b =⎧⎨+=⎩,解得:125k b =−⎧⎨=⎩,∴25w t =−+,当6t =时,62519w =−+=,故此选项正确,不符合题意;C 、当025t ≤≤时,设产品日销售量y (单位:件)与时间t (单位;天)的函数关系为11y k t b =+, 把010025200(,),(,)代入得:11110025200b k b =⎧⎨+=⎩,解得:114100k b =⎧⎨=⎩,∴4100y x =+,当20t =时,日销售利润为5420100900wy =⨯⨯+()=(元);当30t =时,日销售利润为5150750⨯=(元),∴第20天和第30天销售利润不相等,故此选项错误,符合题意;D 、当18t =时,日销售利润为18254181001204wy =−+⨯+()()=(元),当25t =时,日销售利润为52001000⨯=(元).∴第18天的日销售利润高于第25天的日销售利润,故此选项正确,不符合题意.故选:C .【点睛】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题 4.(2023秋·山东青岛·八年级统考期末)马家沟芹菜是青岛的名优农产品,某公司零售一箱该产品的利润是10元,批发一箱该产品的利润是6元.经营性质规定,该公司零售的数量不能多于300箱.现该公司出售800箱这种产品,最大利润是 元.【答案】6000【分析】设该公司当月零售这种农产品m 箱,则批发这种农产品()800m −箱,该公司获得利润为y 元,进而得到y 关于m 的函数关系式,利用一次函数的性质,即可求解.【详解】解:设该公司当月零售这种农产品m 箱,则批发这种农产品()800m −箱,依题意得:0300m <≤,设该公司获得利润为y 元,依题意得:()106800y m m =+−,即44800y m =+,∵40>,y 随着m 的增大而增大,∴当300m =时,y 取最大值,此时430048006000y =⨯+=(元),答:该公司要经营800箱这种农产品,最大利润是6000元.故答案为:6000.【点睛】本题主要考查了一次函数的应用,根据题意列出函数表达式,熟练掌握函数性质根据自变量取值范围确定函数值是解决问题的关键.【答案】 2400 1248【分析】设日销售量y 与上市时间t 之间的函数关系式为()0y kt k =≠,把()3060,代入得6030k =,解得2k =,则()2030y t t =<≤,再求出4w t b =+的b 值,然后把26t =代入算得48024w t =−=,根据日销售利润=单件产品的利润×销售量进行计算即可.【详解】解:由题图①知,当天数30t =天时,市场日销售量达到最大60件,由题图②知,当天数30t =天时,每件产品销售利润达到最大40元,所以当天数30t =天时,市场的日销售利润最大,最大利润为2400元;设日销售量y 与上市时间t 之间的函数关系式为()0y kt k =≠, 把()3060,代入得6030k =,解得2k =,∴日销售量y 与上市时间t 之间的函数关系式为()2030y t t =<≤, 将点()3040,代人4w t b =+,解得80b =−,所以当2530t ≤≤时,单件产品的销售利润w 与t 之间的函数关系式为()4802530w t t =−≤≤, 当26t =时,48024w t =−=,将26t =时252y t ==,∴此时日销售利润为52241248⨯=(元).故答案为:2400,1248.【点睛】本题考查一次函数的应用,关键是读懂图中信息,利用函数的性质进行解答.【答案】 9,2,9 11680【分析】设x 辆汽车装运食品,y 辆汽车装运药品,则装运生活用品的车辆数为()20x y −−,根据三种物资共100吨列出等式,求出220y x =−+,再根据每种物资至少装运1辆车,求出x 的取值范围,最后列出总费用w 与x 的函数关系式,利用函数的性质即可解决问题.【详解】解:设x 辆汽车装运食品,y 辆汽车装运药品,则装运生活用品的车辆数为()20x y −−, 由题意,得:()20651040x x y y −−=++,∴220y x =−+.∴()2020220x y x x x −−=−−−+=.∵每种物资至少装运1辆车,∴12201x x ≥⎧⎨−+≥⎩. 解得:1912x ≤≤,设总费用为w ,则()12061605220100448016000w x x x x =⨯+⨯−++⨯=−+,∵4800k =−<,∴w 随x 的增大而减小. ∵1912x ≤≤,且为整数, ∴当9x =时,总费最少,最少费用为48091600011680w =−⨯+=元.此时2202y x =−+=.故答案为:9,2,9;11680.【点睛】本题主要考查了一次函数的应用,用两个未知数表示出运送生活用品的车辆数是列出方程的关键,三、应用题 7.(2023秋·安徽淮北·八年级校联考阶段练习)如图,在长方形ABCD 中,2cm AB =,4cm BC =,点P从点B 出发,以1cm/s 的速度沿着B →C →D →A 的方向移动到点A ,设移动过程中三角形PAB 的面积为S (2cm ),移动时间为t (s ).(1)写出S 与t 之间的函数关系式;(2)①当 1.5s t =时,求三角形PAB 的面积;②当三角形PAB 的面积为23cm 时,求t 的值.【答案】(1)()()(),044,4610,610t t S t t t ⎧<≤⎪=<≤⎨⎪−+<≤⎩(2)①21.5cm ;②3t =或7t =【分析】(1)根据题意可分当点P 在BC 上,当点P 在DC 上,当点P 在DA 上,然后分别求出函数解析式即可;(2)①由(1)可进行求解;②根据(1)中函数解析式,然后把三角形PAB 的面积为23cm 代入进行求解即可.【详解】(1)解:由题意可得:①当点P 在BC 上,即04t <≤, ∴11222S AB PB t t =⋅=⨯=;②当点P 在DC 上,即46t <≤,此时三角形PAB 的面积为长方形面积的一半,即为12442S =⨯⨯=; ③当点P 在DA 上,即610t <≤,此时10AP t =-, ∴()112101022S AB AP t t =⋅=⨯−=−+;综上所述:S 与t 之间的函数关系式为()()(),044,4610,610t t S t t t ⎧<≤⎪=<≤⎨⎪−+<≤⎩;(2)解:①当 1.5s t =时,则 1.5cm BP =, ∴21 1.5cm 2S AB BP =⋅=;②由(1)可知:当三角形PAB 的面积为23cm 时,则有:3t =或103t −+=,∴3t =或7t =.【点睛】本题主要是考查一次函数的应用,熟练掌握一次函数的应用是解题的关键. 8.(2023秋·山东枣庄·八年级滕州育才中学校考期中)合肥某校有3名教师准备带领部分学生(不少于3人)参观野生动物园.经洽谈,野生动物园的门票价格为教师票每张36元,学生票半价,且有两种购票优惠方案.方案一:购买一张教师票赠送一张学生票;方案二,按全部师生门票总价的80%付款,只能选用其中一种方案购买.假如学生人数为x (人),师生门票总金额为y (元).(1)分别写出两种优惠方案中y 与x 的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少;(3)若选择最优惠的方案后,共付款288元,则学生有多少人?【答案】(1)方案一:1854y x =+;方案二:14.486.4y x =+(2)当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠(3)学生人数为14人【分析】(1)根据题意可直接进行求解;(2)由(1)中函数关系式及一次函数的性质可进行求解;(3)由(2)可进行求解.【详解】(1)解:方案一:()133636318542y x x =⨯+⨯−=+;方案二:13363680%14.486.42y x x ⎛⎫=⨯+⨯⨯=+ ⎪⎝⎭;(2)解:由(1)可知:当两种方案的费用一样多时,则有:185414.486.4x x +=+,解得:9x =,∴当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠;(3)解:由(2)可知:当学生人数为9人时,方案一和方案二的费用一样多,费用即为18954216⨯+=(元), ∵288216>,∴应选择方案二更优惠,∴14.486.4288x +=,解得:14x =;答:学生人数为14人.【点睛】本题主要考查一次函数的应用,熟练掌握一次函数的性质是解题的关键. 9.(2023春·河南新乡·九年级校联考开学考试)河南某景区为了发展旅游,吸引游客,推出了两种优惠方案(设购买门票的张数为x 张,费用为y 元)方案一:充值500元购买年卡,每张门票80元.方案二:每张门票的单价按图中的折线OAB 所表示的函数关系确定.某单位准备组织员工到该景区旅游.(1)当购买15张门票时,按方案一和方案二分别应花费多少钱?(2)求方案二中y 关于x 的函数关系式,并写出折线OAB 所表示的实际意义.(3)该单位选择哪种购买方案更划算?【答案】(1)按方案一应花费1700元;按方案二应花费1500元(2)()10001590150(15)x x y x x ⎧≤≤=⎨+>⎩;折线OAB 所表示的实际意义见解析 (3)见解析【分析】(1)方案一:用每张门票的费用乘以购买的数量再加上年卡的费用计算即可,方案二:根据图象作答即可;(2)当015x ≤≤时,设y ax =;当15x >时,设y kx b =+.由待定系数法即可求解;(3)分类讨论当0x ≤15≤和15x >的情况,即可求解.【详解】(1)解:当购买15张门票时,按方案一应花费50080151700+⨯=(元);按方案二应花费:1500元.(2)解:当015x ≤≤时,设y ax =.将(15,1500)代入,得150015a =.解得100a =.∴100y x =.当15x >时,设y kx b =+.将(15,1500),(30,2850)代入,得151500302850k b k b +=⎧⎨+=⎩,解得90150k b =⎧⎨=⎩.∴90150y x =+.∴方案二中y 关于x 的函数关系式为()10001590150(15)x x y x x ⎧≤≤=⎨+>⎩ 折线OAB 所表示的实际意义为若购买门票的张数不大于15时,则每张的价格是100元;若购买门票的张数大于15时,则每张的价格是90元.(3)解:方案一中:150080y x =+.当0x ≤15≤时,50080100x x +>.∴选择方案二划算.当15x >时,令500+8090150x x >+,解得35x <.∴1535x <<时,选择方案二更划算.令5008090150x x +=+,解得35x =.∴35x =时,选择两种购买方案一样划算.令50080x +<90150x +,解得35x >.∴35x >时,选择方案一更划算.∴当购买门票张数35x <时,该单位选择购买方案二更划算;当购买门票张数35x =时,该单位选择两种购买方案一样划算;当购买门票张数35x >时,该单位选择购买方案一更划算.10.(2023秋·山东济南·八年级山东省济南稼轩学校校考期中)在A、B 两地之间有服务区C ,甲车由A 地驶往服务区C ,乙车由B 地驶往A 地,两车同时出发,匀速行驶,如图是甲、乙两车分别距离服务区C 的路程1y 、2y (单位:千米)与乙车行驶时间x (单位:小时)之间的函数图象,结合图象信息,解答下列问题:(1)甲车的速度是________千米/时;。
一次函数的应用

一次函数的应用一次函数是代数学中的一种基础函数形式,也是最简单的线性函数。
它的一般形式可以表示为 y = ax + b,其中 a 和 b 是常数。
本文将介绍一次函数的应用,探讨其在实际生活和工作中的实际用途。
1. 财务管理中的一次函数应用在财务管理中,一次函数可以用来描述收入和支出之间的关系。
例如,假设一个公司的每月支出是固定的,可以用一次函数来表示该月的总支出。
这样,通过控制一次函数中的常数项,我们可以计算出不同支出情况下的预计收入。
在财务规划、预算编制和经营决策中,一次函数的应用非常重要。
2. 管理学中的一次函数应用在管理学中,一次函数可以用来描述两个变量之间的线性关系。
例如,企业的销售量与广告费用之间的关系可以用一次函数表示。
通过研究一次函数的斜率和截距,我们可以确定最佳的广告投入策略,从而最大化销售量。
一次函数在市场营销、供应链管理等领域中具有广泛的应用。
3. 物理学中的一次函数应用在物理学中,一次函数可以用来描述运动物体的位移与时间的关系。
例如,一个以匀速运动的汽车,可以用一次函数表示其位移与时间的关系。
一次函数在物理学中的应用帮助我们理解物质的运动规律,为工程设计和科学研究提供基础。
4. 经济学中的一次函数应用在经济学中,一次函数可以用来描述供求关系、市场需求曲线和供应曲线等。
例如,根据市场定价规律,一次函数可以用来表示商品需求量与价格的关系。
通过分析一次函数的相关参数,我们可以进行市场预测和市场调控。
一次函数在经济学中的应用为经济决策和政策制定提供了依据。
5. 工程学中的一次函数应用在工程学中,一次函数可以用来表示工程中的各种线性关系。
例如,在电子电路设计中,一次函数可以描述电流和电压之间的关系。
在建筑设计中,一次函数可以用来表示材料的强度和应力之间的关系。
一次函数在工程学中的应用帮助我们分析和解决实际工程问题。
总结:一次函数作为一种基本的函数形式,广泛应用于各个学科和领域。
无论是财务管理、管理学、物理学、经济学还是工程学,一次函数都扮演着重要的角色。
一次函数模型在实际问题中的应用探究

【关键词】数学教学;一次函数模型;应用【中图分类号】G633.6【文献标志码】A【文章编号】1004—0463(2020)21—0185—01函数是数学知识与实际问题联系的纽带,因此,构建一次函数模型解决实际问题,既符合学生的认知规律,又符合数学课程标准提倡的教学理念。
那么,如何构建函数模型来解决实际问题呢?下面,笔者结合教学实际,谈谈自己的体会和看法。
一、认知一次函数模型自变量x和因变量y之间满足函数关系:y=kx+b(k、b是常数,k≠0),自变量x需要根据实际问题进行确定。
例1汽车从甲地驶向乙地,先行驶了90km.经休整,再次出发后以70km/h 的速度继续行驶t小时到达乙地。
求汽车离开甲地所行驶的路程S(km)和时间t(h)之间满足的函数关系。
解析:1.分析题目信息(1)汽车已经行驶了90km;(2)再次出发后以每小时70km的速度行驶;(3)汽车又行驶70t km;(4)汽车共行驶(70t+90)km2.构建一次函数模型:S=70t+90。
二、利用待定系数法构建一次函数模型引导学生剖析实际问题中的数量关系,明确两个变量之间是否满足y= kx+b.若满足,则可以利用待定系数法构建一次函数模型,解决实际问题。
例2男士衬衫的号/型和码数的对应关系如下:(1)设x为净胸围,y为男士衬衫的码数,试求y与x的函数关系。
(2)若某同学的净胸围是112cm,则该同学应买多大号码的衬衫?解析:本题在明确函数关系的基础上,应用待定系数法构建函数模型。
(1)分析表中数量关系:∵人的净胸围从84到100,且每增大4个单位,则衬衫号码增大1码。
∴衬衫的号码与人的净胸围之间呈线性变化,符合一次函数模型。
用待定系数法:把x=84、y=38和x=88、y=39两组数值代入y=kx+b,可得k=0.25、b=17∴修正后的函数模型:y=0.25x+17。
(2)把该同学的净胸围112代入函数模型,得y=0.25×112+17=45∴该同学可选购45码的衬衣。
一次函数与方案设计问题

一次函数与方案设计问题一、一次函数的最值一次函数y=kx+b 在n ≤x ≤m 时可取得最值。
何时取得最大值,何时取得最小值,与比例系数k 的符号有关,可分下面几种情况。
○1当k >0时,⎩⎨⎧==时,取得最小值时,取得最大值n x m x如:y=2x-6(2≤x ≤5)当x= 时取得最大值 ,当x= 时取得最小值 .○2当k <0时,⎩⎨⎧==时,取得最小值时,取得最大值m x n x 如:y=-2x-6(2≤x ≤5)当x= 时取得最大值 ,当x= 时取得最小值 . 二、最优化问题的解法(一)调运方案设计在商品经济领域,人们要考虑降低生产成本和追求最大利润,有时需要考虑合理调配人力和物力来达到这一目的,下面就如何减少运费和分配劳动力来达到最优化的问题来领会一次函数的作用。
例1、A 市和B 市分别库存机器12台和6台,现在决定支援给C 县10台,D 县8台。
已知从A 市调走一台机器到C 县、D 县的运费分别为400元和800元,从B 市调走一台机器到C 县、D 县的运费分别为300元和500元。
指出总运费最低的调运方案,最低运费是多少?分析:设 表○1调运机器台数 收地C 县收地D 县总计 运地A 市 运地B 市 总计表○2运费 收地C 县收地D 县运地A 市 运地B 市由上表可以看出:总运费 化简得要想运输方案能够实施,调运机器台数解决这类问题可分三步:1、用表格分析数量关系,列出一次函数解析式。
2、根据实际数据都是非负数列不等式组求出自变量的取值范围。
3、写出最大值或最小值。
练习:1、现从A、B两个蔬菜市场向甲、乙两地运送蔬菜,A、B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地的运费为每吨50元/吨,到乙地的运费为30元/吨;从B到甲地的运费为每吨60元/吨,到乙地的运费为45元/吨。
⑴、设从A到甲地运送蔬菜x吨,请完成下表.甲地乙地总计A xB总计⑵、总运费为w元,写出w与x之间的函数关系式.⑶、怎样调运蔬菜才能使总运费最少、(二)生产方案设计例2、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈谈数学模型之一:一次函数在方案设计问题中的应用
作者:王小平
来源:《中学课程辅导·教学研究》2013年第24期
摘要:数学模型是用以描述和研究客观现象的运动规律的,包括数量关系和空间形式,是从现实生活实践中抽象出来的,又运用于生活实践。
研究数学模型并运用好数学模型,可以准确地指导我们的生活和生产。
因为我们的一生是动态的,乃至整个世界都处于运动变化之中,因此无论是数量关系中还是空间形式中都充满了有关运动变化的问题。
一次函数是其中之一,是一种研究运动变化的重要数学模型,关注它并能综合灵活运用有着深远的意义。
本文举例谈了一次函数在设计方案中的应用。
关键词:数学模型;一次函数;方案设计问题;应用
中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2013)24-0154
一、环保与生产问题方案设计
例1. 某化工厂生产某种产品,每件产品出厂价为50元,成本价为25元,在生产过程中,平均每生产1件产品就有0.5立方米污水排出,为了净化环境,工厂设计了两种对污水进行处理的方案并准备实施。
方案一:工厂污水先净化处理后再排出,每处理1立方米污水所用原料费用2元,并且每月排污设备损耗费为30000元;
方案二:将污水排放到污水处理厂统一处理,每处理1立方米污水需付14元排污费。
(1)设:生产产品的数量为x件,工厂处理污水的费用为y元,请分别写出两种方案中工厂处理污水的费用与生产产品的数量的函数关系表达式;
(2)你认为该工厂应如何根据每月生产产品的数量选择污水处理方案?
解:(1)y1=30000+2×0.5x ,即y1=x+30000; y2=14×0.5x,即y2=7x;
(2)当y1=y2时,30000+x=7x,解得x=5000,
当x>5000时,y1y2,
所以当工厂每个月生产5000件时,两种方案选哪个都一样;
当工厂每个月生产量小于5000件时,方案二划算,可选方案二;
当工厂每个月生产量大于5000件时,方案一划算,可选方案一。
点评:这个问题表面看难以下结论,一次函数建模,通过计算就可以帮助厂商进行优选生产方案。
二、民生问题方案设计
例2.某市移动通迅公司开设了两种通讯业务:“全球通” 使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话)。
设一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的函数关系式(即等式);
(2)一个月内通话多少分钟,两种通话方式的费用相同?
(3)若某人预计一个月内使用话费110元,则应选择哪一种通话方式较合算?
解:(1)y1=0.2x+50,y2=0.4x.
(2)由y1= y2得0.2x+50=0.4x,解得x=250(分钟),
所以,当一个月内通话250分钟时,两种通话方式的费用相同;
(3)由0.2x+50=110,解得x=300(分钟);
由0.4x=110,得x=275(分钟).
∵300>275,∴选择第一种通话方式比较合算.
点评:商家以利为重,但是老百性能掌握一门技能,通过科学的计算,就可以从中受益。
三、优惠问题方案设计
例3. 一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
(1)甲、乙两公司单独完成这项工程,各需多少天?
(2)若让一个公司单独完成这项工程,选择哪个施工队施工合算?请你帮承包商出注意。
解:(1)设甲公司单独做需要x天完成任务,乙公司需要1.5x天完成任务,
由题意,得 12( =1解得x=20(天),1.5x=30(天).
所以甲独做需要20天完成任务,乙独做需要30天完成任务。
(2)设甲公司每天的施工费为y元,乙公司每天的施工费为(y-1500)元,
则有12(y+y-1500)=102000解得y=5000,y-1500=3500.
所以甲公司每天的施工费是5000元,乙公司每天的施工费是3500元.
甲公司独做施工总费是:5000×20=100000(元);
乙公司独做施工总费是:3500×30=105000(元).
∵100000元
∴如果独做甲公司的施工费用较少。
由以上计算可知:承包商选择甲公司施工比较合算。
点评:对于承包商来讲,不能将工程盲目的出包,需通过精准的计算,确定预算内的最佳承包方案,以确保工程的质量顺利施工。
四、调运问题方案设计
例4. 某山区有A、B两个村庄盛产苹果,A村有苹果200吨,B村有300吨,现将这些苹果运到C、D两个冷藏仓库。
已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨40元和45元;从B村运往C、D两处的费用分别为每吨25元和32元。
设从A村运往C仓库的苹果为x吨,A、B两村运苹果往两仓库的运输费用分别为yA 元,yB元。
(1)请填写下表,并求出yA,yB与x之间的函数关系式,并确定变量x的取值范围;
(2)当x为何值时,A村的运费较少?
(3)请问怎样调运,才能使两村的运费之和最小?并求出最小值。
解:(1)填表如下:
yA =40X+45(200-x),即yA=-5x+9000,
yB=25(240-x)+32(60+x),即yB=7x+7920
由表格知:0≤x≤200.
(2)由(1)知yA=-5x+9000,∵k=-5
对于0≤x≤200,当x=200时,yA有最小值,且yA最小=-5×200+9000=8000(元).
(3)设两村的费用之和为W=yA+ yB=2x+16920,由x的系数2>0知W是增函数,对于0≤x≤200,当x=0时,W有最小值,且W最小=2×0+16920=169209(元).
调运方案如表格所示:
点评:对于货运商在商品交易的过程中,总想用最少的投入获取最大的收益,这就需要正确方案的确方可实现。
五、利润问题方案设计
例5. 某商店准备购进甲、乙两种商品。
已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元。
(1)如该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且两种商品全部售出后利润不少于890元,请你帮店主确定进货方案?
(3)以上方案中选择哪种进货方案,能使总利润最大,最大利润是多少?
解:(1)设该店主购进甲商品x件,乙商品为(100-x)件,由题意,得
15x+35(100-x)=2700解得x=40(件),所以100-x=60(件)。
所以店主应购进甲商品40件,乙商品为60件.
(2)由题意,得(20-15)x+(45-35)(100-x)≥89015x+35(100-x)≤3100,解得
20≤x≤22(x只取整数).
进货方案如上表所示:
(3)设总利润为y=(20-15)x+(45-35)(100-x)即y=-5x+1000,因为k=-5
点评:街面店铺开了不少,有的店主开店赚钱,有的店主却亏本关门。
所以店主要想赚钱需要用知识武装头脑,科学经营方可赚钱。
(作者单位:宁夏中卫第三中学 755000)。