数学分析中的三重积分
三重积分计算

三重积分计算三重积分是多重积分的一种,用于计算三维空间中的体积、质心、重心、转动惯量等问题。
在高等数学中,三重积分也是非常重要的一部分,本文将详细介绍三重积分的概念、性质、计算方法以及一些应用。
一、三重积分的概念三重积分是对具有三个变量的函数在三维空间中一些区域的积分。
设f(x,y,z)是定义在区域Ω上的函数,其中Ω是三维空间中的一个封闭区域。
则三重积分的定义为:∭Ωf(x,y,z)dV其中,dV 表示一小块Ω中的体积元素,dV = dx dy dz。
可以看出,三重积分实际上是对Ω中个点对应的函数值与体积元素的乘积进行求和。
三重积分对应的结果是一个数值。
二、三重积分的性质1.线性性质:设f(x,y,z)和g(x,y,z)是定义在区域Ω上的函数,a和b是常数,则有:∭Ω (af(x, y, z) + bg(x, y, z)) dV = a∭Ω f(x, y, z) dV +b∭Ω g(x, y, z) dV2.保号性质:如果在Ω上有f(x,y,z)≥0,则有:∭Ωf(x,y,z)dV≥03.次序可交换性:如果函数f(x,y,z)在区域Ω上连续,那么对于Ω中的任意小闭区域D,有:∬D f(x, y, z) dx dy = ∬D f(x, y, z) dy dx这说明在计算三重积分时,可以先对其中两个变量积分,再对剩余的变量积分。
三、三重积分的计算方法计算三重积分的方法有很多种,下面介绍常用的两种方法:直角坐标系下的直接计算和柱面坐标系的变量代换法。
1.直角坐标系下的直接计算:假设要计算Ω上的三重积分∭Ωf(x,y,z)dV,Ω的边界可以分解为有限个可求面积的曲面。
先取一个边界曲面上的点P,以该点为上顶点的立体体积为ΔV,然后作适当的划分,将ΔV划分为若干个小的体积ΔV_i。
然后取这些小体积ΔV_i中其中一点(x_i,y_i,z_i),并计算f(x_i,y_i,z_i)与ΔV_i的乘积f(x_i,y_i,z_i)ΔV_i。
三重积分的定义和性质

三重积分的定义和性质三重积分是微积分中一种用于计算三维空间中曲面下体积、质量等物理量的方法。
在学习三重积分之前,我们需要了解它的定义和性质,以便能够正确地应用于问题的求解。
一、三重积分的定义三重积分的定义可以通过对立体进行切割、求和的方法来理解。
我们将三维空间切割成许多小的体积元,每个小体积元的体积近似于一个长方体。
假设我们要计算的函数为f(x,y,z),则三重积分的定义可以表示为:∭f(x,y,z)dV = lim Σ f(x_i,y_i,z_i)ΔV其中,Σ表示对所有小体积元的求和,每个小体积元的体积为ΔV,该体积元的中心坐标为(x_i,y_i,z_i)。
当每个小体积元的体积趋近于零时,求和变成了对整个区域进行积分。
二、三重积分的性质1. 可加性三重积分具有可加性,即对于两个子区域A和B,有以下关系成立:∭(A∪B)f(x,y,z)dV = ∭Af(x,y,z)dV + ∭Bf(x,y,z)dV这意味着我们可以将一个复杂的区域划分成多个简单的子区域进行计算,再将结果进行相加,从而简化计算过程。
2. 反序性三重积分的计算顺序可以灵活选择,即可以按照x、y、z的任意次序进行求解。
这种性质的使用可以根据问题的要求来确定最佳求解顺序,从而简化计算过程。
3. 坐标变换在实际问题中,我们经常遇到需要进行坐标变换的情况。
通过适当的坐标变换,可以将原来的坐标系转化为更便于计算的形式。
常见的坐标变换包括柱坐标和球坐标等。
三、应用举例三重积分的应用非常广泛,下面举几个例子来说明其在实际问题中的应用。
例一:计算立体的体积假设我们需要计算一个球体的体积,其半径为R。
我们可以将球体切割成许多小的体积元,然后对所有体积元进行求和,即可得到球体的体积。
例二:计算立体的质量假设我们有一个密度分布函数为ρ(x,y,z)的立体,我们想要计算该立体的质量。
可以将立体切割成小的体积元,然后对每个体积元的质量进行求和,即可得到整个立体的质量。
三重积分的概念和计算方法

三重积分的概念和计算方法三重积分是数学中的一个重要概念,是在三维空间中求解某个空间区域内函数值的方法。
本文将介绍三重积分的基本概念以及常见的计算方法。
1. 三重积分的概念三重积分是对三维空间内的函数进行积分运算,用于描述空间区域内某个物理量的总量。
在三维空间中,我们将积分区域分成无限个微小的体积元,通过将这些微小体积元叠加起来,就可以计算出整个积分区域内函数值的总和。
2. 三重积分的符号表示三重积分通常用∬∬∬f(x,y,z)dxdydz表示,其中f(x,y,z)为被积函数,dxdydz表示积分元,代表了积分的区间范围。
3. 三重积分的计算方法在计算三重积分时,需要确定积分的区域以及被积函数的表达式。
3.1 直角坐标系中的三重积分在直角坐标系中,我们常用直角坐标系(x, y, z)来描述三维空间的位置。
对于一般的积分区域,可以通过确定积分的上下限来确定积分的范围。
3.1.1 矩形坐标系中的三重积分计算方法对于矩形坐标系中的三重积分,可以根据积分区域的形状选择合适的积分顺序,并通过嵌套积分的方式来计算。
常见的积分顺序有xyz、xzy、yxz、yzx、zxy和zyx六种情况,具体选择哪种积分顺序需要根据具体问题进行分析和判断。
3.1.2 柱坐标系中的三重积分计算方法在柱坐标系中,我们用ρ、φ和z来描述空间的位置。
对于圆柱形的积分区域,可以通过确定积分的范围来进行计算。
根据积分区域的形状,可以选择适合的积分顺序,并结合柱坐标系的变换公式进行计算。
3.1.3 球坐标系中的三重积分计算方法在球坐标系中,我们用r、θ和φ来描述位置。
对于球形的积分区域,可以通过确定积分的范围来进行计算。
根据积分区域的形状,可以选择适合的积分顺序,并结合球坐标系的变换公式进行计算。
4. 三重积分的应用领域三重积分在物理、工程、几何等领域都有着广泛的应用。
常见的应用包括计算空间体积、质量、质心、转动惯量、质心坐标等。
5. 三重积分的计算实例为了更好地理解和掌握三重积分的计算方法,我们举一个简单的实例来进行说明。
三重积分讲解

三重积分是微积分学中的一个重要部分,也是解决许多实际问题的基础。
以下是对三重积分的详细讲解:1.三重积分的概念:三重积分是将一个函数的积分运算转化为三个不同的积分,即分别对三个变量进行积分。
其一般形式为:∫∫∫f(x,y,z)dxdydz其中f(x,y,z)是待求积分的函数,而∫∫∫是三重积分的符号。
2.三重积分的物理背景:三重积分有着深刻的物理背景。
在物理学中,一个物体的质量分布、能量分布或者电荷分布等可以用三重积分来表示。
例如,一个物体的质量分布可以表示为空间中的密度函数f(x,y,z),那么该物体的总质量就可以通过三重积分来计算。
3.三重积分的计算方法:三重积分的计算通常采用“分割、近似、求和、取极限”的方法。
具体步骤如下:(1)分割:将积分区域分割成许多小的立方体,每个立方体称为一个“小块”。
(2)近似:用每个小块的中心点(x',y',z')来近似该小块上的积分,即用该点的函数值f(x',y',z')来近似该小块上的积分。
(3)求和:将所有小块的积分值相加,得到粗略的积分值。
(4)取极限:将小块的尺寸逐渐缩小,使得粗略的积分值逐渐接近精确的积分值。
4.三重积分的几何意义:三重积分可以理解为空间物体的质量,即空间物体占据空间区域,在点(x,y,z)处的体密度为f(x,y,z),整个空间物体的总质量就是将f(x,y,z)累积遍整个空间区域。
5.三重积分的性质:三重积分具有与一元定积分相同的性质,例如可加性、可移性、可换序性等。
同时,三重积分也具有与二重积分不同的性质,例如三重积分可以通过“分割、近似、求和、取极限”的过程得到精确的积分值,而二重积分则不能。
6.三重积分的实际应用:三重积分在许多实际应用领域有着广泛的应用,例如物理学中的质量分布、电荷分布、能量分布等问题,工程学中的体积计算、质量平衡等问题,以及统计学中的数据分布等问题。
通过三重积分,我们可以更好地理解和解决这些问题。
三重积分的计算公式

三重积分的计算公式三重积分是数学分析中的一个重要概念,在许多领域都有着广泛的应用。
要理解三重积分的计算公式,咱们得先从它的定义和基本思想说起。
想象一下,咱们有一个三维空间中的立体区域,就像一个形状不规则的大果冻。
现在咱们要计算这个“果冻”的某种属性,比如说质量。
如果这个“果冻”的密度在每一点都不一样,那该怎么算它的总质量呢?这时候三重积分就派上用场啦。
三重积分的计算公式可以表示为:∭Ω f(x,y,z)dV ,其中Ω表示积分区域,f(x,y,z) 是被积函数,dV 表示体积元素。
那这个体积元素 dV 是啥呢?其实就是 dx dy dz 。
简单来说,就是把这个立体区域划分成无数个非常小的小立方体,每个小立方体的体积就是 dV 。
比如说,有一个简单的例子。
假设我们有一个长方体形状的区域,它的长、宽、高分别是 a、b、c 。
被积函数 f(x,y,z) = 1 ,也就是这个区域的密度处处都是 1 。
那计算这个区域的体积,其实就是对 1 进行三重积分。
先对 z 积分,积分限是从 0 到 c ;再对 y 积分,积分限是从 0 到 b ;最后对 x 积分,积分限是从 0 到 a 。
计算过程就是:∫(从 0 到 a)dx ∫(从 0 到 b)dy ∫(从 0 到 c)dz 。
一步步算下来,最终的结果就是 abc ,这正好就是长方体的体积。
但实际问题中,积分区域可没这么简单,可能是个球体、锥体,或者是更复杂的形状。
这时候就需要根据具体的情况来确定积分限。
我记得之前给学生讲这部分内容的时候,有个学生怎么都理解不了积分限的确定。
我就拿了一个魔方当作例子,把魔方的每一小块看作一个小立方体,然后根据魔方的形状和位置,给他解释怎么确定积分的范围。
最后他终于恍然大悟,那种成就感真是让人开心。
再来说说三重积分的计算方法,常见的有直角坐标法、柱坐标法和球坐标法。
直角坐标法就是咱们上面说的那种,直接按照 x、y、z 的顺序来积分。
三重积分的概念计算及应用

三重积分的概念计算及应用三重积分是微积分中的一个重要概念,它可以用于描述空间中的曲面、体积和质量等问题,是积分学在三维空间中的推广与应用。
本文将从三重积分的概念、计算和应用三个方面进行阐述。
首先,我们来了解一下三重积分的概念。
三重积分是对三维空间中其中一区域内函数的积分,可以表示为∭f(x,y,z)dxdydz。
其中,f(x,y,z)表示被积函数,dxdydz表示微元体,即数学上用来描述三维空间中其中一点的微小体积。
三重积分的结果是一个实数,表示被积函数在该区域内的总体积。
对于三重积分的计算,可以分为直角坐标系和柱坐标系、球坐标系两种情况。
在直角坐标系中,我们将积分区域划分成小立方体,并将其分别对x、y、z轴进行积分,求和即可得到积分结果。
在柱坐标系和球坐标系中,可以利用坐标变换与雅可比行列式的知识简化计算,因为在这两种坐标系下,微元体的体积表示形式比直角坐标系更简洁。
接下来,我们来看一下三重积分的一些应用。
首先是体积计算。
通过将其中一区域的体积表示为三重积分的形式,并选择适当的坐标系进行计算,可以得到该区域的体积大小。
这在几何学、物理学、工程学等领域中有着广泛的应用。
其次是质量计算。
当被积函数表示为密度函数时,三重积分可以用来计算物体的质量。
例如,在物理学中,可以用三重积分来计算不规则物体的质量。
此外,三重积分还可以用来计算物体的质心、转动惯量等物理量。
最后是曲面积分的计算。
通过将曲面积分转化为三重积分形式,可以计算曲面的面积或质量分布等问题。
总之,三重积分是微积分中的一个重要概念,通过对三维空间中其中一区域内函数的积分,可以描述空间中的曲面、体积和质量等问题。
在计算三重积分时,可以根据具体情况选择不同的坐标系进行计算,以简化计算过程。
三重积分在几何学、物理学、工程学等领域中具有广泛的应用,可以用来计算体积、质量、质心等物理量,并解决一些曲面积分的问题。
通过深入理解三重积分的概念、计算和应用,可以帮助我们更好地理解三维空间中的问题,推动科学研究的发展。
数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。
三重积分的积分应用和物理意义

三重积分的积分应用和物理意义三重积分,也称为三重积分,是数学中的一个重要概念。
它不仅被广泛应用于科学和技术领域,还具有丰富的物理意义。
本文将介绍三重积分的基本概念、计算方法和应用,以及它在物理领域中的应用和意义。
一、三重积分的基本概念三重积分是对三维空间内的函数进行积分,它是二重积分的拓展。
用数学符号表示为:∬∬∬f(x,y,z)dxdydz其中,f(x,y,z)表示函数,x、y、z表示变量,dxdydz表示积分元素。
三重积分的计算方法有直接计算法、截面积分法和坐标变换法等。
其中,直接计算法是将积分范围划分为若干个小块,对每个小块进行积分,最后将所有小块的积分结果相加得到最终结果。
截面积分法则是将三重积分转化为二重积分,先在某一平面上进行积分,再将积分结果利用重积分的方式积分到该平面所在位置的立方体内。
坐标变换法则是将三重积分转化为坐标系中体积元素的积分,通过坐标变换将三重积分转化为三个二重积分,从而通过二重积分求解三重积分的结果。
二、三重积分的应用三重积分在科学和技术领域具有广泛的应用,其主要应用领域包括:1. 空间曲线积分和面积积分空间曲线积分和面积积分是三重积分的应用之一。
通过计算空间曲线和面积所包围的体积,可以求解空间曲线连续变化和空间面积的跨度,从而推导出空间运动的方程和导出空间中物体的运动规律。
2. 三维图形的物理性质计算三重积分可以用于计算三维图形的物理性质,例如质心、转动惯量、体积和密度等。
通过积分计算,可以得到物体的重心位置、物体绕轴旋转的惯性、物体的体积和物体的密度等物理性质。
3. 电场和电势的计算三重积分可以用于计算空间中的电势和电场强度。
通过积分计算电荷分布与距离的关系,可以推导出电场的方向和强度,同时计算空间中的电势场,从而得出电势的大小和分布规律。
三、三重积分的物理意义三重积分在物理领域中具有重要的意义。
它可以用于描述和计算物体的形状、密度、质量和重心等物理性质,在研究物理学中起到重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2. 三重积分的计算 z
三重积分化为三次积分的过程: 三重积分化为三次积分的过程:
(1) Ω向 xoy 面上投影,得到 D。 面上投影, (2) D向 x 轴投影,得到 轴投影, a ≤ x ≤ b, D: y1( x) ≤ y ≤ y2( x).
z2 z1
∫c
∫x1( y) ∫z1( x, y)
§2. 三重积分的计算
(1) Ω向 yoz 面上投影,得到Dyz。 面上投影, (2) Dyz向 y 轴投影,得到 轴投影,
z1( y) ≤ z ≤ z1( y), D: a ≤ y ≤ b.
x
x2
x1 Ω
(3) 过点( y, z) ∈ Dyz 作直线,
z
1
过点( x, y) ∈ D 作平行与z 轴 的直线, 得到
x
1
o D
1 2
y
0 ≤ z ≤ 1 − x − 2 y.
于是, 于是,
Yunnan University
∫∫∫ x dxdydz = ∫0 dx∫0
1
Ω
1− x 1− x−2 y 2 dy xdz
∫0
§2. 三重积分的计算
过点( x, y) ∈ D 作平行与 z 轴的直线, 得到
Ω
b
y2 ( x)
z2 ( x, y)
f ( x, y, z)dz.
注意
(1) 平行于 z 轴且穿过闭区域Ω内部的直线与闭 区域 Ω 的边界曲面 S 相交不多于两点情形. 相交不多于两点情形.
(2) 若平行于z 轴且穿过闭区域Ω内部的直线与 相交多于两点时, 闭区域Ω 的边界曲面 S 相交多于两点时,把 . Ω分若干个小区域来讨论
一、 §2. 三重积分的计算 三重积分的概念
设有一物体,在直角坐标系中 占有一个有界闭区域 设有一物体 在直角坐标系中,占有一个有界闭区域 在直角坐标系中 占有一个有界闭区域V, 在点(x,y,z)处的密度为 处的密度为ρ(x,y,z).这里的 这里的ρ(x,y,z)>0 在点 处的密度为 这里的 且在V上连续 现在要计算该物体的质量 且在 上连续,现在要计算该物体的质量 上连续 现在要计算该物体的质量. 由于ρ(x,y,z)在V上连续 把V任意分为 个小块 只要 在 上连续 上连续,把 任意分为 个小块,只要 任意分为n个小块 由于 小块所占的闭区域 Vk的直径很小 这小块就可以看作 的直径很小,这小块就可以看作 是均匀体,在 上任取一点(ξ 是均匀体 在Vk上任取一点 k,ηk,ζk),设Vk 的体积为△Vk 设 可看作第k个小块 则 ρ (ξk,ηk,ζk) △Vk (k=1,2,....n) 可看作第 个小块 的质量之近似值,通过求和 取极限 的质量之近似值 通过求和,取极限 便得到质量 通过求和 取极限,便得到质量
得到 x1( y, z) ≤ x ≤ x2( y, z).
a o
b
( y, z)
D
z
事实上, 事实上,
y x1( y, z) ≤ x ≤ x1( y, z), Ω: a ≤ y ≤ b, z ( y) ≤ z ≤ z ( y). 1 2
b z2 ( y) x2 ( y,z )
Ω Yunnan University
D : y1( x) ≤ y ≤ y2( x),
b
a ≤ x ≤ b,
y2 ( x) z2 ( x, y)
得
∫∫∫ f ( x, y, z)dv = ∫a dx∫y1( x) dy∫z1( x, y)
Yunnan University
f ( x, y, z)dz.
Ω
§2. 三重积分的计算
∫∫∫ f ( x, y, z)dv = ∫a dx∫y1( x) dy∫z1( x, y)
m = lim
Yunnan University
||T || →0
∑ ρ (ξ
k =1
n
k
,η k , ς k )∆Vk
§2. 三重积分的计算 一、 三重积分的概念 这里||T||=max{d(V1), 2),…,d(Vn)}.为了使这 ),d(V 这里 为了使这 种和式的极限能得到广泛的应用,抛开其物理意义 种和式的极限能得到广泛的应用 抛开其物理意义, 抛开其物理意义 抽象出数学形式,于是得到三重积分的一般定义 抽象出数学形式 于是得到三重积分的一般定义. 于是得到三重积分的一般定义
∫∫∫ f ( x, y, z)dv = ∫a dy∫z1( y) dz∫x1( y,z)
f ( x, y, z)dx.
§2. 三重积分的计算
例 1 计算三重积分 ∫∫∫ xdxdydz,其中 Ω为三个坐标 所围成的闭区域 面及平面 x + 2 y + z = 1所围成的闭区域.
解
Ω
面上投影, Ω向 xoy 面上投影,得到 D。 0 ≤ x ≤ 1, D: 0 ≤ y ≤ 1− x . 2
2− x2
Yunnan University
§2. 三重积分的计算
例 3 计算三重积分 ∫∫∫ z dxdydz 。
Ω
其中 Ω:平面 x = 1, x = 2, y = x, z = 0,及
2z = y 所围成的闭区域. 所围成的闭区域.
z
1 2
o
D
y
x
Yunnan University
§2. 三重积分的计算
z
1
解
面上投影, Ω向 xoy 面上投影,得到 D。
1 ≤ x ≤ 2, D: 0 ≤ y ≤ x.
2
o
D
y
x
, 过点( x, y) ∈ D 作平行与z 轴的直线 得到
1 ≤ x ≤ 2, y 0≤ z ≤ . 即 Ω : 0 ≤ y ≤ x, 2 0 ≤ z ≤ y 2. 2 x y 2 于是, 于是, ∫∫∫ z dxdydz = ∫ dx∫ dy∫ zdz
= ∫0 ( x − x ) y − xy
2
[
]
0
1
1 1( x − 2x2 + x3 )dx dx = 4 ∫0
1 x − 2 x3 + 1 x4 = 1 . = 4 2 3 4 0 48
Yunnan University
§2. 三重积分的计算
为三次积分, 例 2 化三重积分 I = ∫∫∫ f ( x, y, z)dxdydz为三次积分,
是空间闭区域V上的有界函数 定义: 设f(x,y,z)是空间闭区域 上的有界函数 把 是空间闭区域 上的有界函数,把 V任意分成 个小区域 V1, V2,... Vn 其中 k 任意分成n个小区域 其中V 任意分成 表示第k个小区域 其体积为 表示第 个小区域,其体积为△Vk 。在每个小区域 个小区域 Vk上任取一点(ξk,ηk,ζk) ,作和 上任取一点 作和
Ω
其中积分区域 Ω为由曲面 z = x2 + 2y2 及
z = x2 + 2 y2 解 由 , 2 z = 2− x
z = 2 − x2 所围成的闭区域. 所围成的闭区域.
2 2 得交线投影区域 x + y ≤ 1,
−1 ≤ x ≤ 1 2 2 故 Ω: − 1 − x ≤ y ≤ 1 − x , 2 x + 2 y2 ≤ z ≤ 2 − x2 Yunnan
∫∫∫ f ( x, y, z )dV = lim ∑ f (ξ
V ||T || → 0 k =1 =1
n
k
,η k , ς k )∆Vk
(1)
其中dV叫做体积元素 在直角坐标系中 其中 叫做体积元素,在直角坐标系中 体积元素 叫做体积元素 在直角坐标系中,体积元素 dV也记 也记dxdydz称为直角坐标系中的体积元素 从而 称为直角坐标系中的体积元素,从而 也记 称为直角坐标系中的体积元素 三重积分也记作
University
§2. 三重积分的计算
−1 ≤ x ≤ 1 故 Ω: − 1 − x2 ≤ y ≤ 1 − x2 , 2 2 2 x + 2y ≤ z ≤ 2 − x
因此, 因此,I = ∫−1dx∫−
1 1− x2 1− x2
dy∫x2 +2 y2 f ( x, y, z)dz.
z = z2( x, y) z2S2
z1 S1 z = z1( x, y)
Ω
, 过点( x, y) ∈ D 作直线
a
b
o
D
y
穿入, 穿出. 从 z1 穿入,从 z2 穿出. x
Yunnan University
y = y1( x)
( x, y) y = y2( x)
§2. 三重积分的计算
看作定值, 的函数, 先将 x, y 看作定值,将 f ( x, y, z)只看作 z 的函数,则
1 1
(1) Ω向 xoy 面上投影,得到 D。 面上投影, (2) D向 y 轴投影,得到 轴投影, x1( y) ≤ x ≤ x1( y), D: c ≤ y ≤ d.
§2. 三重积分的计算z
z2 z1
Ω
c
d
(3) 过点( x, y) ∈ D 作直线 ,
得到 z1( x, y) ≤ z ≤ z2( x, y).
Ω
a
o
( x, y)
D
y
(3) 过点( x, y) ∈ D 作直线 ,
b
Yunnan Ω University
得到 z1( x, y) ≤ z ≤ z2( x, y). x a ≤ x ≤ b, 事实上, 事实上, Ω : y1( x) ≤ y ≤ y2( x), z ( x, y) ≤ z ≤ z ( x, y). 1 2 b y ( x) z ( x, y) f ( x, y, z)dv = ∫ dx∫ 2 dy∫ 2 f ( x, y, z)dz. ∫∫∫ a y ( x) z ( x, y)