浅谈陀螺仪.

合集下载

陀螺仪原理1基本特性

陀螺仪原理1基本特性

陀螺仪原理1基本特性陀螺仪是一种测量和操控物体旋转姿态和角速度的仪器。

它的原理基于陀螺的力矩和角动量守恒。

陀螺仪主要由陀螺和测量装置组成,其中陀螺是陀螺仪的核心部件,而测量装置用于测量陀螺的角速度和姿态。

陀螺的基本特性如下:1.稳定性:陀螺具有很高的稳定性,不受外力的干扰。

这是因为陀螺在转动过程中,会生成一个力矩,使得它的旋转轴保持不变。

这种稳定性使得陀螺仪能够准确地测量物体的旋转姿态和角速度。

2.精度:陀螺仪具有很高的精度,能够测量微小的角度变化和角速度。

3.抗干扰性:陀螺仪具有很强的抗干扰能力,可以排除外界的振动和加速度干扰。

这是通过使用惯性测量装置和滤波算法来实现的。

4.快速响应:陀螺仪能够快速地响应外界的变化,准确地反映物体的旋转姿态和角速度变化。

陀螺仪的工作原理如下:1.陀螺力矩:当陀螺旋转时,其转动轴总是保持不变。

这是因为旋转产生了一个力矩,使得陀螺的旋转轴始终与外界力矩的方向相同。

这个力矩称为陀螺力矩,它使得陀螺能够保持稳定的旋转。

2.角动量守恒:根据角动量守恒定律,陀螺的角动量大小和方向在没有外力作用下保持不变。

这意味着陀螺的旋转轴在转动过程中保持不变。

3.测量装置:测量装置通过测量陀螺的角速度和姿态来获取物体的旋转信息。

常见的测量装置包括陀螺仪芯片、加速度计、磁力计等。

这些装置能够感知陀螺的角速度和加速度,并通过信号处理和滤波算法将其转化为测量结果。

陀螺仪在许多领域都有广泛的应用,包括航空航天、导航、汽车行驶控制、无人机、手机电子稳定器等。

它的基本特性和工作原理使得其成为一种重要的测量和控制工具,可以提高系统的稳定性和精度。

随着技术的不断发展,陀螺仪的性能和应用范围还将进一步扩大。

陀螺仪的物理原理及应用

陀螺仪的物理原理及应用

陀螺仪的物理原理及应用一、物理原理陀螺仪是一种测量和感知角速度的装置,其基本原理是利用物体自转的力学原理来测量角速度和方向。

陀螺仪通常由旋转部件和感应部件组成。

1. 旋转部件陀螺仪的旋转部件一般由陀螺轮组成,陀螺轮由一个或多个质量均匀分布的旋转体组成。

陀螺轮通常高速旋转,其角动量保持不变。

2. 感应部件陀螺仪的感应部件主要是用来感测陀螺轮旋转所产生的力或力矩。

一般情况下,陀螺仪使用光电探测器或电容传感器来测量旋转部件的运动状态。

二、应用领域陀螺仪的应用非常广泛,主要用于以下几个领域:1. 导航和定位陀螺仪可以用于惯性导航系统,通过测量陀螺仪的角速度和方向,来计算物体的运动轨迹和定位信息。

在航空、航海、导弹制导等领域,陀螺仪被广泛应用于提供准确的导航和定位服务。

2. 汽车稳定性控制陀螺仪可以用于汽车稳定性控制系统,通过监测车辆的姿态和转弯角度,来实现车辆的稳定性控制。

陀螺仪可以帮助车辆保持良好的操控性能,提高行驶安全性。

3. 航空航天领域陀螺仪在航空航天领域中起着至关重要的作用。

它可以用于飞行器的姿态控制、空间姿态控制、卫星定位、火箭姿态控制等多个方面,为航天器提供精确的定位和控制能力。

4. 无人机行为控制陀螺仪也可以被应用于无人机行为控制系统中。

通过测量无人机的角速度和方向,陀螺仪可以帮助无人机实现稳定的飞行和精确的操控,提高无人机的性能和使用价值。

三、总结陀螺仪是一种利用物体自转原理来测量角速度和方向的装置。

它通过旋转部件和感应部件相互配合,实现对角速度的测量。

陀螺仪在导航、定位、稳定性控制、航空航天和无人机等领域都有广泛的应用。

随着技术的不断进步,陀螺仪的性能和精度也不断提高,为各个领域提供更精确和可靠的测量和控制能力。

陀螺仪的原理与应用

陀螺仪的原理与应用

陀螺仪的原理与应用一、陀螺仪的原理陀螺仪是一种用来测量和维持方向的装置,它基于物体在旋转时的角动量守恒原理。

陀螺仪主要由旋转部分和感知部分组成。

1. 旋转部分旋转部分是陀螺仪的核心组件,它通常由一个旋转的转子或转盘构成。

转子在无外力作用下能够保持自身的转动状态,而不会发生偏转。

这是因为转子的转动产生了角动量,当没有外力作用时,角动量守恒,因此转子会一直保持转动。

2. 感知部分感知部分包括一个或多个传感器,用于检测转子的转动情况。

最常用的传感器是微电子加速计和陀螺传感器。

微电子加速计可以感知转子的加速度变化,而陀螺传感器则可以感知转子的角速度变化。

二、陀螺仪的应用陀螺仪的原理和特性使其在多个领域得到广泛应用。

1. 航空航天在航空航天领域,陀螺仪被广泛用于飞行器的姿态控制和导航系统。

通过测量飞行器的姿态变化,陀螺仪可以提供准确的飞行器姿态信息,从而实现稳定飞行和精确导航。

2. 惯导系统陀螺仪在惯性导航系统中起着关键作用。

惯导系统利用陀螺仪测量飞行器的加速度和角速度,从而计算出飞行器的位置、速度和姿态信息。

这些信息对于飞行器的导航、制导和控制非常重要。

3. 智能手机现代智能手机中通常都搭载有陀螺仪。

陀螺仪可以通过感知手机的旋转和倾斜运动,从而实现屏幕自动旋转和姿态感知功能。

这使得用户可以在使用手机时获得更好的操作体验。

4. 无人车陀螺仪在无人车领域也有着重要的应用。

无人车需要准确测量车辆的姿态和运动信息,以保证安全和稳定的行驶。

陀螺仪可以提供车辆的姿态和角速度信息,从而实现精确的导航和控制。

5. 船舶在航海领域,陀螺仪被广泛用于舰船的导航和航向控制。

由于船舶在海上行驶时容易受到波浪和风力的影响,因此需要准确的航向信息来实现航行的稳定和精确。

三、总结陀螺仪是一种基于角动量守恒原理的装置,通过感知转子的角速度变化,从而提供准确的姿态和运动信息。

陀螺仪在航空航天、惯导系统、智能手机、无人车和航海等领域都有着重要的应用。

陀螺仪平衡原理

陀螺仪平衡原理

陀螺仪平衡原理陀螺仪是一种常见的惯性导航仪器,它通过测量和维持旋转的稳定性来实现导航和定位。

陀螺仪的平衡原理是其正常工作的基础,下面我们来详细介绍一下陀螺仪平衡原理。

首先,陀螺仪平衡原理的核心是要保持陀螺仪转子的旋转稳定。

陀螺仪转子通常是高速旋转的,而且要在运动中保持稳定,这就需要对转子进行平衡处理。

通常采用动平衡和静平衡的方法来实现陀螺仪的平衡。

动平衡是指在陀螺仪转子旋转时,通过在转子上加质量块或者调整质量分布的方式,使得转子在高速旋转时不产生不平衡力矩,从而保持稳定。

动平衡的关键是找到不平衡的位置,并在这些位置上进行平衡处理,通常需要借助专业的动平衡设备和技术来实现。

静平衡则是指在陀螺仪转子停止旋转时,通过调整转子的重心位置,使得转子在停止状态下不产生不平衡力矩。

静平衡通常通过在转子上加质量块或者调整质量分布的方式来实现,关键是找到转子的重心位置,并进行相应的平衡处理。

除了动平衡和静平衡外,还有一些其他的平衡方法,比如动静平衡结合、软平衡等,这些方法都是为了保持陀螺仪转子的稳定性,从而确保陀螺仪的正常工作。

在实际应用中,陀螺仪的平衡原理不仅仅局限于转子的平衡,还包括整个陀螺仪系统的平衡。

比如陀螺仪的支撑结构、外壳等部件都需要进行平衡处理,以确保整个陀螺仪系统的稳定性。

总的来说,陀螺仪平衡原理是保持陀螺仪转子和整个系统稳定的基础,通过动平衡、静平衡等方法来实现。

只有保持良好的平衡状态,陀螺仪才能正常工作,发挥其导航和定位的作用。

因此,在设计、制造和使用陀螺仪时,都需要严格遵循平衡原理,确保陀螺仪的稳定性和可靠性。

陀螺仪的工作原理

陀螺仪的工作原理

陀螺仪的工作原理
陀螺仪是一种用来测量和维持方向的仪器,它在航空、航天、导航、船舶和车
辆等领域中都有着重要的应用。

那么,陀螺仪是如何工作的呢?本文将为您详细介绍陀螺仪的工作原理。

陀螺仪的工作原理主要基于刚体的角动量守恒定律。

当陀螺仪处于旋转状态时,它的转动轴会保持在一个固定的方向上,这就是陀螺仪的工作原理之一。

在陀螺仪内部,通常会有一个转子,当转子开始旋转时,由于角动量守恒定律的作用,转子的旋转轴将保持在一个固定的方向上,这就形成了陀螺仪的稳定性。

另外,陀螺仪还可以利用地球自转的惯性来进行导航。

地球自转会产生科里奥
利力,这种力会使陀螺仪的转子产生一个额外的进动力,从而使得陀螺仪的转子轴保持在一个固定的方向上。

利用这种原理,陀螺仪可以用来测量地球的自转速度和方向,进而实现导航的功能。

除此之外,陀螺仪还可以通过测量转子的进动角速度来确定自身的旋转角速度,从而实现姿态控制和稳定功能。

通过测量陀螺仪的输出信号,可以得到飞行器、船舶或车辆的旋转角速度,进而实现对其进行控制和稳定。

总的来说,陀螺仪的工作原理主要基于刚体的角动量守恒定律和地球自转的惯性。

通过利用这些原理,陀螺仪可以实现测量方向、导航、姿态控制和稳定等功能,为各种领域的应用提供了重要的技术支持。

希望本文能够帮助您更好地理解陀螺仪的工作原理,如果您有任何疑问或者需
要进一步了解,欢迎随时与我们联系。

谢谢阅读!。

陀螺仪原理

陀螺仪原理

陀螺仪原理
陀螺仪是一种利用陀螺效应来测量和维持方向的仪器。

它的原理基于物体的角
动量守恒定律,通过旋转的陀螺来感知方向的变化。

陀螺仪的原理在航空航天、导航系统、惯性导航等领域有着广泛的应用。

首先,我们来了解一下陀螺效应。

当一个陀螺体在外力作用下发生偏转时,它
会产生一个与偏转方向垂直的陀螺力,这就是陀螺效应。

这个效应是由于陀螺体旋转时角动量守恒的结果,使得陀螺体在偏转时保持一定的方向,这就是陀螺仪原理的基础。

其次,陀螺仪的工作原理是通过测量陀螺体的角速度来确定方向。

当外部力使
得陀螺体发生偏转时,陀螺仪会感知到这个偏转,并通过测量陀螺体的角速度来确定偏转的方向和大小。

这样就可以实现对方向的测量和维持,使得陀螺仪可以在航空航天、导航系统等领域发挥重要作用。

陀螺仪的原理还可以通过惯性导航系统来加以应用。

惯性导航系统是一种利用
陀螺仪和加速度计来测量和维持方向的导航系统。

通过测量陀螺仪和加速度计的数据,可以确定物体的位置和方向,从而实现导航和定位的功能。

总的来说,陀螺仪的原理是基于陀螺效应和角动量守恒定律,通过测量陀螺体
的角速度来确定方向。

它在航空航天、导航系统、惯性导航等领域有着广泛的应用,可以实现对方向的测量和维持,是一种非常重要的仪器和技术。

陀螺仪工作原理

陀螺仪工作原理

陀螺仪工作原理陀螺仪是一种能够测量和感知物体的角速度的设备。

它的工作原理基于角动量守恒定律和陀螺效应。

角动量守恒定律是指在没有外力作用的情况下,物体的角动量保持不变。

角动量是物体的转动惯量乘以角速度,通常用符号L表示。

当物体发生转动时,其角动量也随之变化。

陀螺仪利用了这一原理来测量物体的转动角速度。

陀螺效应是指一个旋转体的转轴在空间中的变化现象。

当一个旋转体的转轴发生变化时,由于角动量守恒定律的作用,转轴变化的结果会导致旋转体的转动方向发生改变。

陀螺仪利用陀螺效应来感知物体的角速度。

陀螺仪通常由一个或多个陀螺装置组成。

陀螺装置由一个旋转的陀螺和一个支撑陀螺的结构组成。

当陀螺装置受到外力或角速度的作用时,陀螺会发生偏离,此时陀螺的转轴方向就会发生变化。

陀螺仪通过检测这一转轴变化来测量物体的角速度。

陀螺仪的工作原理可以通过以下步骤来解释:1. 初始状态下,陀螺的转轴与某一确定的轴向保持一致,此时陀螺仪处于正常工作状态。

2. 当陀螺仪受到外部力矩或角速度的作用时,陀螺就会由于角动量守恒定律的作用发生偏离,转轴的方向发生改变。

3. 陀螺仪通过传感器来检测转轴的变化,并将这一信息转化为电信号。

4. 电信号经过放大和滤波等处理后,被发送到控制系统或其他设备进行进一步的处理和分析。

陀螺仪广泛应用于导航、航空、航天、自动化控制等领域。

在导航方面,陀螺仪常用于惯性导航系统,用来测量飞行器的角速度和角度,从而实现精确的导航和姿态控制。

在航空和航天领域,陀螺仪则被用于飞行器的姿态稳定和导航系统的精确控制。

在自动化控制领域,陀螺仪可以用来测量物体的转动角速度,从而实现精确的运动控制。

总结起来,陀螺仪的工作原理基于角动量守恒定律和陀螺效应。

通过测量转轴的变化,陀螺仪可以准确地测量物体的角速度和角度,从而在导航、航空、航天、自动化控制等领域中发挥重要作用。

陀螺仪的原理

陀螺仪的原理

陀螺仪的原理
陀螺仪的原理是基于角动量守恒定律。

角动量是描述物体转动状态的物理量,守恒定律指的是在没有外力作用下,角动量总是保持不变的。

陀螺仪通常由旋转的转子和支撑结构组成。

转子通过电机驱动高速旋转,在转子中心产生一个很大的角动量。

支撑结构将转子固定在一个特定的方向上,使其成为一个转动的轴。

当陀螺仪发生转动时,由于角动量守恒定律的作用,任何试图改变其方向的外力都会受到抵抗。

这意味着转子会保持在一个固定的方向上旋转,而不会被其他力干扰。

通过测量陀螺仪转动轴相对于参考方向的角度变化,我们可以获得物体的转动状态。

这种测量方法被广泛应用于惯性导航系统、飞行器姿态控制、自动驾驶车辆和虚拟现实等领域。

值得注意的是,陀螺仪仅可以测量物体的角速度(转动速度),而无法直接测量物体的角度。

为了获取物体的角度信息,通常需要进行积分运算,将角速度转换为角度。

然而,由于误差的累积,陀螺仪在长时间使用中可能会出现漂移现象,因此需要配合其他传感器进行校正和补偿,以提高测量的精度和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程:学号:姓名:浅谈陀螺仪摘要:首先介绍陀螺仪的发展历史、结构及其工作原理等,然后介绍不同种类的陀螺仪, 最后介绍陀螺仪在各种领域的应用。

关键词:陀螺仪;简介;分类;应用无论是大至航空器械, 还是小至智能手机, 当利用它们来导航定位时, 都少不了一种器件——陀螺仪。

陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。

利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。

1. 陀螺仪简介绕一个支点高速转动的刚体称为陀螺 (top。

通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。

与苍蝇退化的后翅(平衡棒原理类似。

在一定的初始条件和一定的外在力矩作用下, 陀螺会在不停自转的同时,环绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进 (precession,又称为回转效应 (gyroscopic effect。

陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例 [1]。

人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪 (gyroscope, 它在科学、技术、军事等各个领域有着广泛的应用。

比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动等。

陀螺仪的种类很多, 按用途来分, 它可以分为传感陀螺仪和指示陀螺仪。

传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。

指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。

结构基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子, 转子装在一支架内;在通过转子中心轴 XX1上加一内环架,那么陀螺仪就可环绕平面两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕平面 [2]三轴作自由运动,就是一个完整的太空陀螺仪 (space gyro。

历史1850年法国的物理学家莱昂·傅科(J.Foucault 为了研究地球自转,首先发现高速转动中地的转子 (rotor , 由于它具有惯性, 它的旋转轴永远指向一固定方向, 他用希腊字 gyro (旋转和 skopein (看两字合为 gyro scopei 一字来命名这种仪表。

陀螺仪是一种既古老而又很有生命力的仪器, 从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现在, 陀螺仪仍在吸引着人们对它进行研究, 这是由于它本身具有的特性所决定的。

陀螺仪最主要的基本特性是它的稳定性和进动性。

人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直, 这就反映了陀螺的稳定性。

研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支, 它以物体的惯性为基础, 研究旋转物体的动力学特性。

原理陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。

人们根据这个道理,用它来保持方向, 制造出来的东西就叫做陀螺仪。

陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。

然后用多种方法读取轴所指示的方向, 并自动将数据信号传给控制系统。

在现实生活中, 陀螺仪发生的进给运动是在重力力矩的作用下发生的。

特性 [3]陀螺仪被广泛用于航空、航天和航海领域。

这是由于它的两个基本特性:一为定轴性 (inertia or rigidity , 另一是进动性 (precession , 这两种特性都是建立在角动量守恒的原则下。

定轴性当陀螺转子以高速旋转时, 在没有任何外力矩作用在陀螺仪上时, 陀螺仪的自转轴在惯性空间中的指向保持稳定不变, 即指向一个固定的方向; 同时反抗任何改变转子轴向的力量。

这种物理现象称为陀螺仪的定轴性或稳定性。

其稳定性随以下的物理量而改变:1. 转子的转动惯量愈大,稳定性愈好;2. 转子角速度愈大,稳定性愈好。

进动性当转子高速旋转时, 若外力矩作用于外环轴, 陀螺仪将绕内环轴转动; 若外力矩作用于内环轴,陀螺仪将绕外环轴转动。

其转动角速度方向与外力矩作用方向互相垂直。

这种特性,叫做陀螺仪的进动性。

进动角速度的方向取决于动量矩 H 的方向(与转子自转角速度矢量的方向一致和外力矩 M 的方向,而且是自转角速度矢量以最短的路径追赶外力矩。

2. 陀螺仪功能分类光纤陀螺仪【 4】光纤陀螺仪属于第四代陀螺仪———光学陀螺仪的一种, 其基本工作原理基于萨格纳效应, 即在同一闭合光路中从同一光源发出两束特征相同的光, 沿相反的方向进行传播, 汇合到同一探测点, 产生干涉。

若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度, 则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。

通过光程差与相应的相位差的关系, 可通过检测相位差, 计算角速度。

它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。

与传统的机械陀螺仪相比,具有无运动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。

与另一种光学陀螺仪———环形激光陀螺仪相比, 光纤陀螺仪不需要光学镜的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。

双轴速率陀螺仪 [5]双轴速率陀螺仪是一种新型的采用空间惯性导向技术的连续测量系统。

它通过测量地球的旋转速率、重立场和传感器的工作状态来计算井眼的位置。

根据井斜角的不同 , 该系统可在两种方式下工作 , 即陀螺罗盘测量技术和连续测量模式。

陀螺罗盘测量技术是用来测量接近垂直井段井眼位置的 , 是通过静止地测量重力场和地球转速的分量来确定井斜角和方位角的 , 连续测量模式是用来测量大斜度井段井眼方向的 , 它通过在运动中测量井斜角和方位角的变化率确定井斜角和方位角。

三轴陀螺仪 [6]为了实现单片集成六自由度微惯性测量单元,提出了一种改进的由 4个大质量块和 4个小质量块组合而成的四方全对称结构的三轴陀螺仪。

该惯性测量元件的结构及工作原理, 根据结构参数计算出了详细的性能指标, 并进行了面内驱动模态和面内外的敏感模态仿真。

通过分析热弹性阻尼能量耗散机理, 对驱动及敏感谐振模态的品质因数进行仿真。

最后, 基于表面加工和体加工工艺, 设计了高深宽比的加工流程。

对该四方对称解耦结构的设计和仿真表明其模态匹配和品质因数性能满足三轴陀螺的设计要求。

激光陀螺仪激光陀螺仪的原理是利用光程差来测量旋转角速度(Sagnac 效应。

在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉, 利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。

MEMS 陀螺仪 [7]基于 MEMS 的陀螺仪价格相比光纤或者激光陀螺便宜很多,但使用精度非常低,需要使用参考传感器进行补偿,以提高使用精度, ADI 公司是低成本的 MEMS 陀螺仪的主要制造商, VMSENS 提供的 AHRS 系统正是通过这种方式, 对低成本的MEMS 陀螺仪进行辅助补偿实现的。

基于 MEMS 技术的陀螺因其成本低,能批量生产,已经能够广泛应用于汽车牵引控制系统、医用设备、军事设备等低成本需求应用中。

3. 陀螺仪的应用陀螺仪器最早是用于航海导航, 但随着科学技术的发展, 它在航空和航天事业中也得到广泛的应用。

陀螺仪器不仅可以作为指示仪表, 而更重要的是它可以作为自动控制系统中的一个敏感元件, 即可作为信号传感器。

根据需要, 陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号, 以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行, 而在导弹、卫星运载器或空间探测火箭等航行体的制导中, 则直接利用这些信号完成航行体的姿态控制和轨道控制。

[8]作为稳定器, 陀螺仪器能使列车在单轨上行驶, 能减小船舶在风浪中的摇摆, 能使安装在飞机或卫星上的照相机相对地面稳定等等。

作为精密测试仪器,陀螺仪器能够为地面设施、矿山隧道、地下铁路、石油钻探以及导弹发射井等提供准确的方位基准。

由此可见, 陀螺仪器的应用范围是相当广泛的, 它在现代化的国防建设和国民经济建设中均占重要的地位。

广泛使用的 MEMS 陀螺 (微机械可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。

并且 MEMS 陀螺相比传统的陀螺有明显的优势:1. 体积小、重量轻。

适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。

2. 低成本。

3. 高可靠性。

内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。

4. 低功耗。

5. 大量程。

适于高转速大 g 值的场合。

6. 易于数字化、智能化。

可数字输出,温度补偿,零位校正等。

隧道中心线测量在隧道等挖掘工程中,坑内的中心线测量一般采用难以保证精度的长距离导线。

特别是进行盾构挖掘(shield tunnel 的情况,从立坑的短基准中心线出发必须有很高的测角精度和移站精度, 测量中还要经常进行地面和地下的对应检查, 以确保测量的精度。

特别是在密集的城市地区, 不可能进行过多的检测作业而遇到困难。

如果使用陀螺经纬仪可以得到绝对高精度的方位基准,而且可减少耗费很高的检测作业(检查点最少 ,是一种效率很高的中心线测量方法。

通视障碍时的方向角获取当有通视障碍,不能从已知点取得方向角时,可以采用天文测量或陀螺经纬仪测量的方法获取方向角(根据建设省测量规范。

与天文测量比较,陀螺经纬仪测量的方法有很多优越性:对天气的依赖少、云的多少无关、无须复杂的天文计算、在现场可以得到任意测线的方向角而容易计算闭合差。

日影计算所需的真北测定在城市或近郊地区对高层建筑有日照或日影条件的高度限制。

在建筑申请时,要附加日影图。

此日影图是指,在冬至的真太阳时的 8点到 16点为基准,进行为了计算、图面绘制所需要的高精度真北方向测定。

使用陀螺经纬仪测量可以获得不受天气、时间影响的真北测量。

4. 陀螺仪在智能手机中的应用 [9]2010年 6月,首款携带三重陀螺仪的智能手机 iPhone4正式发布。

i0s 一直都是手机游戏的最佳平台之一。

在 iPhone 中,我们玩游戏的方式多种多样,虚拟摇杆触控操作、重力感、声控、摄像头等都可以用来控制游戏。

与此同时.支持三重陀螺仪的软件和游戏也在不断增加。

重力感应、陀螺仪等传感器的出现充分增强了玩家的操作体验. 缩短了现实与虚拟世界的距离。

1. 可以和手机上的摄像头配合使用,比如防抖,在拍照时的维持图像的稳定,防止由于手的抖动对拍照质量的影响。

在按下快门时, 记录手的抖动动作, 将手的抖动反馈给图像处理器,可以让手机捕捉到更清晰稳定的画面。

2. 各类游戏的传感器,比如飞行游戏,体育类游戏,甚至包括一些第一视角类射击游戏, 陀螺仪完整监测游戏者手的位移, 从而实现各种游戏操作效果。

相关文档
最新文档