2020版高考数学习题:第八篇 平面解析几何(必修2、选修1-1) 第6节 抛物线

合集下载

高中数学必修二 8 4 1 平面(含答案)

高中数学必修二  8 4 1 平面(含答案)

第八章 立体几何初步8.4.1 平面一、基础巩固1.下列命题的符号语言中,不是公理的是( ) A .a α⊥,b a b α⊥⇒∥ B .P α∈,且P l βαβ∈⇒=,且P l ∈C .∈A l ,B l ∈,且A α∈,B l αα∈⇒⊂D .a b ∥,a c b c ⇒∥∥ 【答案】A 【详解】A 不是公理,在B 中,由公理三知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B 是公理.在C 中,由公理一知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故C 是公理; 在D 中,由平行公理得:平行于同一条直线的两条直线互相平行,故D 是公理; 2.如图所示,用符号语言可表达为( )A .m n A m A n αβα=⊂⊂⊂,,,B .m n A m A n αβα=∈∈∈,,,C .m n m n A αβα=⊂=,,D .m n m n A αβα=∈=,,【答案】C 【详解】结合图形可以得出平面,αβ相交于一条直线m ,直线n 在平面α内,直线,m n 相交于点A ,结合选项可得C 正确;3.如图所示,正方体1111ABCD A B C D -中,,E F 分别为棱1,AB CC 的中点,则在平面11ADD A 内与平面1D EF 平行的直线( )A .不存在B .有1条C .有2条D .有无数条【答案】D 【详解】平面11ADD A 与平面1D EF 有公共点1D ,由公理3知平面11ADD A 与平面1D EF 必有过1D 的交线l , 在平面11ADD A 内与l 平行的直线有无数条, 且它们都不在平面1D EF 内,由线面平行的判定定理可知它们都与平面1D EF 平行. 4.下列说法正确的是( ) A .任意三点确定一个平面 B .梯形一定是平面图形C .平面α和β有不同在一条直线上的三个交点D .一条直线和一个点确定一个平面 【答案】B 【解析】A 选项,不共线的三点确定一个平面,A 错.C 选项,两个平面有公共点,则有一条过该公共点的公共直线,如没有公共点,则两平面平行,C 错.D 选项,一条直线和直线外的一点可以确定一个平面.B 选项,两条平行直线,确定一个平面,梯形中有一组对边平行,故B 对, 5.如图,四棱锥P ABCD -,ACBD O =,M 是PC 的中点,直线AM 交平面PBD 于点N ,则下列结论正确的是( )A .,,,O N P M 四点不共面B . ,,,O N M D 四点共面C . ,,O N M 三点共线D . ,,P N O 三点共线【答案】D 【详解】直线AC 与直线PO 交于点O ,所以平面PCA 与平面PBD 交于点O ,所以必相交于直线PO ,直线AM 在平面PAC 内,点N AM ∈故N ∈面PAC ,故O N P M ,,,四点共面,所以A 错. 点D 若与M,N 共面,则直线BD 在平面PAC 内,与题目矛盾,故B 错.O,M 为中点,所以OM //PA ,ON PA P ⋂=,故ON OM O ⋂=,故C 错.6.下列图形中不一定是平面图形的是( ) A .三角形 B .平行四边形 C .梯形 D .四边相等的四边形【答案】D 【详解】利用公理2可知:三角形、平行四边形、梯形一定是平面图形, 而四边相等的四边形可能是空间四边形不一定是平面图形.7.在空间四边形ABCD 的各边AB BC CD DA 、、、上的依次取点E F G H 、、、,若EH FG 、所在直线相交于点P ,则( )A .点P 必在直线AC 上B .点P 必在直线BD 上C .点P 必在平面DBC 外D .点P 必在平面ABC 内【答案】B 【详解】如图:连接EH 、FG 、BD , ∵EH 、FG 所在直线相交于点P , ∴P ∈EH 且P ∈FG ,∵EH ⊂平面ABD ,FG ⊂平面BCD , ∴P ∈平面ABD ,且P ∈平面BCD , 由∵平面ABD ∩平面BCD =BD , ∴P ∈BD , 故选B .8.平面α上有不共线的三点到平面β的距离相等,则α与β的位置关系为( ) A .平行 B .相交C .平行或相交D .垂直【答案】C 【详解】由题意,若三点分布在平面β的同侧,此时平面//α平面β; 若三点分布于平面β的两侧时,此时平面α与平面β相交, 综上可知,平面α与平面β平行或相交,故选C .9.如图,在正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点1,,A E C 的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )A .B .C .D .【答案】C 【详解】取1DD 中点F ,连接1,AF C F .平面1AFC E 为截面.如下图:10.在正方体1111ABCD A B C D 中,P ,Q ,R 分别是AB ,AD ,11C D 的中点,那么正方体过P ,Q ,R 的截面图是( )A .三角形B .四边形C .五边形D .六边形【答案】D 【详解】解:延长PQ 交CD 的延长线与E ,连ER 交1DD 于T ,则T 为1DD 的中点, 延长TR 交1CC 的延长线与F ,延长QP 交CB 的延长线与G ,连接FG 交1BB 于M ,交11B C 于S ,则易得M ,S 分别为1BB ,11B C 的中点, 连接,,QT RS PM ,则截面为正六边形PQTRSM 为所求截面. 如图所示:11.如图所示,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面【答案】A 【详解】连接A 1C 1,AC ,则A 1C 1∥AC , ∴A 1,C 1,A ,C 四点共面, ∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1, ∴M 在平面ACC 1A 1与平面AB 1D 1的交线上, 同理O 在平面ACC 1A 1与平面AB 1D 1的交线上. ∴A ,M ,O 三点共线.12.下列说法中正确的个数是( )①空间中三条直线交于一点,则这三条直线共面; ②平行四边形可以确定一个平面;③若一个角的两边分别平行于另一个角的两边,则这两个角相等; ④若,A A αβ,且l αβ=,则A 在l 上.A .1B .2C .3D .4【答案】B 【详解】对于①,两两相交的三条直线,若相交于同一点,则不一定共面,故①不正确;对于②,平行四边形两组对边分别平行,则平行四边形是平面图形,故②正确;对于③,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故③不正确; 对于④,由公理可得,若,,A A l αβαβ∈∈⋂=,则∈A l ,故④正确. 二、拓展提升13.如图所示,在空间四面体ABCD 中,,E F 分别是AB ,AD 的中点,,G H 分别是BC ,CD 上的点,且11,33CG BC CH DC ==.求证:(1),,,E F G H 四点共面; (2)直线FH EG AC ,,共点.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)连接EF ,GH ,E F ,分别是AB AD ,的中点,EF BD ∴∥.又11,33CG BC CH DC ==,GH BD ∴∥,EF GH ∴,,,,E F G H ∴四点共面.(2)易知FH 与直线AC 不平行,但共面,∴设FH AC M ⋂=,则M ∈平面EFHG ,M ∈平面ABC . ∵平面EFHG ⋂平面ABC EG =,M EG ∴∈,∴直线FH EG AC ,,共点. 14.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 【答案】(1)证明见解析;(2) 45°. 【详解】(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线. (2)解:取CD 的中点G ,连结EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°. 15.如图所示,在正方体1111ABCD A B C D 中,E 为AB 的中点,F 为1AA 的中点.求证:(1)1,,,E C D F 四点共面; (2)1,,CE D F DA 三线共点. 【答案】(1)见证明 (2)见证明 【详解】证明:(1)连接11,,EF A B D C .∵E F ,分别是AB 和1AA 的中点, ∴111,2EF A B EF A B =∥. 又11111111,A D B C BC A D B C BC ∥∥==, ∴四边形11A D CB 是平行四边形, ∴11A BCD ,∴1EF CD ∥,∴EF 与1CD 确定一个平面, ∴1,,,E C D F 四点共面.(2)由(1)知,1EF CD ∥,且112EF CD =, ∴直线1D F 与CE 必相交,设1D FCE P =.∵1D F ⊂平面11AA D D ,1P D F ∈, ∴P ∈平面11AA D D .又CE ⊂平面ABCD ,P EC ∈,∴P ∈平面ABCD ,即P 是平面ABCD 与平面11AA D D 的公共点, 又平面ABCD 平面11AA D D AD =,∴P AD ∈,∴1,,CE D F DA 三线共点.。

2020年高考数学真题分类汇编:平面解析几何

2020年高考数学真题分类汇编:平面解析几何

2020年高考数学真题分类汇编:平面解析几何一、单选题(共15题;共30分)1.(2分)(2020·新课标Ⅲ·文)点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( )A .1B .√2C .√3D .2【答案】B【解析】【解答】由 y =k(x +1) 可知直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点 A 到直线 y =k(x +1) 距离最大, 即为 |AP|=√2 . 故答案为:B.【分析】首先根据直线方程判断出直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点A 到直线 y =k(x +1) 距离最大,即可求得结果.2.(2分)(2020·新课标Ⅲ·文)在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线【答案】A【解析】【解答】设 AB =2a(a >0) ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: A(−a,0),B(a,0) ,设 C(x,y) ,可得: AC →=(x +a,y),BC →=(x −a,y) , 从而: AC →⋅BC →=(x +a)(x −a)+y 2 , 结合题意可得: (x +a)(x −a)+y 2=1 , 整理可得: x 2+y 2=a 2+1 ,即点C 的轨迹是以AB 中点为圆心, √a 2+1 为半径的圆. 故答案为:A.【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.3.(2分)(2020·新课标Ⅲ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P⊥F2P.若⊥PF1F2的面积为4,则a=()A.1B.2C.4D.8【答案】A【解析】【解答】∵ca=√5,∴c=√5a,根据双曲线的定义可得||PF1|−|PF2||=2a,S△PF1F2=12|PF1|⋅|PF2|=4,即|PF1|⋅|PF2|=8,∵F1P⊥F2P,∴|PF1|2+|PF2|2=(2c)2,∴(|PF1|−|PF2|)2+2|PF1|⋅|PF2|=4c2,即a2−5a2+4=0,解得a=1,故答案为:A.【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 4.(2分)(2020·新课标Ⅲ·理)若直线l与曲线y= √x和x2+y2= 15都相切,则l的方程为()A.y=2x+1B.y=2x+ 12C.y= 12x+1D.y= 12x+ 12【答案】D【解析】【解答】设直线l在曲线y=√x上的切点为(x0,√x0),则x0>0,函数y=√x的导数为y′=2√x ,则直线l的斜率k=2√x,设直线l的方程为y−√x0=12√x−x0),即x−2√x0y+x0=0,由于直线l与圆x2+y2=15相切,则√1+4x0=1√5,两边平方并整理得5x02−4x0−1=0,解得x0=1,x0=−15(舍),则直线l的方程为x−2y+1=0,即y=12x+12.故答案为:D.【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案. 5.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)【答案】B【解析】【解答】因为直线x=2与抛物线y2=2px(p>0)交于C,D两点,且OD⊥OE,根据抛物线的对称性可以确定 ∠DOx =∠COx =π4 ,所以 C(2,2) , 代入抛物线方程 4=4p ,求得 p =1 ,所以其焦点坐标为 (12,0) ,故答案为:B.【分析】根据题中所给的条件 OD ⊥OE ,结合抛物线的对称性,可知 ∠COx =∠COx =π4 ,从而可以确定出点D 的坐标,代入方程求得P 的值,进而求得其焦点坐标,得到结果.6.(2分)(2020·新课标Ⅲ·文)设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( ) A .72B .3C .52D .2【答案】B【解析】【解答】由已知,不妨设 F 1(−2,0),F 2(2,0) , 则 a =1,c =2 ,因为 |OP|=2=12|F 1F 2| ,所以点 P 在以 F 1F 2 为直径的圆上, 即 △F 1F 2P 是以P 为直角顶点的直角三角形, 故 |PF 1|2+|PF 2|2=|F 1F 2|2 ,即 |PF 1|2+|PF 2|2=16 ,又 ||PF 1|−|PF 2||=2a =2 ,所以 4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−2|PF 1||PF 2| ,解得 |PF 1||PF 2|=6 ,所以 S △F 1F 2P =12|PF 1||PF 2|=3故答案为:B【分析】由 △F 1F 2P 是以P 为直角直角三角形得到 |PF 1|2+|PF 2|2=16 ,再利用双曲线的定义得到 ||PF 1|−|PF 2||=2 ,联立即可得到 |PF 1||PF 2| ,代入 S △F 1F 2P =12|PF 1||PF 2| 中计算即可.7.(2分)(2020·新课标Ⅲ·文)已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .4【答案】B【解析】【解答】圆 x 2+y 2−6x =0 化为 (x −3)2+y 2=9 ,所以圆心 C 坐标为 C(3,0) ,半径为 3 ,设 P(1,2) ,当过点 P 的直线和直线 CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2 .故答案为:B.【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.8.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【解答】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±ba x∵直线x=a与双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=b a x,解得{x=ay=b故D(a,b)联立{x=ay=−b a x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x 2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故答案为:B.【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±ba x,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.9.(2分)(2020·新课标Ⅲ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】【解答】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.10.(2分)(2020·新课标Ⅲ·理)已知⊥M:x2+y2−2x−2y−2=0,直线l:2x+y+2= 0,P为l上的动点,过点P作⊥M的切线PA,PB,切点为A,B,当|PM|⋅|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=0【答案】D【解析】【解答】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√2+1=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=2S△PAM=2×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|min=√5,|PA|min=1,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=2S△PAM=2|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.11.(2分)(2020·新课标Ⅲ·理)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】【解答】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故答案为:C.【分析】利用抛物线的定义建立方程即可得到答案.12.(2分)(2020·天津)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.x24−y2=1D.x2−y2=1【答案】D【解析】【解答】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±b a x,所以−b=−b a,−b×b a=−1,因为a>0,b>0,解得a=1,b=1.故答案为:D.【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为-b,再根据双曲线的渐近线的方程为y=±b a x,可得−b=−b a,−b×b a=−1即可求出a,b,得到双曲线的方程.13.(2分)(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】【解答】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故答案为:B.【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.14.(2分)(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】【解答】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C 在线段 OM 上时取得等号, 故答案为:A.【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.15.(2分)(2020·浙江)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( ) A .√222B .4√105C .√7D .√10【答案】D【解析】【解答】解:点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,可知P 的轨迹是双曲线 x 21−y 23=1 的右支上的点,P 为函数y =3 √4−x 2 图象上的点,即 y 236+x 24=1 在第一象限的点,联立两个方程,解得P ( √132 , 3√32),所以|OP|= √134+274 = √10 .故答案为:D .【分析】求出P 满足的轨迹方程,求出P 的坐标,即可求解|OP|.二、多选题(共1题;共3分)16.(3分)(2020·新高考Ⅲ)已知曲线 C:mx 2+ny 2=1 .( )A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则C 是圆,其半径为 √nC .若mn<0,则C 是双曲线,其渐近线方程为 y =±√−m n xD .若m=0,n>0,则C 是两条直线【答案】A,C,D【解析】【解答】对于A ,若 m >n >0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,因为 m >n >0 ,所以1m <1n,即曲线 C 表示焦点在 y 轴上的椭圆,A 符合题意;对于B ,若 m =n >0 ,则 mx 2+ny 2=1 可化为 x 2+y 2=1n ,此时曲线 C 表示圆心在原点,半径为 √n n 的圆,B 不正确;对于C ,若 mn <0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,此时曲线 C 表示双曲线, 由 mx 2+ny 2=0 可得 y =±√−mnx ,C 符合题意; 对于D ,若 m =0,n >0 ,则 mx 2+ny 2=1 可化为 y 2=1n,y =±√nn ,此时曲线 C 表示平行于 x 轴的两条直线,D 符合题意;故答案为:ACD.【分析】结合选项进行逐项分析求解, m >n >0 时表示椭圆, m =n >0 时表示圆, mn <0 时表示双曲线, m =0,n >0 时表示两条直线.三、填空题(共10题;共12分)17.(1分)(2020·新课标Ⅲ·文)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的一条渐近线为y= √2 x ,则C 的离心率为 .【答案】√3【解析】【解答】由双曲线方程 x 2a 2−y 2b2=1 可得其焦点在 x 轴上, 因为其一条渐近线为 y =√2x , 所以 b a =√2 , e =c a =√1+b 2a 2=√3 .故答案为: √3【分析】根据已知可得 b a=√2 ,结合双曲线中 a,b,c 的关系,即可求解.18.(1分)(2020·新课标Ⅲ·理)已知F 为双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】【解答】依题可得, |BF||AF|=3 ,而 |BF|=b 2a , |AF|=c −a ,即 b 2ac−a=3 ,变形得 c 2−a 2=3ac −3a 2 ,化简可得, e 2−3e +2=0 ,解得 e =2 或 e =1 (舍去). 故答案为: 2 .【分析】根据双曲线的几何性质可知, |BF|=b 2a , |AF|=c −a ,即可根据斜率列出等式求解即可.19.(1分)(2020·新高考Ⅲ)斜率为 √3 的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则 |AB| = .【答案】163【解析】【解答】∵抛物线的方程为 y 2=4x ,∴抛物线的焦点F 坐标为 F(1,0) ,又∵直线AB 过焦点F 且斜率为 √3 ,∴直线AB 的方程为: y =√3(x −1) 代入抛物线方程消去y 并化简得 3x 2−10x +3=0 , 解法一:解得 x 1=13,x 2=3所以 |AB|=√1+k 2|x 1−x 2|=√1+3⋅|3−13|=163解法二: Δ=100−36=64>0设 A(x 1,y 1),B(x 2,y 2) ,则 x 1+x 2=103, 过 A,B 分别作准线 x =−1 的垂线,设垂足分别为 C,D 如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x 1+1+x 2+1=x 1+x 2+2=163故答案为:163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.20.(1分)(2020·新高考Ⅲ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC⊥DG ,垂足为C ,tan⊥ODC= 35, BH ∥DG ,EF=12 cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.【答案】4+5 2π【解析】【解答】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r ,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH的面积为S1=12×2√2×2√2=4;扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2 .故答案为:4+5π2.【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角 △OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.21.(1分)(2020·天津)已知直线 x −√3y +8=0 和圆 x 2+y 2=r 2(r >0) 相交于 A,B 两点.若 |AB|=6 ,则 r 的值为 .【答案】5【解析】【解答】因为圆心 (0,0) 到直线 x −√3y +8=0 的距离 d =√1+3=4 , 由 |AB|=2√r 2−d 2 可得 6=2√r 2−42 ,解得 r =5 . 故答案为:5.【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式 |AB|=2√r 2−d 2 ,即可求得 r .22.(1分)(2020·江苏)在平面直角坐标系xOy 中,若双曲线 x 2a2 ﹣ y 25 =1(a >0)的一条渐近线方程为y= √52x ,则该双曲线的离心率是 .【答案】32【解析】【解答】双曲线 x 2a2−y 25=1 ,故 b =√5 .由于双曲线的一条渐近线方程为 y =√52x ,即b a =√52⇒a =2 ,所以c =√a 2+b 2=√4+5=3 ,所以双曲线的离心率为 c a =32 . 故答案为: 32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.23.(1分)(2020·江苏)在平面直角坐标系xOy 中,已知 P(√32,0) ,A ,B 是圆C : x 2+(y −12)2=36 上的两个动点,满足 PA =PB ,则⊥PAB 面积的最大值是 . 【答案】10√5【解析】【解答】 ∵PA =PB ∴PC ⊥AB设圆心 C 到直线 AB 距离为d ,则 |AB|=2√36−d 2,|PC|=√34+14=1所以 S △PAB ≤12⋅2√36−d 2(d +1)=√(36−d 2)(d +1)2令 y =(36−d 2)(d +1)2(0≤d <6)∴y ′=2(d +1)(−2d 2−d +36)=0∴d =4 (负值舍去) 当 0≤d <4 时, y ′>0 ;当 4≤d <6 时, y ′≤0 ,因此当 d =4 时, y 取最大值,即 S △PAB 取最大值为 10√5 , 故答案为: 10√5【分析】根据条件得PC⊥AB,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.24.(2分)(2020·北京)已知双曲线C:x 26−y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.【答案】(3,0);√3【解析】【解答】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为3√12+2=√3.故答案为:(3,0);√3.【分析】根据双曲线的标准方程可得出双曲线C的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.25.(1分)(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【解答】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【分析】根据定义逐一判断,即可得到结果26.(2分)(2020·浙江)设直线l:y=kx+b(k>0),圆C1:x2+y2=1,C2:(x﹣4)2+y2=1,若直线l与C1,C2都相切,则k=;b=.【答案】√33;﹣2√33【解析】【解答】由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1=√1+k2=1,d2=√1+k2=1,则有|b|√1+k2=|4k+b|√1+k2,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1=|b|√1+k2=1,解得k=√33,则b=﹣2√33,故答案为:√33;﹣2√33.【分析】根据直线l与两圆都相切,分别列出方程d1=|b|√1+k2=1,d2=|4k+b|√1+k2=1,解得即可.。

高考数学复习笔记第八章 平面解析几何

高考数学复习笔记第八章  平面解析几何

第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题;(2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎨⎧2k -1k>0,1-2k >0,得k <0.∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2 (-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π 解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x+13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3 D.-2或-3解析:选C∵直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,∴2m=m+13≠4-2,解得m=2或-3.2.“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直,得(a+1)(a-1)+3a(a+1)=0,即4a2+3a-1=0,解得a=14或-1,∴“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.解析:设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0.原点到直线x+y-1=0的距离为d=|0+0-1|1+1=22,即为所求原点到动点P的轨迹的最小值.答案:x+y-1=02 21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-ab +2,-ab -2,由-ab +2·⎝⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4). 答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎨⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧ x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0 解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧ x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎨⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧ b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎨⎧ y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0 解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上,∵|P Q |=9+1=10,∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎨⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎨⎧ m =35,n =315,故m +n =345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎨⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3). 同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:2x -y -2=0或2x +3y -18=8.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.。

2020版数学习题:第八篇 平面解析几何(必修2、选修1-1) 第4节 椭 圆

2020版数学习题:第八篇 平面解析几何(必修2、选修1-1) 第4节 椭 圆

第4节椭圆【选题明细表】知识点、方法题号椭圆的定义与标准方程1,2,3,7椭圆的几何性质4,6,8,9 直线与椭圆的位置关系5,10,11,12,13基础巩固(时间:30分钟)1.已知椭圆+ =1(m>0)的左焦点为F1(-4,0),则m等于(B)(A)2 (B)3 (C)4 (D)9解析:4= (m>0)⇒m=3,故选B.2.(2018·宝鸡三模)已知椭圆的焦点为F1(-1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项,则椭圆的方程是(C)(A) + =1 (B) + =1(C) + =1 (D) + =1解析:因为F1(-1,0),F2(1,0),所以|F1F2|=2,因为|F1F2|是|PF1|与|PF2|的等差中项,所以2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,所以点P在以F1,F2为焦点的椭圆上,因为2a=4,a=2,c=1,所以b2=3.所以椭圆的方程是+ =1.故选C.3.已知中心在原点的椭圆C的右焦点为F( ,0),直线y=x与椭圆的一个交点的横坐标为2,则椭圆方程为(C)(A) +y2=1 (B)x2+ =1(C) + =1 (D) + =1解析:依题意,设椭圆方程为+ =1(a>b>0),则有由此解得a2=20,b2=5,因此所求的椭圆方程是+ =1,选C.4.(2018·广西柳州市一模)已知点P是以F1,F2为焦点的椭圆+=1(a>b>0)上一点,若PF1⊥PF2,tan∠PF2F1=2,则椭圆的离心率e等于(A)(A) (B) (C) (D)解析:因为点P是以F1,F2 为焦点的椭圆+ =1(a>b>0)上一点,PF1⊥PF2,tan∠PF2F1=2,所以=2,设|PF2|=x,则|PF1|=2x,由椭圆定义知x+2x=2a,所以x= ,所以|PF2|= ,则|PF1|= ,由勾股定理知|PF2|2+|PF1|2=|F1F2|2,所以解得c= a,所以e= = ,选A.5.过椭圆+ =1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为(B)(A) (B) (C) (D)解析:由题意知椭圆的右焦点F的坐标为(1,0),则直线AB的方程为y=2x-2.联立椭圆方程解得交点为(0,-2),( , ),所以S△OAB= ·|OF|·|y A-y B|= ×1×= ,故选B.6.若椭圆的方程为+ =1,且此椭圆的焦距为4,则实数a=.解析:由题可知c=2. ①当焦点在x轴上时,10-a-(a-2)=22,解得a=4. ②当焦点在y轴上时,a-2-(10-a)=22,解得a=8.故实数a=4或8.答案:4或87.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),则椭圆的方程为.解析:设椭圆方程为mx2+ny2=1(m>0,n>0且m≠n).因为椭圆经过点P1,P2,所以点P1,P2的坐标适合椭圆方程.则得所以所求椭圆方程为+ =1.答案: + =18.(2018·安徽模拟)已知F1,F2是长轴长为4的椭圆C: + =1(a>b>0) 的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.解析:F1,F2 是长轴长为4 的椭圆C: + =1(a>b>0) 的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2 面积最大时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c= 时,三角形的面积最大.答案:2能力提升(时间:15分钟)9.(2018·河南一模)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(A)(A) (B) (C) (D)解析:设点A(-1,0)关于直线l:y=x+3 的对称点为A′(m,n),则得所以A′(-3,2).连接A′B,则|PA|+|PB|=|PA′|+|PB|≥|A′B|=2 ,所以2a≥2 .所以椭圆C的离心率的最大值为= = .故选A.10.(2018·临沂三模)直线x+4y+m=0交椭圆+y2=1于A,B,若AB中点的横坐标为1,则m等于(A)(A)-2 (B)-1 (C)1 (D)2解析:由题意,设点A(x1,y1),B(x2,y2),则+ =1, + =1两式相减,=- ·,结合直线的斜率为- ,AB中点横坐标为1,所以AB中点纵坐标为,将点(1, )代入直线x+4y+m=0得m=-2.故选A.11.(2018·珠海一模)过点M(1,1)作斜率为- 的直线l与椭圆C:+ =1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为.解析:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=2,k AB= =- ,+ =1, ①+ =1, ②①-②整理,得=- ·,即= ,所以离心率e= = = .答案:12.(2018·天津卷)设椭圆+ =1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|= .(1)求椭圆的方程;(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2 倍,求k 的值.解:(1)设椭圆的焦距为2c,由已知有= ,又由a2=b2+c2,可得2a=3b.又|AB|= = ,从而a=3,b=2.所以,椭圆的方程为+ =1.(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2) ,由题意知,x2>x1>0,点Q的坐标为(-x1,-y1).由△BPM的面积是△BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2[x1-(-x1)],即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2= .由方程组消去y,可得x1= .由x2=5x1,可得=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=- 或k=- .当k=- 时,x2=-9<0,不合题意,舍去;当k=- 时,x2=12,x1= ,符合题意.所以k的值为- .13.(2018·和平区校级一模)已知椭圆C: + =1(a>b>0)的右焦点为( ,0),且经过点(-1,- ),点M是y轴上的一点,过点M的直线l与椭圆C交于A,B两点.(1)求椭圆C的方程;(2)若=2 ,且直线l与圆O:x2+y2= 相切于点N,求|MN|的长.解:(1)由题意知,即(a2-4)(4a2-3)=0,因为a2=3+b2>3,解得a2=4,b2=1,故椭圆C的方程为+y2=1.(2)显然直线l的斜率存在,设M(0,m),直线l:y=kx+m,A(x1,y1),B(x2,y2), 直线l与圆O:x2+y2= 相切,所以= ,即m2= (k2+1), ①由得(1+4k2)x2+8kmx+4(m2-1)=0,由韦达定理,得x1+x2=- ,x1x2= ,由=2 ,有x1=-2x2,解得x1=- ,x2= ,所以- = ,化简得- =m2-1, ②把②代入①可得48k4+16k2-7=0,解得k2= ,m2= ,在Rt△OMN中,可得|MN|= = . 故|MN|的长为.。

2020全国卷高考专题:平面解析几何

2020全国卷高考专题:平面解析几何

10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。

精编新版2020高考数学专题训练《平面解析几何初步》完整题(含答案)

精编新版2020高考数学专题训练《平面解析几何初步》完整题(含答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A.[1 B .(,1[1+3,+)-∞∞C .[2-D .(,2[2+22,+)-∞-∞(2012天津理)2.到两坐标轴距离相等的点的轨迹方程是( ) A .x -y=0 B .x+y=0 C .|x|-y=0 D .|x|-|y|=0(2002京皖春文8)3.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4(2001全国文2)4.a=1是直线y=ax+1和直线y=(a-2)x-1垂直的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知直线01=-+by ax (a ,b 不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( ) A .66条 B .72条C .74条D .78条二、填空题6.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:x 2+y 2的几何意义为:动点(x ,y )到原点(0,0)的距离,而动点(x ,y )在直线2x +y +5=0上,所以该问题转化为求原点(0,0)到直线2x +y +5=0的距离问题.所以x 2+y 2 ≥55= 5.7. 过点(1,0)且倾斜角是直线x -2y -1=0的倾斜角的两倍的直线方程是 ▲ .8.空间直角坐标系中,点(4,3,7)P -关于平面xoy 的对称点的坐标为 (4,3,7--) 。

2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.

高考数学第八篇平面解析几何第7节圆锥曲线的综合问题(第3课时)定点、定值、存在性专题文

高考数学第八篇平面解析几何第7节圆锥曲线的综合问题(第3课时)定点、定值、存在性专题文

+1),
由x82+y42=1,
得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
y+2=k(x+1),
设 A(x1,y1),B(x2,y2),则 x1+x2=-4k(1+k-2k22),
y1),B(x2,y2).
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第二十二页,共四十二页。
由x42+y2=1,得(1+4k2)x2+8kmx+4m2-4=0. y=kx+m
则 Δ=(8km)2-4(1+4k2)(4m2-4)=16(1+4k2-m2)>0,x1+x2 =-1+8km4k2,x1x2=41m+2-4k42 ,则 y1y2=(kx1+m)(kx2+m)=m12+-44kk22,
且 x1+x2=4k82k+2 3,x1x2=44kk22-+132.
直线 AE 的方程为 y=x1y-1 2(x-2),
令 x=4,得点 M4,x12-y12,
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十七页,共四十二页。
直线 AF 的方程为 y=x2y-2 2(x-2), 令 x=4,得点 N4,x22-y22, 所以点 P 的坐标为4,x1y-1 2+x2y-2 2. 所以直线 PF2 的斜率为 k′=x1y-1 2+4-x21y-2 2-0 =13x1y-1 2+x2y-2 2=13·y2xx11x+2-x22y(1-x12+(xy21)++y24)
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十一页,共四十二页。
(2)由(1)知 F(1,0),设 A(x0,y0)(x0>0),D(xD,0)(xD>0), 因为|FA|=|FD|,则|xD-1|=x0+1, 由 xD>0 得 xD=x0+2,故 D(x0+2,0), 故直线 AB 的斜率为 kAB=-y20, 因为直线 l1 和直线 AB 平行, 故可设直线 l1 的方程为 y=-y20x+b,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6节抛物线
【选题明细表】
知识点、方法题号
抛物线的定义与应用2,3,4,10 抛物线的标准方程及几何性质1,6
直线与抛物线的位置关系5,7,8,11
抛物线的综合应用9,12,13
基础巩固(时间:30分钟)
1.(2018·沈阳质量监测)抛物线y=4ax2(a≠0)的焦点坐标是( C )
(A)(0,a) (B)(a,0)
(C)(0,) (D)(,0)
解析:将y=4ax2(a≠0)化为标准方程得x2=y(a≠0),
所以焦点坐标为(0,),所以选C.
2.(2018·新余一中模拟)动点P到点A(0,2)的距离比它到直线l:
y=-4的距离小2,则动点P的轨迹方程为( D )
(A)y2=4x (B)y2=8x (C)x2=4y (D)x2=8y
解析:因为动点P到A(0,2)点的距离比它到直线l:y=-4的距离小2,所以动点P到点A(0,2)的距离与它到直线y=-2的距离相等,根据抛物线的定义可得点P的轨迹为以A(0,2)为焦点,以直线y=-2为准线的抛物
线,其标准方程为x2=8y,故选D.
3.(2018·云南昆明一中月考)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A为C上一点,以F为圆心,FA为半径的圆交l于B,D两点,若∠BFD=120°,△ABD的面积为2,则p等于( A )
(A)1 (B) (C) (D)2
解析:因为∠BFD=120°,
所以圆的半径|FA|=|FB|=2p,|BD|=2p,
由抛物线定义,点A到准线l的距离d=|FA|=2p,
所以|BD|·d=2p·p=2,
所以p=1,选A.
4.(2018·四川南充二模)抛物线C:y2=8x的焦点为F,准线为l,P是l 上一点,连接PF并延长交抛物线C于点Q,若|PF|=|PQ|,则|QF|等于( C )
(A)3 (B)4 (C)5 (D)6
解析:如图,直线l与x轴的交点为D,
过Q点作QQ′⊥l,Q′为垂足,
设|QF|=d,由抛物线的定义可知
|QQ′|=d,又|PF|=|PQ|,
所以|PF|=4d,|PQ|=5d,
又△PDF∽△PQ′Q,
所以=,解得d=5,
即|QF|=5,故选C.
5.(2018·湖南两市九月调研)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B,交其准线l于点C,若点F是AC的中点,且|AF|=4,则线段AB的长为( C )
(A)5 (B)6
(C)(D)
解析:如图,
过点A作AD⊥l交l于点D,
所以|AF|=|AD|=4,
由点F是AC的中点,
有|AF|=2|MF|=2p.
所以2p=4,解得p=2,
抛物线y2=4x
设A(x1,y1),B(x2,y2),
则|AF|=x1+=x1+1=4.
所以x1=3,A(3,2),F(1,0).
k AF==.
AF:y=(x-1)与抛物线y2=4x,
联立得3x2-10x+3=0,x1+x2=,
|AB|=x1+x2+p=+2=.
故选C.
6.(2018·大庆中学模拟)已知点A(4,0),抛物线C:y2=2px(0<p<4)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p= .
解析:设焦点为F,由题可得∠PAF=,x P=+⇒x P=,所以4=x P++⇒p=.
答案:
7.(2018·海南省八校联考)已知F是抛物线C:y2=16x的焦点,过F的直线l与直线x+y-1=0垂直,且直线l与抛物线C交于A,B两点,则
|AB|= .
解析:F是抛物线C:y2=16x的焦点,
所以F(4,0),又过F的直线l与直线x+y-1=0垂直.
所以直线l的方程为y=(x-4),代入抛物线C:y2=16x,易得3x2-40x+48=0.
设A=(x1,y1),B=(x2,y2),x1+x2=,|AB|=x1+x2+8=.
答案:
能力提升(时间:15分钟)
8.(2018·吉林百校联盟联考)已知抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,过焦点且倾斜角为60°的直线与抛物线交于M,N两点,若MM′⊥l,NN′⊥l,垂足分别为M′,N′,则△M′N′F的面积为( B )
(A)(B) (C)(D)
解析:因为p=2,所以抛物线方程为y2=4x,
直线MN:x=y+1,
由得y2-y-4=0,
则y1+y2=,y1y2=-4,
所以|y1-y2|==.
所以S△M′N′F=××2=.选B.
9.如图,过抛物线y2=4x焦点的直线依次交抛物线和圆(x-1)2+y2=1于A,B,C,D四点,则|AB|·|CD|等于( C )
(A)4 (B)2
(C)1 (D)
解析:法一(特值法)由题意可推得|AB|·|CD|为定值,
所以分析直线与x轴垂直的情况,即可得到答案.
因为圆(x-1)2+y2=1的圆心为抛物线y2=4x的焦点,半径为1,
所以此时|AB|=|CD|=1.
所以|AB|·|CD|=1,故选C.
法二(直接法)设A(x1,y1),D(x2,y2),抛物线的焦点为F,AD的方程为y=k(x-1).
则由
消去y,可得x1x2=1,
而|AB|=|FA|-1=x1+1-1=x1,
|CD|=|FD|-1=x2+1-1=x2,
所以|AB|·|CD|=x1·x2=1.
故选C.
10.(2018·临川二中模拟)如图所示,点F是抛物线y2=8x的焦点,点
A,B分别在抛物线y2=8x及圆(x-2)2+y2=16的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围为.
解析:抛物线的准线l:x=-2,焦点F(2,0),由抛物线定义可得|AF|=x A+2,圆(x-2)2+y2=16的圆心为(2,0),半径为4,所以△FAB的周长为|AF|+|AB|+|BF|=x A+2+(x B-x A)+4=6+x B,由抛物线y2=8x及圆(x-2)2+y2=16可得交点的横坐标为2,所以x B∈(2,6],所以6+x B∈(8,12].
答案:(8,12]
11.(2018·东北三校二模)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则
△BCF与△ACF的面积之比= .
解析:设AB:y=k(x-),代入y2=2x得k2x2-(2k2+2)x+3k2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=3,
而|BF|=2,所以x2+=2.
所以x2=,x1=2.
====.
答案:
12.(2018·全国Ⅱ卷)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解:(1)抛物线C:y2=4x的焦点为F(1,0),
当直线的斜率不存在时,|AB|=4,不满足;
设直线AB的方程为y=k(x-1),
设A(x1,y1),B(x2,y2),
则整理得k2x2-2(k2+2)x+k2=0,
则Δ=16k2+16>0,
故x1+x2=,x1x2=1,
由|AB|=x1+x2+p=+2=8,
解得k2=1,则k=1,
所以直线l的方程y=x-1.
(2)由(1)可得AB的中点坐标为D(3,2),
则直线AB的垂直平分线方程为
y-2=-(x-3),
即y=-x+5,
设所求圆的圆心坐标为(x0,y0),

解得或
因此,所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
13.(2018·东城区二模)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若OA⊥OB,求△AOB面积的最小值.
解:(1)由抛物线C:y2=2px经过点P(2,2)知4p=4,解得p=1,
则抛物线C的方程为y2=2x,
抛物线C的焦点坐标为(,0),准线方程为x=-.
(2)由题知,直线AB不与y轴垂直,设直线AB:x=ty+a.
由消去x,得y2-2ty-2a=0,
设A(x1,y1),B(x2,y2),
则y1+y2=2t,y1y2=-2a,
因为OA⊥OB,所以x1x2+y1y2=0,
即+y1y2=0,
解得y1y2=0(舍)或y1y2=-4,
所以-2a=-4,解得a=2,
所以直线AB:x=ty+2,
所以直线AB过定点(2,0),
S△AOB=×2×|y1-y2|
=
=≥
=4.
当且仅当y1=2,y2=-2或y1=-2,y2=2时,等号成立, 所以△AOB面积的最小值为4.。

相关文档
最新文档