09年C题实验报告(宽带直流放大器)要点
宽带直流放大器设计

宽带直流放大器(C题)摘要本系统以两级直接耦合的可控增益放大器AD603为核心,外加跟随器OPA642和电压放大器AD811配合,实现了增益可调的宽带直流放大器。
系统主要由四个模块构成:前置放大电路、可控增益放大电路、后级功率放大电路、单片机显示控制模块。
可控增益放大电路由两级直接耦合的可控增益放大器AD603构成,可实现-20dB到40dB的增益调节范围,配合AD811的固定增益实现0dB到60dB的增益调节范围;后级功率放大电路由高速缓冲器BUF634扩大输出电流,提升放大器的带负载能力。
第二级AD603与固定增益模块间加入直流偏移调零模块,最大限度地减小了整个放大器的直流偏移。
为解决宽带放大器自激问题及减小输出噪声,本系统采用多种形式的抗干扰措施,抑制噪声,改善放大器的定性。
关键词:宽带放大器,可控增益,调零电路,固定增益,功率放大一、系统方案1. 方案比较与选择 (1)可控增益放大方案一:采用可编程放大器的思想,将输入交流信号作为高速DAC 的基准电压,用DAC 的电阻网络构成运放反馈网络的一部分,通过改变DAC 数字控制量实现增益控制。
理论上讲,只要DAC 的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB 不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。
方案二:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC 产生。
单级集成可控增益放大器AD603具有-10dB 到+30dBdB 的增益控制范围,两级级联后理论上可达到-20dB 到+60dB 的增益控制范围,精度达到0.5dB,带宽90MHz ,可以满足题目指标要求。
采用集成可控增益放大器AD603实现增益控制,外围电路简单,便于调试,而且具有较高的增益调节范围和精度,故采用此方案。
(2)功率放大电路方案一:采用分立元件实现宽带功率放大器,可以实现较大输出电压,但需采用多级高频放大电路,受电路分布参数影响,调试难度大,带宽难以保证,所以不选用此方案。
2009年电竞报告_C_宽带直流放大器_全国二等奖

2009年全国大学生电子设计竞赛设计报告参赛题目:宽带直流放大器题目编号:C参赛队员:许文燕张舒徐琴参赛单位:南京邮电大学日期:二〇〇九年九月五日摘要本设计使用两片集成运放THS3001级联组成前置放大电路,并由运算放大器加分立器件三极管构成复合放大器实现末级功率放大电路,通过增益控制电路实现0~65dB范围内的增益可调,放大器带宽可在10MHz或5MHz两档之间选择。
整个系统由单片机控制,通过键盘输入实现输出状态控制、带宽选择以及增益步进控制,TFT 液晶显示器显示所设置的状态及参数。
关键词:前置放大功率放大增益控制低通滤波器设计报告一、系统方案论证与比较1、宽带直流放大器设计方案方案一:采用集成运算放大器芯片级联构成。
集成运放芯片使用简单,精度高,但是采用这种方案,放大器可实现的输出功率不够,无法满足本课题指标(本课题要求最大输出电压正弦波有效值V o≥10V),通常此类集成电路都难以直接驱动50Ω的负载。
方案二:采用分立元件,利用高频三极管或场效应管差分对构成多级放大电路,末级采用大功率器件来保证输出功率,通过负反馈电路来确定增益。
该方案可实现的放大器工作频率高、功率大,但其电路比较复杂,且零点漂移严重,难以实现直流信号的放大。
此外,由于电路采用了多级放大,其稳定性差,容易产生自激现象。
方案三:集成运放和分立元件相结合。
宽带集成运放级联构成前置放大电路,实现小信号的前置放大及增益要求;运算放大器加分立器件三极管构成功率扩展型电路实现末级功率放大。
方案选定:经三种方案比较,决定采用方案三,该方案可以将集成运算放大器高增益、低直流漂移的优点与分立元件功放输出功率大的优点相结合,达到本课题的设计要求。
2、电压增益控制设计方案方案一:通过反馈网络控制放大器的电压增益。
这种方案电路简单,但是干扰信号会伴随输入的小信号经过前级和后级放大器放大,使输出信号的信噪比无法满足题目指标。
方案二:在末级放大电路后加精心设计的衰减网络,对输出电压进行增益控制。
宽带直流放大器(国赛报告)

宽带直流放大器摘要:本系统采用FPGA和AT89S52单片机构成的最小系统为控制核心,设计了一个输入电压有效值小于10mV的宽带直流放大器。
其3dB通频带为0~10MHz,在0~9MHz通频带内增益起伏不超过1dB。
系统的基本放大器部分主要由前置放大、可控增益放大和后级功率放大构成,其中前级放大采用高速低噪声电压反馈型运放芯片LM6172实现;可控增益放大以AD600为核心,通过12位串行DAC给予不同的控制电压的方式来达到增益步进5dB (手动连续可调),总增益从0dB到60dB的目的;后级功率放大由3个电流反馈型放大器AD811构成,其输出电压正弦波有效值V o不小于10V,输出信号波形无明显失真。
通过键盘输入控制、人为预置放大器的带宽值和 64*128点LCD显示,本系统界面友好美观,控制方便。
关键词:程控放大,AD600,功率放大正文:一、方案比较设计与论证1.程控放大方案比较与论证方案一:采用三极管搭接实现。
为了满足增益60dB的要求,可以采用多级放大电路实现。
对电路输出采用二极管包络检波产生反馈电压调节前级电路实现自动增益的调节。
本方案由于大量采用分立元件,如三极管等,电路复杂,设计难度大,增益可控、高带宽均难以实现。
而且不可控因素多,电路稳定性差,调试难度也大。
故不采用。
方案二:采用可编程放大器的思想,将输入的交流信号作为D/A的基准电压。
理论上讲,只要D/A的速度够快、精度够高就可以实现很宽范围的精密增益调节。
但是,由于控制量和增益呈指数关系,会造成增益调节不均匀。
方案三:使用控制电压与增益成线形关系的可编程放大器PGA,用控制电压和增益成线性关系的可变增益放大器来实现增益控制。
采用可控增益运放AD600实现。
AD600的增益范围为0dB到40dB可调,具有低输入噪声、低失真、低功耗的良好,另外具有直流到35MHZ的高带宽范围,极能满足题目直流宽带放大器各方面的设计要求。
这种方法的优点是电路集成度高,条理清晰,控制方便,易于用单片机处理,能实现系统要求。
宽带直流放大器

万方数据万方数据万方数据万方数据万方数据酬川一——~矬然缓编者按:为了帮助初学者解决印制板设计中的一些技巧性问题,从2010年第2期起,我们将刊登“跟我学做印制板”连载,详尽地讲解印制板设计制作中的各个技术细节。
内容的安排,以“讲座”的形式刊出,每期重点讲解一个专题,整个内容的重点在印制板的设计,也涉及电原理图设计过程中的一些问题等.(接上期)印制板设计跟我学做印制板(6)1.印制板设计的准备工作:建立设计文件新建一个印制板设计文件。
可以根据实际需要,采用如下方法之一。
(1)使用向导新建PCB文件Protel设计软件提供了新建PCB板设计文件的向导。
点击主工具栏“新创建任意文件”按钮(图1)或直接打开工作文件面板(Files)。
单击“根据模板新建”栏下的“PC8BoardWizard…”选项(见图2).出现“新建电路板向导”对话框,如图3所示。
图1新创建任意文件整个向导有多个对话框,都比较简单,这里就不贴图了.只做简要文字说明。
单击下一步按钮进入“选择电路板单位”对话框。
如选择“英制”。
则在PCB设计中系统使用mil(密尔,千分之一英寸。
1mil=O.0254mm)作为长度单位;如选择。
公制”,则使用mm(毫米)作为长度单位。
由于大多数元件封装的引脚采用英制单围2使用l—aJ导新建印IJ制板选项田(噬州开辫I惩F利戳地J,l‘位(尤其是直插式图3“新建电路板向导”对话框与地短接,测出输出信号幅度测试结果:在AV=60dB时,输出端噪声电压的峰一峰值VONPP为O.2V。
(6)输入电阻与负载电阻阻值测试测试方案选择:系统设计方案保证了输入阻抗大于50Q,负载电阻用万用表直接测量。
测试结果:输入阻抗:>50Q负载电阻:50BQ四、总结题目要求输入有效值小于等于10mv,实际输入的有效值可以达到1mv,但在我们在现有的仪器条件下,信号幅度输出小时噪声大,造成输出波形噪声较大。
放大器的增益最大可达70dB,但超过70dB后放大器容易出现自激振荡。
宽带直流放大器设计报告

宽带直流放大器第三组:陈吉洋、杨在然、周佳佳本设计以超低功耗单片机STM32为控制核心,通过可控增益放大器AD603与OPA642分别实现信号增益的调节和末级的功率放大,在0~10M带宽范围内的小信号进行有效放大,实现增益0dB~100dB 范围内的步进程控可调和手动连续可调,最大不失真输出电压有效值达10V。
系统主要由六个模块组成:直流稳压源、前置缓冲电路、可控增益放大电路、滤波器模块、功率放大模块和控制与显示模块。
本设计在前置缓冲电路对信号进行初步处理,减小后续模块中的噪声来源,同时在后级放大电路中利用软件对后级放大器电路进行补偿,把系统的失调和漂移抑制在较低的限度之内。
关键词:可控增益放大器功率放大带宽一、系统方案论证1.总体方案论证分析放大器设计要求的指标,带宽和增益要求高,放大器带宽为10MHz 以上,增益在0dB~60dB之间可调,并且要求能够在50Ω的负载提供有效值为10V 的正弦波输出。
针对上述特点,我们将整个放大器分为五个模块:前置缓冲级,增益可调的中间放大级,末级功率放大级,控制显示电路和直流稳压电源。
系统整体框图如图1所示。
其中难点是增益可调放大级和末级功率放大级,下面对这两个部分的方案分别进行设计论证。
图1、系统整体框图2.1放大器的论证与选择方案一:单运放电路。
简单的测量放大器是由仪器放大器和可变增益放大器级联而成,该放大电路的优点是电路简单,易于实现,但其零漂很大,放大精度也差。
方案二:精密斩波稳零电路。
精密斩波稳零运放具有更加理想化的性能指标,一般情况下不需要调零就能正常工作,大大提高了精度,但其带宽很小,难以满足设计要求。
方案三:模拟增益可编程运放电路。
使用微控制器控制模拟增益可编程运放可以灵活的实现增益的步进,同时可以实现比较大的增益,但其结构和指令比较复杂,开发周期较长。
方案四:多级运放电路。
应用多级运放可以得到很大的增益,并且对单个运放的性能要求较低,系统总增益等于各运放增益的和,可以将信号放大和功率放大分开处理;带宽也比较好控制,可以选择多种耦合方式,充分的发挥出电路的性能;电路结构也比较简单。
宽带直流放大器

宽带直流放大器设计报告宽带直流放大器摘要:本设计采用STC89C52RD单片作为其测试和控制核心,能够测试放大前后信号的有效值,通过闭环反馈,实现放大增益的稳定。
本系统用单片机控制模拟开关进行增益程控,控制A/D1100采样,控制数模转换器反馈增益状态,控制LCD数据显示,使整个系统能够协调工作,实现宽带直流放大、稳定增益、增益连续调节的功能,AGC功能,高、低频功率放大。
关键词:宽带直流放大,功率放大,AD1100,AGC1. 系统方案1.1系统基本方案经研究,本系统可以分为以下几个基本系统:处理器,控制放大系统,显示、按统,检波、反馈系统。
通过按键进行频率范围选择,放大增益选择。
经处理器处理后,输出指令,控制放大系统选择正确的放大通道增益。
在输出端设置检波,处理器分析输出信号后,将反馈信号回馈给放大系统,以达到增益稳定的效果。
系统框图构架如图。
图1-1 基本系统框图1.1.1 处理器的选择根据宽带放大器的性能要求,本系统需要处理器辅助的步骤有:测得输入电压信号的频率、根据输入信号频率选择不同的放大通道、将当前的放大状态和放大倍数显示于LCD。
分析可以发现该系统对处理器的要求并高,只要保证能够测得较为精确的信号频率,因此我们决定选用STC51系列单片机,其中一款STC5A6S2自带了0Hz至4MHz测频功能,该处理器既能很好地完成处理任务又可以降低制作成本。
1.1.2 模块方案比较、论证和选择(1) 检波反馈模块:为了得到稳定的放大增益,且达到要求的1dB的波动范围,首先要在输出端设置一个输出信号的幅值检测点,处理分析后合成反馈信号。
方案一:利用AD637作有效值检测,AD637使用简单,且精度较好,但是在我们测试时发现,它的高频响应并不是很好,因此我们试图采用其他的方案。
方案二:在隔除直流的前提下,交流信号的峰值与其有效值呈线性比例关系。
因此可以采用包络电路提取其峰值,经过包络电路后的信号为一直流信号,容易测得。
本次学生竞赛活动取名为“睿智杯”(或“励志杯”)
关于举办《ZSCS杯赛》实施办法本项赛事是由学院实验中心主办,中山市计算机学会协办,属于市级竞赛。
竞赛以09年全国大学生电子设计竞赛题目为基础,主要面向我院设有电子专业课程的各系学生。
利用原比赛基础,将现场比赛办法改成课外制作。
以充分发挥学生的智能和动手能力。
竞赛设计为两个阶段。
第一阶段为课外自由制作,完成时间为15天。
第二阶段为现场答辩和应对制作,根据比赛作品完成情况,设计不同的现场题目,以检验学生的基本功和临场应对能力。
本次竞赛本院学生均可报名参加。
以小组为单位,由学生自主报名,三人组成参赛小组。
自行邀请指导老师。
赛事分两步完成。
11月4日前报名。
11月18日至20日交作品,21、22组织评审(现场答辩和应对制作)工作。
11月底完成颁奖工作。
大赛的评审工作在实验大楼A301实验室完成。
现场制作比赛,在实验大楼A408实验室。
1、报名:参赛学生可于11月4日以前到教学楼3-216欧老师处报名,根据报名要求填写报名内容。
2、收集作品:11月18日到20日为作品收集时间,参赛选手将完成赛题基本要求的作品交到大赛指定地点(实验大楼A409丁老师处)。
根据作品的参赛情况,经过初评,通知获评审资格的选手参加作品演示和现场答辩(时间和地点和地点届时准确通知)。
3、作品评审:作品收集后,由大赛评委择时在实验中心301实验室对参赛选手演示的结果进行打分和对选手进行考评。
评分规则按各个题目规定的要求,各自评委打分,最后平均综合,确定进入复赛选手。
4、复赛:经评选进入复赛的选手到408实验室进行复赛。
复赛内容以基础电路制作为题。
要求各个小组独立制作,现场由监考人员监督。
各小组之间不得商量,交流。
现场制作的器材由实验中心准备。
5、本次大赛评审的内容参照全国竞赛的评比办法:1)、对作品的功能、技术指标的评比及性价比的评比。
2)、作品的制作工艺评比。
3)、对作品测试报告和论文的评比6、大赛机构:组委会:周艳明、杨华银、马云辉、顾晓勤、傅瑜评委:刘根据、石建国、丁其林、张正明、邓春健、刘宝军秘书处:丁其林、张志斌、欧建韶总顾问:杨华银7、奖项设置:一等奖:设3个名额二等奖:设5个名额三等奖:纪念奖若干名8、大赛题目:分以下六个题目,各参赛小组可选择一到两个题目进行参赛。
设计宽带直流放大器心得总结
100μF 1μF GND IN
连AD603输出 输入
R4 1.5kΩ
+5 5
Rf
3kΩ
至调零放大器 输出
R1 500Ω -5V R2 50kΩ D/A
+5V 0.1μF 7 2
宽带直流放大器
作者:张 超 董 卓 指导老师:宓 茜 梁 显
摘
要
本作品以单片机 MSP430G2553 为控制核心及数据处理核心, 采用可变增益放大器 AD603 作为提高增益的核心器件, 设计并制作了一个宽带直流放大器及所需的高效率直流稳压电源。 使用了多种抗干扰措施以减少噪声并抑制高频自激,该放大器电路结构简单,性能稳定,功 能完善,达到了各项设计指标,并具有零点自动校准功能,能较好地抑制直流零点漂移。
一、方案比较与选择
题目分析:综合分析题目要求,在较宽的信号带宽(0~10MHZ)内,实现最大电压增 益≥60dB,且能够连续调节增益或能够以 5dB 步距预置增益,是本题的最大难点,也是设计 的重点之一。 另一难点是后级率放大模块的设计要使最大输出电压正弦波有效值 Vorms≥10V。 要得到更好的性能指标,放大电路的零点漂移也是一个很难解决的问题。此外,在整个放大 器的设计中,要考虑其成本。
2.调零放大器电路
该部分为电压反馈型运放 OPA690 构成的一个加法电路,如图 C-2-3 所示。OPA690 具有 1800V/μ s 摆率,单位增益带宽积为 500MHz,完全能够将 AD603 输出信号放大 3 倍。由 D/A 转换器输出电压加在 OPA690 输入端,对 AD603 输出的直流偏置电压进行校正。OPA690 另 一路采用加法方式输入-5V, 调节双通道 D/A 转换器 TLV5638 输出的单极性电压 (0~4.096V) 变换为双极性电压。双通道 D/A 转换器 TLV5638 另一路为 AD603 输出控制电压;调零用的 采样 A/D 转换器利用 MSP430 的内部 A/D,节约了 A/D,降低了系统的成本。
数字电子电路 实验四 直流放大电路 实验报告
数字电子电路实验四直流放大电路实验报告1. 实验目的本实验旨在通过搭建直流放大电路,了解并掌握直流放大电路的基本原理和实验操作。
2. 实验器材- 直流电源- 电阻- 电容- 变阻器- 电压表- 电流表- 示波器3. 实验步骤1. 按照实验电路图搭建直流放大电路。
2. 调节电流表和电压表的量程,确保能够准确读取电流和电压值。
3. 使用示波器观察输入信号和输出信号的波形。
4. 调节变阻器,改变放大倍数,观察输出信号的变化。
5. 记录不同输入信号对应的输出信号的电压值,并绘制输出特性曲线。
4. 实验结果通过实验观察和记录,得到了直流放大电路的输出特性曲线如下图所示:根据实验结果,我们可以得出以下结论:1. 随着输入信号的增大,输出信号的幅度也增大,符合直流放大的特性。
2. 当输入信号超过某一临界值后,输出信号的幅度将趋于饱和,不能继续线性放大。
5. 实验总结通过本次实验,我们深入了解了直流放大电路的基本原理和实验操作。
我们成功搭建了直流放大电路,并观察到了输出特性曲线的变化。
实验结果与理论相符,证明了直流放大电路的有效性。
同时,在实验过程中我们还发现了一些问题和不足之处,例如电路中可能存在的干扰和噪声问题,需要进一步改进和优化电路设计。
以及操作过程中对电流表和电压表读数的准确性要求较高,需要注意操作细节。
通过本次实验,我们不仅加深了对直流放大电路的理论认识,同时也提高了实验技能和实验数据处理能力。
6. 参考资料- 课程讲义和教材- 相关电子电路实验指导书- 互联网相关学术论文和资料。
运算放大器的应用实验报告
运算放大器的应用实验报告运算放大器的应用实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元器件,具有高增益、高输入阻抗和低输出阻抗等特点。
它在现代电子电路中有着广泛的应用。
本实验旨在通过实际操作和测量,探索运算放大器在不同电路中的应用,并验证其性能。
一、直流放大电路实验:1. 实验目的:通过搭建直流放大电路,观察运算放大器的放大效果,并测量其放大倍数。
2. 实验步骤:(1)搭建直流放大电路,将运算放大器的正、负输入端分别连接到输入信号源和地线。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:通过实验数据的测量,我们得到了输入信号和输出信号的幅度数据,并计算了放大倍数。
结果显示,运算放大器能够将输入信号放大数倍,并且在一定频率范围内保持较好的线性放大特性。
二、反相放大电路实验:1. 实验目的:通过搭建反相放大电路,探索运算放大器的反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建反相放大电路,将运算放大器的正输入端接地,负输入端连接到输入信号源。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,反相放大电路能够将输入信号进行反向放大,并且放大倍数与输入信号的幅度成反比。
此外,随着输入信号频率的增加,输出信号的幅度逐渐下降,表明运算放大器的频率响应存在一定的限制。
三、非反相放大电路实验:1. 实验目的:通过搭建非反相放大电路,研究运算放大器的非反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建非反相放大电路,将运算放大器的正输入端连接到输入信号源,负输入端接地。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,非反相放大电路能够将输入信号进行非反向放大,并且放大倍数与输入信号的幅度成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年全国大学生电子设计竞赛【本科组】宽带直流放大器(C题)摘要:本宽带直放大器使用一片ad8039两级前置放大然后经过由VCA810组成的程控放大电路经过5M和10M的三阶无源滤波器再通过AD811精密运放和BUF634缓冲电路接负载输出,整个系统由单片机通过键盘控制,可以在手动与步进放大倍数之间调节,也可以通过按键调节5M和10M通道的滤波器,该系统性能指标良好,增益可以在0~66.8dB之间调节,在规定的带宽范围内幅度波动没有超过1dB,完成了题目的要求。
关键词:前置放大无源滤波步进放大Abstract:The broadband amplifier using a straight ad8039 two levels of preamplifier and then through a programmable amplifier circuit composed of VCA810 through a 5 m and 10 m of third-order passive filter through AD811 precision op-amp and BUF634 load output buffer circuit, the whole system is controlled by a single-chip microcomputer by keyboard, can step between magnification and manual adjustment, can also use buttons adjust the filter of 5 m and 10 m channel, the system performance is good, can be between 0 ~ 66.8 dB gain adjustment, amplitude fluctuations within the bandwidth of the provisions of no more than 1 dB, completed the topic request.Key Word:pre-amplification Passive filter Step amplification目录1. 系统设计 (1)1.1设计要求 (1)1.1.1设计任务 (1)1.1.2技术指标 (1)1.2方案比较与选择 (2)1.2.1可控增益放大方法比较与选择 (2)1.2.2功率输出部分方法比较与选择 (2)1.2.3直流稳压电源方案比较 (3)2. 单元电路设计及参数计算 (4)2.1前置放大模块 (4)2.2可控增益放大模块 (4)2.3 3dB截止频率为5MHz和10MHz滤波器模块 (5)3. 软件设计 (7)3.1程序总体流程图 (7)3.2程序清单(见附录2) (7)4.系统测试 (7)4.1测试仪器 (7)4.2测试结果 (8)5. 结束语 (10)参考文献 (10)附录 (10)附录1 主要元器件清单 (10)附录2 程序清单 (11)1.系统设计1.1设计要求1.1.1设计任务设计并制作一个宽带直流放大器及所用的直流稳压电源。
1.1.2技术指标(1)基本要求① 电压增益dB A v 40≥,输入电压有效值mV V i 20≤。
v A 可在0~40dB 范围内手动连续调节。
② 最大输出电压正弦波有效值V V O 2≥,输出信号波形无明显失真。
③ 3dB 通频带0~5MHz ;在0~4MHz 通频带内增益起伏dB 1≤。
④ 放大器的输入电阻Ω≥50,负载电阻()Ω±250。
⑤ 设计并制作满足放大器要求所用的直流稳压电源。
(2)发挥部分① 最大电压增益dB A v 60≥,输入电源有效值mV V i 10≤。
② 在dB A v 60=时,输出端噪声电压的峰—峰值V V ONPP 3.0≤。
③ 3dB 通频带0~10MHz;在0~9MHz 通频带内增益起伏dB 1≤。
④ 最大输出电压正弦波有效值V V O 10≥,输出信号波形无明显失真。
⑤ 进一步降低输入电压提高放大器的电压增益。
⑥ 电压增益v A 可预置并显示,预置范围为0~60dB ,步距为5dB (也可以连续调节);放大器的带宽可预置并显示(至少5MHz 、10MHz 两点)。
⑦ 降低放大器的制作成本,提高电源效率。
⑧ 其他(例如改善放大器性能的其它措施等)。
1.2方案比较与选择1.2.1可控增益放大方法比较与选择方案一:采用晶体管或场效应管控制增益主要利用场效应管的可变电阻区或者晶体管的压控电阻实现增益控制。
该方案采用大量的分立元件,电路复杂且稳定性差。
方案二:采用增益可调的运放来控制增益直接选取增益可调的运放,如VCA810、AD603。
其可调增益分别为-40dB-40dB、-10dB-30dB。
可以用单片机以dB为单位方便地预置增益。
为满足题目要求,若采用AD603,需两片级联。
经比较,选用方案二的VCA810。
1.2.2功率输出部分方法比较与选择方案一:采用分立元件采用分立元件,成本低,易于购买。
但设计调试难度太大,耗时长,短时间内手工制作难以保证性能指标及可靠性。
方案二:采用宽带运算放大器可采用宽带运算放大器,如AD811、THS3091、THS3001放大电压。
其中AD811为宽带电流反馈型运算放大器,-3 dB带宽为120 MHz (G=+2);THS3091为单路高压低失真电流反馈型运算放大器,带宽为210MHz(G=2);THS3001为超高速电流负反馈运算放大器,带宽为210MHz(G=2)。
经实验,采用AD811效果较好。
采用BUF634增大驱动电流。
BUF634为高速开环增益缓冲器,它可用于运算放大器的反馈环路内,以增加输出电流,消除热反馈并提高容性负载驱动。
对于低功耗的应用,BUF634静态电流,具有250mA输出、2000V/us压摆率和30MHz 带宽,均满足题目需求。
综上,我们选择AD831和BUF634进行功率放大。
1.2.3直流稳压电源方案比较方案一:线性稳压电源采用三端稳压芯片7818、7918、7805、7905及电容制作完成V5±,18±、V给各单元电路供电。
方案二:开关稳压电源此方案虽效率高,但理论电路复杂。
亦可采用开关稳压电源芯片,但实验要求采用制作开关稳压电源,才用稳压电源芯片恐不符合题目要求。
综上,选择方案一,制作直流稳压电源。
1.3方案论证输入信号先经过50 Ω阻抗匹配和前级放大,采用VCA810与后级电路相配合实现0~80dB范围内的增益控制。
信号经过5MHz(10MHz)滤波器后送入的功率放大电路,驱动50 Ω负载,最大输出电压有效值为10V。
使用继电器切换滤波器模块,实现5MHz、10MHz的通带选择。
单片机控制完成电压增益的可预置并显示、可连续调节以及带宽的可预置并显示。
信号经过滤波器后送入的功率放大电路,驱动50 Ω负载,最大输出电压有效值为10V。
图1.3 系统总体框图2. 单元电路设计及参数计算2.1前置放大模块图2.1 前置放大电路若采用一级AD8039进行10倍的放大,则达不到10MHz 以上带宽的要求。
于是采用两级放大,为保证输入电阻为50Ω,第一级放大采用同相比例放大。
第一级放大倍数558.31211=+=R R A ;第二级放大倍数05.3432==R R A ;前置放大倍数87.1021=⨯=A A A ,即放大20dB 。
2.2可控增益放大模块图2.2.1 程控增益放大电路VCA810为高增益变化范围、宽带的电压控制增益放大器,且其零漂较小。
其控制的增益的线性范围为-40dB~+40dB 。
)1(40+-=g G V A ,其中g V 为控制电压,范围在-2V~0V 。
VCA810的3脚接控制电压输入。
题目要求实现手动调节和单片机步进调节,采用单片机和继电器进行控制。
图2.2.2手动调节和步进调节电路2.3 3dB 截止频率为5MHz 和10MHz 滤波器模块根据题目要求,需满足3dB 通频带为0~5MHz 和0~10MHz 两种带宽。
设计采用两组3阶无源低通滤波器,3dB 通频带为0~5MHz 和0~10MHz ,带内波动小于0.1dB ,可由单片机控制加以切换。
图2.3.1 5M 滤波器图2.3.2 10M滤波器2.4 功率放大模图2.4 功率放大电路3.软件设计3.1程序总体流程图图3.1程序总体流程图3.2程序清单(见附录2)4.系统测试4.1测试仪器台式万用表,型号:UT802任意波形发生器,型号:YB32020示波器,型号:DXO-X2002A4.2测试结果(1)输入阻抗测试在输入端串接50Ω电阻,测量输入端电压峰峰值,通过计算可测的输出阻抗。
结果分析:经过测量,在不同带宽范围内均可满足输入阻抗≥50Ω。
(2)类型序号项目与指标测试记录基本要求(1)放大器增益电压增益>40dBVVi10min=VVo0.1=dBAV40=WPO2.0=增益手动连续调节0~40dB(2)输出电压最大输出电压有效值>2VVVO11=(3)-3dB通频带0~5MHzMHzf21=VVO11=MHzf41=VVO032.11=MHzf52=mVVO9502=0~4MHz通频带内增益起伏<1dB最大值=最小值=(4)负载电阻负载电阻(50±2)ΩΩ=50 OR类型序号项目与指标测试记录发挥部分(1)放大器增益电压增益>60dBmVVi10min=VVo10=dBAV60=WPO2.0=(2)-3dB通频带0~10MHzMHzf21=VVO101=MHzf92=VVO23.72=MHzf103=VVO68.63=0~9MHz通频带内增益起伏<1dB最大值=10V最小值=7.21V(3)输出电压最大电压有效值≥10VVVO5.11=(4)提高电压增益进一步降低输入电压提高放大器的电压增益,电压增益每提高2dBmVVi5min=VVO11=dBAv8.66=(5)可预置并显示VA可预置并显示VA可连续调节带宽并显示带宽可预置并显示5.结束语本设计利用AD8039实现前级放大、VCA810实现可控增益调节,采用三阶无源滤波完成3dB截止频率为5MHz和10MHz的要求,最后采用AD811和BUF634实现功率放大部分。
采用C8051F020单片机进行DAC、按键控制和LCD显示。
在系统设计的过程中,我们遇到了很多问题,VCA810输出带宽不够、滤波器截止频率和通频带内增益起伏不满足1dB要求、AD811放大倍数不对、输出带宽过小、单片机控制后波形很不好等问题。