焊接接头常见工艺缺陷预防措施汇总(一)
焊接常见缺陷的预防措施

焊接常见缺陷的预防措施1、常见的类型:气孔、夹渣、未熔合、未焊透、错边、咬边、夹钨。
2、生产的影响因素:人员关键要素;母材和焊材决定要素;焊接设备状况重要要素;标准/规范的执行状况施工管理要素;环境管理状况施工管理要求。
3、各种缺陷的预防措施 3.1气孔的控制(1)按国家标准要求,加强施工环境控制,现场建立合理的施工清洁区。
(2)按焊接施工方案要求进行坡口清理,严格控制坡口两侧的清洁度。
(3)加强焊工基本技能的培训,控制焊接电弧的合适长度。
(4)严禁管内有穿堂风,采取端部封堵等措施。
(5)加强现场通风条件,控制空气潮湿度小于等于90%。
(6)采用低氢型焊条。
(7)控制氩气纯度大于等于99.99%。
(8)选择设备性能稳定的电焊机且标定合格。
(9)按工艺评定要求,控制氩气流量,避免出现紊流。
3.2夹渣的控制(1)加强焊工基本技能的培训,控制铁水与熔渣分离。
(2)按焊接工艺数据单要求,控制焊接电流。
(3)加强焊接过程的层道清理。
(4)使用合适规格的焊条。
(5)焊接接地线应该在工件中合理接地,控制电弧偏吹。
3.3未熔合的控制(1)加强焊工基本技能的培训,消除根部未熔合缺陷产生。
(2)注意层间修整,避免出现沟槽及运条不当而导致未熔合。
(3)严格按WPS要求,采用合理的焊接电流。
(4)正确处理钨丝的打磨角度和焊接停留时间。
3.4未焊透的控制(1)加强坡口质量检查,控制合理的钝边量。
(2)加强装配质量检查,严把装配质量关,控制合理的错边量。
(3)加强标准培训及伪缺陷在结构的模拟检验,避免内部缺陷的错判。
(4)加强焊工基本技能的培训。
(5)按焊接工艺数据单要求采用合理的焊接电流。
(6)使用合适规格的焊材。
(7)正确处理钨丝的打磨角度。
3.5错边的控制(1)加强原材料的验收质量,控制两部件的壁厚差达到标准要求。
(2)加强质量检验人员在现场对装配质量的检查,严把装配质量关,控制合理的错边量。
(3)加强焊工自检工作,按要求进行点焊,达不到要求授权拒焊,确保装配质量。
常见焊接缺陷及防止措施

常见焊接缺陷及防止措施(一) 未焊透【1】产生原因:(1)由于坡口角度小,钝边过大,装配间隙小或错口;所选用的焊条直径过大,使熔敷金属送不到根部。
(2)焊接电源小,远条角度不当或焊接电弧偏向坡口一侧;气焊时,火焰能率过小或焊速过快。
(3)由于操作不当,使熔敷金属未能送到预定位臵,号者未能击穿形成尺寸一定的熔孔。
(4)用碱性低氢型焊条作打底焊时,在平焊接头部位也容易产生未焊透。
主要是由于接头时熔池溢度低,或采用一点法以及操作不当引起的。
【2】防止措施:(1)选择合适的坡口角度,装配间隙及钝边尺寸并防止错口。
(2)选择合适的焊接电源,焊条直径,运条角度应适当;气焊时选择合适的火焰能率。
如果焊条药皮厚度不均产生偏弧时,应及时更换。
(3)掌握正确的焊接操作方法,对手工电弧焊的运条和气焊,氩弧焊丝的送进应稳,准确,熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。
(4)用碱性低氢型焊条焊接16MN尺寸钢试板,在平焊接关时,应距离焊缝收尾弧?10~15MM的焊缝金属上引弧;便于使接头处得到预热。
当焊到接头部位时,将焊条轻轻向下一压,听到击穿的声音之后再灭弧,这样可消除接头处的未焊透。
如果将接头处铲成缓坡状,效果更好。
(二) 未熔合【1】产生原因:(1)手工电弧焊时,由于运条角度不当或产生偏弧,电弧不能良好地加热坡口两侧金属,导致坡口面金属未能充分熔化。
(2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。
(3)横接操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位臵未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。
(4)气悍时火焰能率小,氩弧焊时电弧两侧坡口的加热不均,或者坡口面存在污物等。
焊接常见缺陷的预防措施

焊接常见缺陷的预防措施引言焊接技术是现代制造业中必不可少的一种加工技术,焊接质量的好坏直接影响到焊接件的使用寿命和安全性。
而焊接常见缺陷则在一定程度上影响着焊接件的质量和使用效果,如焊缝裂纹、气孔、夹渣、质量不符合标准等。
为了提高焊接质量和保障焊接安全,本文将就焊接常见缺陷的原因和预防措施进行详细介绍。
焊缝裂纹缺陷原因焊缝裂纹是指在焊接过程中产生的裂纹,影响着焊接件的质量和使用寿命。
焊缝裂纹主要由以下几种原因造成:1.焊接接受应力过大,使得焊缝裂开;2.焊缝结构设计不合理,强度不足;3.材料质量问题;4.焊接参数不合适,影响了焊缝的质量。
预防措施预防焊缝裂纹,需要从以下几个方面着手:1.控制焊接接受应力:在焊接过程中,需要控制焊接接受应力,避免过大的应力导致焊缝裂纹。
2.合理设计结构:焊接结构设计应保证焊缝的强度足够,并且需要进行细致的分析和计算,避免设计不合理造成焊缝裂纹。
3.确保材料质量:在选择焊料和母材的时候,应根据实际需要选择质量优秀的材料。
4.控制焊接参数:根据实际需要,选择合适的焊接参数进行焊接,保证焊缝质量。
气孔缺陷原因气孔指的是焊缝内部存在空洞或者气泡。
气孔往往由以下几种原因造成:1.焊接材料表面存在油脂等物质;2.焊接过程中,气体没有完全排出;3.焊接技术水平不高,焊接不均匀;4.焊接过程中的温度和环境问题。
预防措施预防气孔的产生,需要从以下几方面注意:1.确保焊接材料表面清洁,去除油脂等不良物质;2.焊接前,需要进行充分的预热和退火工作,确保焊接材料温度符合要求;3.焊接过程中,需要控制气体流速和压力,保证焊接材料内部的气体充分排放;4.焊接过程中,需要控制焊接技术,保证焊接均匀;5.确保焊接过程中的温度和环境符合要求。
夹渣缺陷原因夹渣是指焊缝内部存在非金属物质,影响着焊接件的质量。
夹渣往往由以下几种原因造成:1.焊接材料内部存在杂质;2.焊接参数不合适;3.焊接结构设计不合理。
焊接缺陷及预防措施

焊接缺陷及预防措施焊接是制造业中非常重要的一个工艺,它可以将两个或更多的金属部件结合在一起,使其成为一个整体。
焊接技术的应用范围非常广泛,可以用于制造工业、建筑业、汽车工业、航空工业等领域。
然而,在实际操作中,焊接缺陷的问题也经常出现。
本文将介绍几种常见的焊接缺陷和预防措施。
一、焊接缺陷的类型1.沉积物沉积物是一种常见的焊接缺陷,它指的是表面或内部附着在焊接深度中的异物。
沉积物可能是焊接材料中的杂质、坩埚涂层等,也可能是焊接前表面存在的油污和灰尘等。
沉积物可能会导致焊缝出现微孔、气泡、裂缝等现象。
2.接触不良接触不良是焊接过程中又一个常见的缺陷。
它指的是焊接接头内部接触不良,造成焊接材料之间无法充分融合,导致焊缝表面出现裂缝、气孔等缺陷,从而影响焊缝的强度和密封性。
3.气孔气孔是焊接中比较严重的一种缺陷,它通常是由于焊接接头中存在过多的气体,或在焊接过程中材料表面吸收大气中的水蒸气等原因引起的。
气孔损伤焊缝的外观和机械性能,特别是当焊接部位处于极端载荷下时。
二、焊接缺陷的预防措施1.洁净表面确保焊接接头的表面清洁,去除油污和灰尘等杂质。
在焊接前,清洗焊接接头表面并加工整齐的接头边缘将有助于焊接过程的稳定性和精度。
2.合适的焊接材料选择具有合适力学特性和化学成分的焊接材料,并且需要适配与被焊接材料的特性和属性。
在选择合适的焊接材料时,需要考虑到材料的强度、延展性、抗热、耐腐蚀性能等因素。
3.适当的焊接方法应选择适当的焊接方法和焊接参数,确保焊接过程中材料的稳定性和质量。
同时,应遵循焊接规程的建议,控制好焊接温度、焊接速度、保护气环境等参数。
4.检查和评估在焊接过程中,应定期检查和评估焊接质量和焊缝的特征。
检查焊缝的外观、尺寸和形状等特征,以确保焊接的质量和完整性。
结论在焊接过程中,焊接缺陷的出现是非常常见的。
要预防焊接缺陷,需要实施一系列的措施,例如保持表面干净,选择合适的焊接材料和方法以及定期检查焊接质量等。
焊接工艺常见缺陷和整改措施总结(一)

焊接工艺常见缺陷和整改措施总结(一)焊接工艺常见缺陷和整改措施总结焊接是工业、制造业中常见的一种连接技术,它的优劣直接影响着焊接件的质量和使用寿命。
但是,焊接工艺中常会出现一些缺陷,这些缺陷不仅会降低焊接件的使用寿命,还会对生产和使用造成不良影响。
本文将总结焊接工艺常见缺陷和整改措施。
1. 焊接变形焊接变形是焊接工艺中常见的一种缺陷,它会导致焊接件的尺寸和形状发生变化,从而影响使用。
为了消除焊接变形,需要采取一些措施,例如:(1)采用适当的加工顺序和焊接顺序;(2)控制焊接温度和速度;(3)合理改善工件加工和组装精度。
2. 焊接裂纹焊接裂纹是一种严重的焊接缺陷,它会导致焊接件的破裂和失效。
为了消除焊接裂纹,需要采取一些措施,例如:(1)采用适当的焊接工艺参数和材料;(2)消除焊接区域的缺陷和杂质;(3)控制焊接过程中的应力和变形。
3. 焊接气孔焊接气孔是一种常见的焊接缺陷,它会导致焊接件的强度和气密性降低。
为了消除焊接气孔,需要采取一些措施,例如:(1)采用干燥的焊接材料和设备;(2)控制焊接过程中的气体成分和压力;(3)避免焊接材料和基材的氧化和蒸发。
4. 焊接夹渣焊接夹渣是一种焊接缺陷,它会导致焊接件的强度降低和损坏。
为了消除焊接夹渣,需要采取一些措施,例如:(1)采用适当的焊接工艺参数和材料;(2)保持焊接区域的清洁和干燥;(3)控制焊接过程中的焊接速度和焊丝输送。
5. 焊接未熔合焊接未熔合是一种焊接缺陷,它会导致焊接件的强度和连接性降低。
为了消除焊接未熔合,需要采取一些措施,例如:(1)加强预热和焊接温度控制;(2)采用适当的焊接顺序和焊接角度;(3)检查焊接材料和基材的表面情况。
综上所述,焊接工艺中常见的缺陷和整改措施是多种多样的,采取正确的措施和方法可以有效地消除这些缺陷,提高焊接件的质量和使用寿命。
因此,在焊接过程中,应仔细分析焊接缺陷的原因,采取合理的整改措施,确保焊接质量和安全。
焊接中常见的缺陷及防治措施

1、现象焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。
2、原因分析焊缝成型差的原因有:焊件坡口角度不当或者装配间隙不均匀;焊口清理不干净;焊接电流过大或者过小;焊接中运条(枪)速度过快或者过慢;焊条(枪)摆动幅度过大或者过小;焊条(枪)施焊角度选择不当等。
3、防治措施⑴焊件的坡口角度与装配间隙必须符合图纸设计或者所执行标准的要求。
⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。
⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。
⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡与操作技能要求,选择合理的焊接电流参数、施焊速度与焊条(枪)的角度。
4、管理措施⑴加强焊后自检与专检,发现问题及时处理;⑵对于焊缝成型差的焊缝,进行打磨、补焊;⑶达不到验收标准要求,成型太差的焊缝实行割口或者换件重焊;⑷加强焊接验收标准的学习,严格按照标准施工。
1、现象管道焊口与板对接焊缝余高大于 3 ㎜;局部浮现负余高;余高差过大;角焊缝高度不够或者焊角尺寸过大,余高差过大。
2、原因分析焊接电流选择不当;运条(枪)速度不均匀,过快或者过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。
3、防治措施⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数;⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢;⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀;⑷注意保持正确的焊条(枪)角度。
4、管理措施⑴加强焊工操作技能培训,提高焊缝盖面水平;⑵对焊缝进行必要的打磨与补焊;⑶加强焊后检查,发现问题及时处理;⑷技术员的交底中,对焊角角度要求做详细说明。
三、焊缝宽窄差不合格1、现象焊缝边缘不匀直,焊缝宽窄差大于3 ㎜。
2、原因分析焊条(枪)摆动幅度不一致,部份地方幅度过大,部份地方摆动过小;焊条(枪)角度不合适;焊接位置艰难,妨碍焊接人员视线。
焊接焊缝的缺陷与预防措施
焊接焊缝的缺陷与预防措施焊接是一种常见且广泛应用的金属连接方法,但焊接过程中会出现焊缝缺陷,对于焊接质量和强度产生不利影响。
因此,了解焊接焊缝的缺陷形式及其预防措施是至关重要的。
本文将介绍焊接焊缝的几种常见缺陷,并提出相应的预防措施。
1.气孔气孔是焊接中最普遍的缺陷之一。
气孔的形成是由于焊接过程中的气体未能完全排除,被困在焊缝内部形成的孔洞。
气孔的存在会导致焊缝强度降低,并可能在受力时产生应力集中,从而导致焊接断裂。
预防措施:- 检查焊接材料的表面,确保其干净无油、无水,以减少气孔的生成。
- 采用适当的焊接参数,控制焊接热输入,避免焊料表面温度过高,减少气孔的生成。
- 选择合适的焊接材料和焊接电极,以减少气孔的生成。
2.夹渣夹渣是指焊缝中存在的夹杂物,常见的有氧化物、矿物和其他金属颗粒等。
夹渣的存在会降低焊接接头的强度,甚至引发焊缝的开裂。
预防措施:- 清理工件和焊条的表面,确保无污染物和杂质,降低夹渣的产生。
- 采用正确的焊接技术和操作方法,确保焊接过程中夹渣容易浮起并排出。
- 检查焊接设备和工具的状态,确保其清洁和良好维护,以减少夹渣的生成。
3.裂纹焊接过程中的热应力和冷却过程中的收缩应力可能导致焊接接头出现裂纹。
裂纹的出现会降低焊接接头的强度和密封性。
预防措施:- 选择合适的焊接方法,控制焊接热输入和焊接速度,减少焊接产生的热应力。
- 采用适当的预热和后热处理工艺,以减小接头热应力和冷却收缩应力。
- 采用合适的焊接顺序,避免焊缝局部的过快冷却和热应力集中。
4.热裂纹热裂纹是焊缝在焊接过程中产生的一种裂纹,通常发生在高温下。
它是由于焊接过程中的热引起焊接材料在固态时的形变不均匀,产生内部应力而引起的。
预防措施:- 选择合适的焊接方法和工艺参数,避免焊接材料过多的热输入。
- 采用适当的焊接顺序,避免焊接接头局部过快冷却和热应力集中。
- 进行预热和后热处理,以减小热裂纹的发生。
总结:为了保证焊接接头的质量和强度,我们应该充分了解焊接焊缝缺陷的形成原因,并采取相应的预防措施。
常见的焊接缺陷及产生原因和预防措施
(1)焊缝尺寸不符合要求:如焊缝超高、超宽、过窄、高低差过大、焊缝过渡到母材不圆滑等。
(2)焊接表面缺陷:如咬边、焊瘤、内凹、满溢、未焊透、表面气孔、表面裂纹等。
(3)焊缝内部缺陷:如气孔、夹渣、裂纹、未熔合、夹钨、双面焊的未焊透等。
(4)焊接接头性能不符合要求:因过热、过烧等原因导致焊接接头的机械性能、抗腐蚀性能降低等。
W18Cr4V(高速工具钢)-45钢棒
对接电阻焊缝中的夹渣断口照片
钢板对接焊缝X射线照相底片
V型坡口,手工电弧焊,局部夹渣
钢对接焊缝X射线照相底片
V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨
(5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
焊接缺陷对焊接构件的危害,主要有以下几方面:
(1)引起应力集中。焊接接头中应力的分布是十分复杂的。凡是结构截面有突然变化的部位,应力的分布就特别不均匀,在某些点的应力值可能比平均应力值大许多倍,这种现象称为应力集中。造成应力集中的原因很多,而焊缝中存在工艺缺陷是其中一个很重要的因素。焊缝内存在的裂纹、未焊透及其他带尖缺口的缺陷,使焊缝截面不连续,产生突变部位,在外力作用下将产生很大的应力集中。当应力超过缺陷前端部位金属材料的断裂强度时,材料就会开裂破坏。
焊接接头中常见工艺缺陷产生的原因及防止方法
聂振海整理编写一、裂纹焊接裂纹,按照产生地机理可分为:冷裂纹、热裂纹、再热裂纹和层状撕裂裂纹几大类.冷裂纹冷裂纹是在焊接过程中或焊后,在较低地温度下,大约在钢地马氏体转变温度(即点)附近,或℃以下(或<,为以绝对温度表示地熔点温度)地温度区间产生地,故称冷裂纹.文档收集自网络,仅用于个人学习冷裂纹又可分为:延迟裂纹、淬火裂纹和低塑性脆化裂纹.延迟裂纹,也称氢致裂纹,可以延至焊后几小时、几天、几周甚至更长地时间再发生,会造成预料不到地重大事故,所以具有重大地危险性.文档收集自网络,仅用于个人学习、产生地条件:①焊接接头形成淬硬组织.由于钢地淬硬倾向较大,冷却过程中产生大量地脆、硬,而且体积很大地马氏体,形成很大地内应力.接头地硬化倾向:碳地影响是关键,含碳和铬量越多、板越厚、截面积越大、热输入量越小,硬化越严重.文档收集自网络,仅用于个人学习②钢材及焊缝中含扩散氢较多,氢原子在缺陷处(空穴、错位)聚积(浓集)形成氢分子,氢分子体积较氢原子大,不能继续扩散,不断聚积,产生巨大地氢分子压力,甚至会达到几万个大气压,使焊接接头开裂.许多情况下,氢是诱发冷裂纹最活跃地因素.文档收集自网络,仅用于个人学习③焊接拉应力及拘束应力较大(或应力集中)超过接头地强度极限时产生开裂.2、产生地原因:可分为选材和焊接工艺两个方面.①选材方面:a、母材与焊材选择匹配不当,造成悬殊地强度差异;b、材料中含碳、铬、钼、钒、硼等元素过高,钢地淬硬敏感性增加.②焊接工艺方面:a、焊条没有充分烘干,药皮中存在着水分(游离水和结晶水);焊材及母材坡口上有油、锈、水、漆等;环境湿度过大(>);有雨、雪污染坡口.以上地水分及有机物,在焊接电弧地作用下分解产生,使焊缝中溶入过饱和地氢.文档收集自网络,仅用于个人学习b、环境温度太低;焊接速度太快;焊接线能量太少.会使接头区域冷却过快,造成很大地内应力.c、焊接结构不当,产生很大地拘束应力.d、点焊处已产生裂纹,焊接时没有铲除掉;咬边等应力集中处引起焊趾裂纹;未焊透等应力集中处引起焊根裂纹;夹渣等应力集中处引起焊缝中裂纹.文档收集自网络,仅用于个人学习、防止方法:可以从选材和焊接工艺两个方面着手.①正确地选材.选用碱性低氢型焊条和焊剂,减少焊缝金属中扩散氢地含量;搞好母材和焊材地选择匹配;在技术条件许可地前提下,可选用韧性好地材料(如低一个强度等级地焊材),或施行“软”盖面,以减小表面残余应力;必要时,在制造前对母材和焊材进行化学分析、机械性能及可焊性、裂纹敏感性试验. 文档收集自网络,仅用于个人学习②焊接工艺方面.、严格地按照试验得出地正确工艺规范进行焊接操作.主要包括:严格地按规范进行焊条烘干;选择合适地焊接规范及线能量,合理地电流、电压、焊接速度、层间温度及正确地焊接顺序;对点焊进行检查处理;搞好双面焊地清根等;仔细清理坡口和焊丝,除去油、锈和水分.文档收集自网络,仅用于个人学习、选择合理地焊接结构,避免拘束应力过大;正确地坡口形式和焊接顺序;降低焊接残余应力地峰值.、焊前预热、焊后缓冷、控制层间温度和焊后热处理,是可焊性较差地高强度钢和不可避免地高拘束结构形式,防止冷裂纹行之有效地方法.预热和缓冷可减缓冷却速度(延长△℃停留时间),改善接头地组织状态,降低淬硬倾向,减少组织应力;焊后热处理可消除焊接残余应力,减少焊缝中扩散氢地含量.在多数情况下,消除应力热处理应在焊后立即进行.文档收集自网络,仅用于个人学习、焊后立即锤击,使残余应力分散,避免造成高应力区,是局部补焊时防止冷裂纹行之有效地方法之一.、在焊缝根部和应力比较集中地焊缝表面,(热影响区受到地拘束应力较低),采用强度级别较低地焊条,往往在高拘束度下取得良好地效果.文档收集自网络,仅用于个人学习、采用惰性气体保护焊,能最大地控制焊缝含氢量,降低冷裂纹敏感性,所以,应大力推广、焊接.文档收集自网络,仅用于个人学习(二)层状撕裂层状撕裂是冷裂纹地一种特殊形式.主要是由于钢板内存在着分层(沿轧制方向)地夹杂物(特别是硫化物),在焊接时产生地垂直于轧制方向(板厚方向)地拉伸应力作用下,在钢板中热影响区或稍远地地方,产生“台阶”式,与母材轧制表面平行地层状开裂.产生在字型、字型厚板地角焊接接头中.文档收集自网络,仅用于个人学习提高钢板质量,减少钢材中层状夹杂物,从结构设计和焊接工艺方面采取措施,减少板厚方向地焊接拉伸应力,可防止层状撕裂.厚板焊接前,进行板材地超声波和坡口渗透探伤,检查分层夹杂物情况,如有层状夹杂物存在,可设法避开或事先修、磨处理.文档收集自网络,仅用于个人学习(三)热裂纹热裂纹是在高温下产生地,从凝固温度范围至以上温度,所以称热裂纹,又称高温裂纹.如果材料中存在着较多地低熔点共晶杂质元素(、、等)和较多地晶格缺陷,在焊接熔池结晶过程中,就容易出现晶界偏析,偏析出现地物质多为低熔点共晶(如:—、—、—、—)和杂质,它们在结晶过程中,以液态间层存在,形成抗变形能力很低地液态薄膜,相应地液态相存在地时间增长,最后结晶凝固,而凝固后地强度也极低,当焊接拉应力足够大时,会将液态间层拉开,或在其凝固后不久被拉断形成裂纹.文档收集自网络,仅用于个人学习此外,如果母材地晶界上也存在着低熔点共晶和杂质时,则在加热温度超过其熔点地热影响区内,这些低熔点共晶物将熔化成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂纹.文档收集自网络,仅用于个人学习热裂纹都是沿奥氏体晶界开裂,呈锯齿状,所以,又称晶间裂纹.多出现在焊缝中间,特别是弧坑处,多数在焊缝柱状晶地会合处,即焊缝凝固地最终位置,也是最容易引起低熔点共晶偏析地位置;少数出现在热影响区.焊缝中地纵向裂纹一般发生在焊道中心,与焊缝长度方向平行;横向裂纹一般沿柱状晶界发生,并与母材地晶界相连,与焊缝长度方向垂直.当裂纹贯穿表面与空气相通时,断口表面呈氧化色彩(如蓝灰色等),有地焊缝表面地宏观裂纹中充满熔渣.文档收集自网络,仅用于个人学习、产生地原因①选材方面:材料中含硫过多产生“热脆”;含铜过高产生“铜脆”;含磷过高产生“冷脆”.②焊接工艺方面:镍基不锈钢,焊接顺序不当或层间温度过高、热输入量过大、冷却速度太慢;坡口形式不当(焊缝形状系数ψ≤地窄深焊缝),单层单道焊时易产生焊缝中心偏析裂纹;弧坑保护不好,由于偏析作用,易产生弧坑热裂纹;多次返修会产生晶格缺陷聚集,形成多边化热裂纹.文档收集自网络,仅用于个人学习、防止方法由于热裂纹地产生与应力地因素有关,所以,防止方法也要从选材和焊接工艺两个方面着手.①选材方面:、限制钢材和焊材中,易产生偏析地元素和有害杂质地含量,特别是、、地含量,因为它们不仅形成低熔点共晶,而且还促进偏析.≤热裂纹敏感性可大大降低.必要时对材料进行化学分析、低倍检验(如硫印等).文档收集自网络,仅用于个人学习、调节焊缝金属地化学成分,改善组织、细化晶粒,提高塑性,改变有害杂质形态和分布,减少偏析,如采用奥氏体加小于地铁素体地双相组织.文档收集自网络,仅用于个人学习、提高焊条和焊剂地碱度,以减低焊缝中杂质地含量,改善偏析程度.②焊缝工艺方面:、选择合理地坡口形式,焊缝成型系数ψ>,避免窄而深地“梨形”焊缝,(焊接电流过大也会形成“梨形”焊缝),防止柱状晶在焊道中心会合,产生中心偏析形成脆断面;采用多层多道焊,打乱偏析聚集.文档收集自网络,仅用于个人学习、控制焊接规范:<>采用较小(适当)地焊接线能量,对于奥氏体(镍基)不锈钢应尽量采用小地焊接线能量(不预热、不摆动或少摆动、快速焊、小电流)、严格掌握层间温度,以缩短焊缝金属在高温区地停留时间;文档收集自网络,仅用于个人学习<>注意收弧时地保护,收弧要慢并填满弧坑,防止弧坑偏析产生热裂纹;<>尽量避免多次返修,防止晶格缺陷聚集产生多边化热裂纹;<>采取措施尽量降低接头应力,避免应力集中,并减少焊缝附近地刚度,妥善安排焊接次序,尽量使大多数焊缝在较小地刚度下焊接,使其有收缩地余地.文档收集自网络,仅用于个人学习(四)再热裂纹再热裂纹是指一些含有钒、铬、钼、硼等合金元素地低合金高强度钢、耐热钢地焊接接头,再加热过程中(如消除应力退火、多层多道焊及高温工作等),发生在热影响区地粗晶区,沿原奥氏体晶界开裂地裂纹,也有称其为消除应力退火裂纹(裂纹).文档收集自网络,仅用于个人学习℃附近有一敏感区,超过℃敏感性减弱.再热裂纹起源于焊缝热影响区地粗晶区,具有晶界断裂特征.裂纹大多数发生在应力集中地部位.防止措施:①选材时应注意能引起沉淀析出地碳化物形成元素,尤其是地含量.必须采用高钢材时,焊接及热处理时要特别加以注意.文档收集自网络,仅用于个人学习②热处理时避开再热敏感区,可减少再热裂纹产生地可能性,必要时热处理前做热处理工艺试验.③尽量减少残余应力和应力集中,减少余高、消除咬边、未焊透等缺陷,必要时将余高和焊趾打磨圆滑;提高预热温度,焊后缓冷,降低残余应力.文档收集自网络,仅用于个人学习④适当地线能量,防止热影响区过热,晶粒粗大.⑤在满足设计要求地前提下,选用低一个强度等级地焊条,让其释放一部分由热处理过程消除地应力,(让应力在焊缝中松弛),对减少再热裂纹有好处.文档收集自网络,仅用于个人学习二、未熔合未熔合是指熔焊时,焊道与母材之间、焊道与焊道之间、点焊时焊点与母材之间,未完全熔化结合地部分.、产生地原因:产生未熔合地根本原因是焊接热量不够,被焊件没有充分熔化造成地.主要原因有:①电流太小;②焊速太快;③电弧偏吹;④操作歪斜;⑤起焊时温度太低;⑥焊丝太细;⑦极性接反,焊条熔化太快,母材没有充分熔化;⑧坡口及先焊地焊缝表面上有锈、熔渣及污物.文档收集自网络,仅用于个人学习这些原因都造成焊材早熔化,而被焊母材温度低,没有熔化,熔化地焊材金属沾附到焊件上. 、防止措施:①选择适当地电流(稍大)、焊速(稍慢),正确地极性,注意母材熔化情况;②清除干净坡口及前道焊缝上地熔渣及赃物;③起焊时要使接头充分预热,建立好第一个熔池;④克服电弧偏吹.注意焊条角度,照顾坡口两侧地熔化情况;三、未焊透未焊透是指焊接时接头根部未完全熔透地现象.另,焊缝金属与母材之间,未被电弧熔化而留下地空隙.常发生在单面焊根部和双面焊地中间.(—母材金属之间没有熔化,熔敷金属没有进入接头根部地缺陷.)、产生地原因:①坡口及装配方面:间隙过小;钝边太厚;坡口角度太小;坡口歪斜;有内倒角地坡口角度太大;错口严重;②工艺规范方面:电流过小;焊速过大;电弧偏吹;起焊处温度低;极性接反;③操作方面:焊条太粗;操作歪斜;双面焊时清根不彻底;坡口根部有锈、油、污垢,阻碍基本金属很好地熔化.、防止措施:①控制好坡口尺寸:间隙、钝边、角度及错口等;②控制电流、极性和焊速;使接头充分预热,建立好第一个熔池;③控制焊条直径和焊接角度;克服电弧偏吹;④双面焊清根一定要彻底;⑤坡口及钝边上地油、锈、渣、垢一定要清理干净.四、气孔气孔是指焊接时,熔池中地气泡在凝固时未能逸出,而残留下来形成地空穴.根据气孔产生地部位不同,可分为内部气孔和外部气孔;根据分布地情况可分为单个气孔、涟状气孔和密集气孔;根据气孔产生地原因和条件不同,其形状有球形、椭圆形、旋涡状和毛虫状等.文档收集自网络,仅用于个人学习、产生地原因:形成气孔地气体主要来源于:、大气:空气湿度太大,超过,水分分解,氢气、氧气侵入;收弧太快,保护不好,空气中地气侵入;电弧太长,空气中地气侵入;文档收集自网络,仅用于个人学习、溶解于母材、焊丝和焊条钢芯中地气体,药皮和焊剂中地水和气体:<>焊条烘干温度太低、保温时间太短;<>焊条过期失效;<>氩气纯度不够,保护不良;<>焊条烘干温度过高,使药皮成分变质,失去保护作用;电流过大,药皮发红失效,失去保护作用,空气中地气侵入;<>焊芯锈蚀、焊丝清理不净、焊剂混入污物.文档收集自网络,仅用于个人学习、焊材、母材上地油、锈、水、漆等污物,分解产生气体;、操作原因引起地气孔:<>运条速度太快,气泡来不及逸出;<>焊丝填加不均匀,空气侵入;<>埋弧焊时,电弧电压过高,网路电压波动过大,空气侵入.文档收集自网络,仅用于个人学习、防止措施:①严格控制焊条地烘干温度和保温时间;②不使用过期失效地焊材;使用符合标准要求地保护气体(氩气等);③彻底清理坡口及焊丝上地油、锈、水、漆等污物;④电弧长度要适当,防止气侵入,碱性焊条尤其要采用短弧;⑤搞好接头和收弧.<>充分预热接头,建立好第一个熔池,使上一个收弧处地气体消除掉;<>收弧要慢,填满弧坑,采用“回焊法”等,使气、渣充分保护好熔池,防止气侵入;<>多层多道焊地各层各道地接头要错开,防止气孔密集(上下重合);文档收集自网络,仅用于个人学习⑥适当增加热输入量,降低焊接速度,以利气泡逸出.五、夹渣夹渣是指焊后残留在焊缝中地非金属夹杂物.主要是由于操作原因,熔池中地熔渣来不及浮出,而存在于焊缝之中.文档收集自网络,仅用于个人学习、产生原因:①坡口角度太小,运条、清渣困难;②运条太快,熔渣来不及浮出;③焊接电流太小,熔深太小;④运条时坡口两侧停留时间短,而在焊缝中心过度太慢,使得焊缝中心堆高,坡口两侧形成死角,夹渣清理不出来;焊缝成型粗劣;文档收集自网络,仅用于个人学习⑤前一层地熔渣清理不干净;接头处理不彻底;坡口处有锈、垢、泥沙等;⑥焊条涂料中含碳成分过高.、防止措施:①彻底清理坡口地油污、泥沙、锈斑;彻底清理前焊道熔渣;②适当调节(加大)焊接电流;控制焊接速度,造成熔渣浮出条件;③正确掌握操作方法,使焊缝表面光滑,焊缝中心不堆高;④选择优质焊条.六、夹钨手工钨极氩弧焊过程中,由于某些原因,使钨极强烈地发热,端部熔化、蒸发,使钨过渡到焊缝中,并残留在焊缝内形成夹钨.文档收集自网络,仅用于个人学习、产生原因:①当焊缝电流过大,超过极限电流值,或钨极直径太小时,使钨极强烈地发热、端部熔化;②氩气保护不良,引起钨极烧损;③炽热地钨极触及熔池或焊丝,而产生地飞溅等,均会引起焊缝夹钨.、防止措施:①根据工件地厚度,选择相应地钨极直径和焊接电流;②使用符合标准要求纯度地氩气;③施焊时采用高频振荡器引弧,在不防碍操作情况下,尽量采用短弧,以增强氩气保护效果;④操作要仔细,不使钨极触及熔池和焊丝;⑤经常修磨钨极端部.。
焊接中常见的缺陷及预防措施
焊接中常见的缺陷及预防措施焊接过程中常见的缺陷包括焊缝夹渣、焊缝裂纹、气孔和熔胀等问题。
下面将对每个缺陷进行详细介绍,并提供预防措施。
1.焊缝夹渣:焊缝夹渣是指焊缝中残留有固态或气态的夹杂物或渣滓。
夹渣会影响焊接质量,并减少焊缝的机械性能。
防止焊缝夹渣的措施包括:-在焊接前,确保接头表面清洁,去除油污、水分和氧化物等。
-使用合适的焊接电流和电压,以避免产生过多的熔池,从而减少夹渣的可能性。
-控制焊接速度,使熔池能够适当冷却,防止夹渣的固化。
-使用合适的焊接材料和保护气体,以减少氧化物生成的机会。
2.焊缝裂纹:焊缝裂纹是焊接过程中产生的裂纹,主要分为冷裂纹、热裂纹和应力裂纹等。
焊缝裂纹会降低焊接接头的强度和密封性。
防止焊缝裂纹的措施包括:-控制焊接热输入,避免产生过高的焊接温度,从而减少热应力。
-在焊接过程中施加适当的预应力,以减轻焊接接头的应力集中。
-使用适当的焊接工艺,如预热、热处理等,以提高焊接接头的韧性和抗裂性。
-使用合适的焊接材料,选择低碳钢、不锈钢等具有良好韧性的材料。
3.气孔:气孔是焊缝中残留的气体。
气孔会降低焊缝的强度和密封性,并增加腐蚀和疲劳的可能性。
防止气孔的措施包括:-使用合适的焊接材料,避免含有过多的气体夹杂物。
-控制焊接速度和焊接电流,避免产生过大的气泡。
-使用合适的保护气体,如纯净氩气或二氧化碳,以减少气孔的形成。
-预热焊接接头,使接头内的气体被排除,减少气孔的生成。
4.熔胀:熔胀是焊接过程中材料体积增大的现象。
熔胀会导致焊缝变形、裂纹等问题。
防止熔胀的措施包括:-控制焊接电流和电压,避免产生过大的熔池。
-控制焊接速度和焊接温度,使熔池适当冷却,减少熔胀的可能性。
-使用适当的支撑结构,减少焊缝的变形和应力集中。
-使用合适的焊接材料和焊接工艺,以减少熔胀的产生。
总结:为了预防以上焊接缺陷,焊工应严格按照焊接规范和操作规程进行焊接,并结合适当的监测和检验手段,如探伤、X射线检测等,及时发现和纠正焊接缺陷,确保焊接质量和接头性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接接头常见工艺缺陷预防措施汇总(一)
焊接裂纹,焊接件中最常见的一种严重缺陷。
在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。
它具有尖锐的缺口和大的长宽比的特征,按照形成的条件可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。
一、冷裂纹
冷裂纹是在焊接过程中或焊后,在较低的温度下,大约在钢的马氏体转变温度(即Ms 点)附近,或300~200℃以下(或T<0.5Tm,Tm为以绝对温度表示的熔点温度)的温度区间产生的,故称冷裂纹。
冷裂纹又可分为延迟裂纹、淬火裂纹和低塑性脆化裂纹。
(一)产生条件
1.焊接接头形成淬硬组织。
由于钢的淬硬倾向较大,冷却过程中产生大量的脆、硬,而且体积很大的马氏体,形成很大的内应力。
接头的硬化倾向:碳的影响是关键,含碳和铬量越多、板越厚、截面积越大、热输入量越小,硬化越严重。
2.钢材及焊缝中含扩散氢较多,氢原子在缺陷处(空穴、错位)聚积(浓集)形成氢分子,氢分子体积较氢原子大,不能继续扩散,不断聚积,产生巨大的氢分子压力,甚至会达到几万个大气压,使焊接接头开裂。
许多情况下,氢是诱发冷裂纹最活跃的因素。
3.焊接拉应力及拘束应力较大(或应力集中)超过接头的强度极限时产生开裂。
(二)产生原因:可分为选材和焊接工艺两个方面。
1.选材方面
(1)母材与焊材选择匹配不当,造成悬殊的强度差异;
(2)材料中含碳、铬、钼、钒、硼等元素过高,钢的淬硬敏感性增加。
2.焊接工艺方面
(1)焊条没有充分烘干,药皮中存在着水分(游离水和结晶水);焊材及母材坡口上有油、锈、水、漆等;环境湿度过大(>90%);有雨、雪污染坡口。
以上的水分及有机物,在
焊接电弧的作用下分解产生H,使焊缝中溶入过饱和的氢。
(2)环境温度太低;焊接速度太快;焊接线能量太少。
会使接头区域冷却过快,造成很大的内应力。
(3)焊接结构不当,产生很大的拘束应力。
(4)点焊处已产生裂纹,焊接时没有铲除掉;咬边等应力集中处引起焊趾裂纹;未焊透等应力集中处引起焊根裂纹;夹渣等应力集中处引起焊缝中裂纹。
(三)预防方法:可以从选材和焊接工艺两个方面着手。
1.正确选材
选用碱性低氢型焊条和焊剂,减少焊缝金属中扩散氢的含量;做好母材和焊材的选择匹配;在技术条件许可的前提下,可选用韧性好的材料(如低一个强度等级的焊材),或施行“软”盖面,以减小表面残余应力;必要时,在制造前对母材和焊材进行化学分析、机械性能及可焊性、裂纹敏感性试验。
2.焊接工艺方面
(1)严格地按照试验得出的正确工艺规范进行焊接操作。
主要包括:严格地按规范进行焊条烘干;选择合适的焊接规范及线能量,合理的电流、电压、焊接速度、层间温度及正确的焊接顺序;对点焊进行检查处理;做好双面焊的清根等;仔细清理坡口和焊丝,除去油、锈和水分。
(3)选择合理的焊接结构,避免拘束应力过大;正确的坡口形式和焊接顺序;降低焊接残余应力的峰值。
(4)焊前预热、焊后缓冷、控制层间温度和焊后热处理,是可焊性较差的高强度钢和不可避免的高拘束结构形式,防止冷裂纹行之有效的方法。
预热和缓冷可减缓冷却速度(延长△t 800~500℃停留时间),改善接头的组织状态,降低淬硬倾向,减少组织应力;焊后热处理可消除焊接残余应力,减少焊缝中扩散氢的含量。
在多数情况下,消除应力热处理应在焊后立即进行。
(5)焊后立即锤击,使残余应力分散,避免造成高应力区,是局部补焊时防止冷裂纹行之有效的方法之一。
(6)在焊缝根部和应力比较集中的焊缝表面(热影响区受到的拘束应力较低),采用强度级别较低的焊条,往往在高拘束度下取得良好的效果。
(7)采用惰性气体保护焊,能最大地控制焊缝含氢量,降低冷裂纹敏感性,所以应大力推广TIG、MIG焊接。
二、层状撕裂
层状撕裂是冷裂纹的一种特殊形式。
主要是由于钢板内存在着分层(沿轧制方向)的夹杂物(特别是硫化物),在焊接时产生的垂直于轧制方向(板厚方向)的拉伸应力作用下,在钢板中热影响区或稍远的地方,产生“台阶”式与母材轧制表面平行的层状开裂。
产生在
T字型、K字型厚板的角焊接接头中。
提高钢板质量,减少钢材中层状夹杂物,从结构设计和焊接工艺方面采取措施,减少板厚方向的焊接拉伸应力,可防止层状撕裂。
厚板焊接前,进行板材的超声波和坡口渗透探伤,检查分层夹杂物情况,如有层状夹杂物存在,可设法避开或事先修、磨处理。
三、热裂纹
热裂纹是在高温下产生的,从凝固温度范围至A3以上温度,所以称热裂纹,又称高温裂纹。
如果材料中存在着较多的低熔点共晶杂质元素(P、S、C等)和较多的晶格缺陷,在焊接熔池结晶过程中,就容易出现晶界偏析,偏析出现的物质多为低熔点共晶(如:FeS—Fe、Fe3P—Fe、NiS—Ni、Ni3P—Ni)和杂质,它们在结晶过程中,以液态间层存在,形成抗变形能力很低的液态薄膜,相应的液态相存在的时间增长,最后结晶凝固,而凝固后的强度也极低,当焊接拉应力足够大时,会将液态间层拉开,或在其凝固后不久被拉断形成裂纹。
此外,如果母材的晶界上也存在着低熔点共晶和杂质时,则在加热温度超过其熔点的热影响区内,这些低熔点共晶物将熔化成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂纹。
热裂纹都是沿奥氏体晶界开裂,呈锯齿状,所以,又称晶间裂纹。
多出现在焊缝中间,特别是弧坑处,多数在焊缝柱状晶的会合处,即焊缝凝固的最终位置,也是最容易引起低熔点共晶偏析的位置;少数出现在热影响区。
焊缝中的纵向裂纹一般发生在焊道中心,与焊缝长度方向平行;横向裂纹一般沿柱状晶界发生,并与母材的晶界相连,与焊缝长度方向垂直。
当裂纹贯穿表面与空气相通时,断口表面呈氧化色彩(如蓝灰色等),有的焊缝表面的宏观裂纹中充满熔渣。
(一)产生的原因
1.选材方面:材料中含硫过多产生“热脆”;含铜过高产生“铜脆”;含磷过高产生“冷脆”。
2.焊接工艺方面:镍基不锈钢,焊接顺序不当或层间温度过高、热输入量过大、冷却速度太慢;坡口形式不当(焊缝形状系数ψ=b/h≤1的窄深焊缝),单层单道焊时易产生焊缝中心偏析裂纹;弧坑保护不好,由于偏析作用,易产生弧坑热裂纹;多次返修会产生晶格缺陷聚集,形成多边化热裂纹。
(二)预防方法
由于热裂纹的产生与应力的因素有关,所以防止方法也要从选材和焊接工艺两个方面着手。
1.选材方面
(1)限制钢材和焊材中,易产生偏析的元素和有害杂质的含量,特别是S、P、C的含量,因为它们不仅形成低熔点共晶,而且还促进偏析。
C≤0.10%热裂纹敏感性可大大降低。
必要时对材料进行化学分析、低倍检验(如硫印等)。
(2)调节焊缝金属的化学成分,改善组织、细化晶粒,提高塑性,改变有害杂质形态和分布,减少偏析,如采用奥氏体加小于6%的铁素体的双相组织。
(3)提高焊条和焊剂的碱度,以减低焊缝中杂质的含量,改善偏析程度。
2.焊缝工艺方面
(1)选择合理的坡口形式,焊缝成型系数ψ=b/h>1,避免窄而深的“梨形”焊缝,防止柱状晶在焊道中心会合,产生中心偏析形成脆断面;采用多层多道焊,打乱偏析聚集。
值得注意的是,焊接电流过大也会形成“梨形”焊缝。
(2)控制焊接规范:
a.采用较小(适当)的焊接线能量,对于奥氏体(镍基)不锈钢应尽量采用小的焊接线能量(不预热、不摆动或少摆动、快速焊、小电流)、严格掌握层间温度,以缩短焊缝金属在高温区的停留时间;
b.注意收弧时的保护,收弧要慢并填满弧坑,防止弧坑偏析产生热裂纹;
c.尽量避免多次返修,防止晶格缺陷聚集产生多边化热裂纹;
d.采取措施尽量降低接头应力,避免应力集中,并减少焊缝附近的刚度,妥善安排焊接次序,尽量使大多数焊缝在较小的刚度下焊接,使其有收缩的余地。
四、再热裂纹
再热裂纹是指一些含有钒、铬、钼、硼等合金元素的低合金高强度钢、耐热钢的焊接接头,在加热过程中(如消除应力退火、多层多道焊及高温工作等),发生在热影响区的粗晶区,沿原奥氏体晶界开裂的裂纹,也有称其为消除应力退火裂纹(SR裂纹)。
再热裂纹起源于焊缝热影响区的粗晶区,具有晶界断裂特征,裂纹大多数发生在应力集中的部位。
预防措施:
1.选材时应注意能引起沉淀析出的碳化物形成元素,尤其是V的含量。
必须采用高V 钢材时,焊接及热处理时要特别加以注意。
2.热处理时避开再热敏感区,可减少再热裂纹产生的可能性,必要时热处理前做热处理工艺试验。
3.尽量减少残余应力和应力集中,减少余高、消除咬边、未焊透等缺陷,必要时将余高和焊趾打磨圆滑;提高预热温度,焊后缓冷,降低残余应力。
4.适当的线能量,防止热影响区过热,晶粒粗大。
5.在满足设计要求的前提下,选用低一个强度等级的焊条,让其释放一部分由热处理过程消除的应力,使应力在焊缝中松弛,对减少再热裂纹有好处。
来源:摘自网络。