影像物理 X线课后答案学习

影像物理 X线课后答案学习
影像物理 X线课后答案学习

1-1,产生X 射线需要哪些条件?

答:首先要有产生电子的阴极和被轰击的阳极靶:在阴极和阳极间的高压直流电,为防止阴极和阳极氧化以及电子与中性分子碰撞的数量损失,要制造压强小于10 -4Pa 的真空环境,为此要有一个耐压、密封的管壳。

1-2影响X 射线管有效焦点大小的因素有哪些?

答:影响有效焦点大小的因素有:灯丝大小、管电压和管电流、靶倾角。

1-3在X 射线管中,若电子到达阳极靶面的速度为1.5xl08ms -1,求连续X 射线谱 的最短波长和相应的最大光子能量。

答:此题的思路是由动能公式22

1mv E k =求出电子的最大动能,此能量也是最大的光子能量,从而求出最短波长。但当速度可与光速c =3×108ms -1相比较时,必须考虑相对论效 应,我们可以用下面公式求出运动中电子的质量。

kg c v m m e 3023122010052.1)2/1(11011.9/1--?=-?=-= keV J v m h e 8.731018.1)10)5.1(10052.12

1211428302=?=????==--ν nm h hc

0169.0max min ==νλ

此题的结果告诉我们,管电压为73.8kV 。反过来,如果知道管电压,求电子到达阳极 靶表面的电子速度时,同样需要考虑相对论效应。

1-4下面有关连续X 射线的解释?哪些是正确的?

A.连续X 射线是高速电子与靶物质轨道电子相互作用的结果;

B.连续X 射线是高速电子与靶物质的原子核电场相互作用的结果;

C 连续x 射线的最大能量决定于管电压;

D.连续X 射线的最大能量决定决定于靶物质的原子序数;

E.连续X 射线的质与管电流无关。

正确答案:B 、C 、E

1-5.下面有关标识X 射线的解释,哪些是正确的?

A.标识X 射线是高速电子与靶物质轨道电子相互作用的结果;

B.标识X 射线的产生与高速电子的能量元关;

C.标识X 射线的波长由跃迁电子的能级差决定;

D.滤过使标识X 射线变硬;

E.靶物质原子序数越高,标识X 射线的能量就越大。

正确答案:A 、C 、E

1-6影响X 射线能谱的因素有哪些?

答:电子轰击阳极靶产生的X 射线能谱的形状(归一化后)主要由管电压、靶倾角和固有滤过决定。当然,通过附加滤过也可改变X 射线能谱的形状。

1-7影响X 射线强度的因素有哪些?

答:x 射线在空间某一点的强度是指单位时间内通过垂直于X 射线传播方向上的单 位面积上的光子数量与能量乘积的总和。可见,射线强度是由光子数目和光子能量两 个因素决定的。影响X 射线强度(量与质}的因素很多,主要有:增加毫安秒,X 射线的质不变、量增加,x 射线强度增加;增加管电压,X 射线的质和量均增加,X 射钱强度增加;提高靶物质原子序数。

X 射线的质和量均增加,X 射钱强度增加;增加滤过,X 射线的质增加,但X 射线的量减少;增加离X 射线源的距离,X 射线的质不变,X 射线的量减少,X 射线强度减少;管电压的脉动,X 射线的质和量均降低,X 射线强度减少。

1-8 原子放出X 射线前是静止的,为了保持活动不变,当它发出X 射线时,原子经历反冲。设原子的质量是M ,X 射线的能量为h ν,试计算原子的反冲动能。

答:次提到关键在于利用X 射线的动量和能量的关系:c h p ν=

根据动量守恒,可知:c

h p Mv ν== 这样,原子的反冲动能为2

2

22)(21Mc h Mv ν= 1-9 X 射线摄影中,光电效应和康谱顿效应对影响质量和患者防护各有和利弊?

答:诊断中的光电效应有利的方面是能产生质量好的影像。原因是:(1)不产生散射线,大大减少了照片灰雾;(2)可增加人体不同组织和造影剂对造影剂的吸收差别,产生高对比度的X 射线照片,对提高诊断的准确性有好处。有还的方面是:入射X 射线通过光电效应可全部被人体吸收,增加了受检者的吸收剂量。从全面质量观点讲,应尽量减少每次X 射线检查剂量。

康谱顿效应产生的散射线增加了照片灰雾,降低了影响的对比度,但与光电效应相比受检者吸收的计量较低。另外,从受检者身上产生的散射线能量与原射线相差很少,并且散射线对称的分布在整个空间,这一事实必须引起重视,医生和技术人员及病人家属注意防护。 1-10 0.5cm 的铝将单能X 射线强度衰减到46.7%,试求该光子束的HVL.

答:根据衰减规律,0x e I I μ-=可知,%7.465.000μ-=e I I 得线性衰减系数μ=1.523cm -1 据μ693

.0=HVL ,得HVL=0.455cmAl

1-11 质量衰减系数、质能转移系数和质能吸收系数三者之间的区别和联系怎样?

答:X 射线与物质相互作用时,一般情况,光子的一部分能量以散射辐射的方式从吸收体中辐射掉,另一部分转化为高速电子或正电子的动能。 质量衰减系数ρ

μ表示入射X 射线与相互作用的总概率,它包括所有可能发生的相互作用的概率之和。质能转移系数ρ

μtr 表示相互作用过程中光子能量转移给带电粒子的那一部分份额的总和。不过,由于光和反应及其他一些过程的发生概率很小,因而带电粒子的能量主要来自光电效益、康普顿效应和电子对效应。传递给带电粒子的能量,其中又有一部分转移成韧致辐射。质能吸收系数ρ

μcn 表示扣除韧致辐射后,光子交给带电粒子的能量用于造成电离、激发,从而真正被物质吸收的那一部分能量所占的份额。

在数量上他们之间的关系为

ρ

μρμνρμρμνρμρμtr en en en tr tr g h E h E )1(,,-=?=?= 1-12已知人射光子的能量为hv,散射角为φ,试求散射光子的能量,并分析低能入射和高能入射光子在900方向上光子散射的情况。电子的静止能量为2m e C 2。

答:由能量守恒和动量守恒可得,散射光子能量h ν'为:

)

cos 1(1?ανν-+='h h

α为人射光子能量h ν和电子的静止能量m 0c 2的比值, m 0C 2=m e C 2 =0. 511 MeV 。 当φ=900时,.1ανν+='h h 由于(1+α)>α,故MeV h h 511.0=<'α

νν,这说明,不管入射光子的能量有多高, 900散射光子的能量最大不超过0.511MeV 。 1-13 X 射线在物质中的衰减规律x e I I μ-=的适用条件是什么?

答:单能、窄束、均匀物质。

1,-14 若空气中各组分的质量百分比为氮75% ,氧23.2%,氩1.3%,试计算在能量为20keV 光子作用下,空气的质量衰减系数。已知氮、氧、氩的质量衰减系数分别为 0.36、0.587、和

8.31 (m 2.kg -1)。 答:根据混合物或化合物的质量衰减系数公

)

(514.0013.031.8232.0587.075.036.0)()()(12-?=?+?+?=++=kg m P P P Ar Ar O O N N ρ

μρμρμρμ

2-7客观对比度、图像对比度与成像系统的对比度分辨力三者之间存在怎样的关系?

答:客观对比度也称物理对比度,为物体各部分(被检者的组织器官)的密度、原子序 数及厚度的差异程度。客观对比度的存在是医学成像最根本的物理基础。 图像对比度是可见图像中灰度、光密度或颜色的差异程度,是图像的最基本特征。 一个物体要形成可见的图像对比度,它与周围背景之间要存在一定的客观对比度,当某种物理因子作用于物体后,能够形成一定的主观对比度,被成像系统的探测器检测出。 如果客观对比度较小,成像系统的对比度分辨力低,则所得的图像对比度小,图像质量差, 所以图像对比度的形成取决于客观对比度、主观对比度与成像系统的对比度分辨力。

2-8可通过哪些方法形成主观对比度?

答:广义上讲主观对比度是某种物理因子(如X 射线、超声波、射频电·磁波、放射性核素等与物体(人体)相互作用后所表现出的特征变化,或物体(人体)自身某种物理因子表现出的特征(如温度的分布) ,形成了某种物理因子对比度。当强度均匀的X 射线投照到人体,由于人体存在客观对比度(人体各种组织、器官的密度、原子序数及厚度的差 异) ,对X 射线衰减不同,使透射出人体的X 射线的强度分布发生了变化,形成X 射线对比度。由于声遇到声阻抗不同的界面时,会产生反射,且在声阻抗差别越大的界面,声的 反射越强,当强度均匀的超声波投

照到人体,由于人体组织声阻抗的差别,不同的界面对超声波的反射不同,从而形成反映组织差异的超声对比度;利用多普勒效应,探测投射到流动血液上超声波频率的变化,则可形成另外一种超声对比度反映血流情况。人体不同的部位、组织温度有所不同,其红外辐射可形成红外对比度。引入体内的放射性核素会因参与体内物质的运输、集聚、代谢,而在空间有特定的分布,由此其衰变时发出的射线(如γ射线)便会形成放射性活度对比度。人体中能够产生核磁共振的自旋核(如IH)分布及所处的状态不同,当用静磁场、射频场激励这些自旋核,使其发生核磁共振时,它们所产生的核磁共振信号特性便会有所不同,从而形成核磁共振信号对比度。人体不同组织的电特性不同,给人体施加特定的电场,可形成电流对比度、电压对比度和阻抗对比度等。

2-9图像的模糊度与哪些因素有关?

答:理想、情况下,物体内每一个小物点的像应为一个边缘清晰的小点。但实际上,每个小物点的像均有不同程度的扩展,变得模糊(失锐)了。通常用小物点的模糊图像的线度表示物点图像的模糊程度,称为模糊度。

图像的模糊度与成像系统的空间分辨力有很大关系。成像系统的空间分辨力是成像系统区分或分开相互靠近的物体的能力,以单位距离(mm或cm)内可分辨线对(一个白线条与一个黑线条组成一个线对)的数目来表示,单位为LP/mm(或LP/cm) ,显然单位距离内可分辨的线对数越多,成像系统的空间分辨力越高,所得图像的模糊度越小。由于成像系统的对比度分辨力对成像系统的空间分辨力有影响,所以也会对图像的模糊度产生影响.

2-10图像对比度、细节可见度、噪声三者之间有怎样的关系?

答:细节可见度与图像对比度有关。图像对比度高,细节可见度高;图像对比度低,细节可见度低。细节可见度减小的程度与细节结构的大小及图像的模糊度、图像对比度有关,当模糊度较低时,对于较大的物体,其图像对比度的减小不会影响到细节可见度;如果物体较小, 但其线度比模糊度大,则图像对比度的减小一般不会影响可见度;而当细节的线度接近或小于模糊度时,图像对比度的降低会对细节可见度产生明显的影响。噪声对图像中可见与不可见结构间的边界有影响。图像噪声增大,就如同一幅原本清晰的画面被蒙上了一层雾,降低了图像对比度,并减小细节可见度。在大多数医学成像系统中,噪声对低对比度结构的影响最明显,因为它们已接近结构可见度的阔值。图像对比度增大会增加噪声的可见度。

2-16为什么通过能量减影可分别显示软组织或骨的图像?

答:光电效应的发生概率与X射线光子的能量、物质的密度、有效原子序数有关,是钙、骨骼、碘造影剂等高密度物质衰减X射线光子能量的主要方式;而康普顿效应的发生概率与物质有效原子序数元关,与X射线光子的能量略有关系,与物质的每克电子数有关(但因除氢外其他所有物质的每克电子数均十分接近,故所有物质康普顿质量衰减系数几乎相同)。医学影像诊断X射线摄片所使用的X射线束,在穿过人体组织的过程中,主要因发生光电效应和康普顿效应而衰减,常规X射线摄影照片所得到的图像中包含这两种衰减效应的综合信息。能量减影摄影照片利用骨与软组织对不同能量X射线的衰减方式不同(不同有效原子序数物质发生光电效应的差别会在对不同能量X射线的衰减变化中更强烈地反映出来),及康普顿效应的产生在很大范围内与人射X射线的能量元关,可忽略不计的特点,将两种效应的信息进行分离,选择性去除骨或软组织的衰减信息,便可得到分离的软组织像或骨像。

2-18普通X射线摄影像与X-CT图像最大不同之处是什么?

答:普通X射线摄影像是重叠的模拟像,而X-CT图像是数字化的断层图像。

2-19何谓体层或断层?何谓体素和像素?在重建中两者有什么关系?

答:体层或断层是指在人体上欲重建CT像的薄层。体素是人体中欲重建CT像断层上的小体积元,是人为划分的,是采集(或获取)成像参数(衰减系数值)的最小体积元(实际中是扫描野进行划分) ;像素是构成图像的最小单元,是人为在重建平面上划分的,其数值是构成CT图像数据的最小单元。体素和像素的关系是两者一一对应。按重建的思想是体素的坐标位置和成像参数值被对应的像素表现(坐标位置对应、衰减系数值以灰度的形式显示在CT图像上)。

2-20何谓扫描?扫描有哪些方式?何谓投影?

答:所谓扫描系指在CT图像重建中使用的采集数据的物理技术,具体言之就是以不同的方式,沿不同的角度,按一定的次序用X射线对受检体进行投照的过程称为扫描。扫描方式从总体上说有平移扫描和旋转扫描两种。扫描的目的是为了采集足够的重建数据。投影的本意系指透射物体后的光投照在屏上所得之影。若物体完全透明,透射光强等于投照光强,则影是完全亮的;若物体半透明,透射光强小于投照光强,则影是半明半暗;若物体完全不透明,透射光强等于零,则影是完全暗的。按此种考虑,投影的本质就是透射光的强度。重建CT像过程中投影p 的直接含义就是透射人体后的X射线强度,即教材中X射线透射一串非均匀介质(或人体)后的出射X射线的强度In,即p=In。广义之,这个投影p又是由In决定的教材中表述的

2-22什么是重建中的反投影法? CT的重建中,为何要用滤波反投影法?

答:重建中的反投影法,系指把投影沿扫描路径的反方向将所得投影值反投回到各个体素中去的一种重建算法。反投影法又称总和法,它几乎是各CT生产厂家实际采用的唯一的算法。为克服反投影法重建产生的边缘失锐伪像,所以要对投影进行滤波后再进行反投影, 这样可以消除重建的边缘失锐伪像。

2-24 何谓CT值? 它与衰减系数μ的数值有什么关系?

答:按相对于水的衰减计算出来的衰减系数的相对值被称为CT值。国标对CT值的定义为:CT值是CT影像中每个像素所对应的物质对X射线线性平均衰减量大小的表示。实际中,均以水的衰减系数μw作为基准,若某种物质的平均衰减系数为μ,则其对应的CT值由下式给出CT值的标尺按空气的CT值= -1000HU和水的CT值=0HU作为两个固定值标定,这样标定的根据是因空气和水的CT值几乎不受X线能量影响。CT值的单位为"亨, HU" ,规定μw为能量是73keV的X射线在水中的衰减系数, μw=19m-1。式中k称为分度因子,按CT 值标尺,取k = 1000,故实用的定义式应表为

2-27 何谓窗口技术? 什么叫窗宽? 窗宽取得宽或窄,对图像有什么影响? 什么叫窗位? 窗位取得高或低,对图像有什么影响?

答:所谓窗口技术系指CT机放大或增强某段灰度范围内对比度的技术。把观察组织器官所对应的CT值范围确定为放大或增强的灰度范围,这个放大或增强的灰度范围叫做窗口。具体做法是:把放大或增强的灰度范围的上限以上增强为完全白,下限以下压缩为完全黑,结果就增强了观察灰度范围的对比度。窗宽指窗口的数值范围,它等于放大或增强的灰度范围的上下限灰度值之差,用CT 值表示则为:

窗宽= CTmax - CTmin

窗宽取得宽的优点不易丢失图像数据,不丢失信息,表示在图像上就是不丢失结构(对应组织结构);缺点是对比度差。窗位指放大或增强的灰度范围的中心灰度值,用CT值表示窗位取得高或低(同窗位取得标准相比)都易使图像数据丢失,表现在图像上都是丢失图像解构,

窗位取得高图像偏白,窗位取得低图像偏黑。

2-28观察脑组织时,一般取窗宽为120HU,窗位为35HU,试估计脑组织的CT值范围。

解:由于窗宽= CTmax - CTmin = 120HU

可解得CT max = 95HU , CT min = - 25HU ,可见脑组织的CT值范围约为- 25HU - 95HU。

2-29螺旋扫描同传统扫描有何不同?

答:与传统CT第一个不同点是螺旋CT对X射线管的供电方式。螺旋CT因采用了滑环技术,对X射线管供电方.式采用的是:电刷与滑环平行,作可滑动的接触式连接,不再使用电缆线供电。第二个不同点是与传统CT的扫描方式不同。螺旋CT采集数据的扫描方式是X射线管由传统CT的往复旋转运动改为向一个方向围绕受检体连续旋转扫描,受检体(检查床)同时向一个方向连续匀速移动通过扫描野,因此,x射线管相对于受检体的运动在受检体的外周划过一圆柱面螺旋线形轨迹。扫描过程中没有扫描的暂停时间(X射线管复位花费的时间) ,可进行连续的动态扫描,故解决了传统扫描时的层隔问题。其优点主要有二,一是提高了扫描速度,单次屏气就可以完成整个检查部位的扫描,且减少了运动伪像;二是由于可以进行薄层扫描,且在断层与断层之间没有采集数据上的遗漏,所以可提供容积数据,由此可使在重建中有许多新的选择,如三维重建、各种方式各个角度的重建、各种回顾性重建等。

2-30何谓螺旋数据? 何谓螺旋插值? MSCT为什么要进行螺旋插值?螺旋内插方式有哪些?

答:螺旋CT扫描采集数据的过程中因受检体随扫描床的不断移动,故使采集到的数据不是取自对同一断层扫描的采集结果,这些不是取自同一断层的采样数据称为螺旋数据。

在螺旋CT的重建中,必须安排螺旋圈间采样数据的内插,用以合成平面(即同一断层内的)采样数据,以补充欲重建图像所对应的同一断层内的采样值。所以要这样做的原因是:由传统的重建理论知,为重建一幅断层图像而使用的采样数据,必须是取自对同一断层扫描的结果(传统CT的采集数据就是对同一断层扫描获取的,并据此重建一幅断层图像) ;而螺旋CT扫描采集数据的过程中因受检体随扫描床的不断移动,故使采集到的数据不是取自对同一断层扫描的螺旋数据,见教材中图3-28所示:传统CT对同一断层扫描的数据采集点和螺旋CT扫描的数据采集点示意图,传统CT的数据采集点在同一断层内,螺旋CT扫描数据采集点的空间位置不断离开起始点所在的断层。为了得到同一断层的数据并据此来重建一幅断层图像,就必须根据不是取自同一断层的螺旋实测采样值,通过某种计算即所谓的内插算法来获取重建所需要的属于同一断层内的采样数据(即这些为了重建同一断层图像所需要的采样数据,并非像传统CT那样是由真实的扫描过程所采集到的,而是通过插值算法求出来的)。螺旋内插分为线性内插和非线性内插。线性内插分为3600线性内插和称为标准型的1800线性内插。非线性内插有清晰内插和超清晰内插等。最常用的是1800线性内插。完成螺旋插值运算功能的部件叫螺旋内插器。

2-31单层螺旋CT与多层螺旋CT扫描使用的X线束有何不同?

答:在传统CT和单层螺旋CT的扫描中,因只有一排检测器采集数据(接收信号) ,故通过准直器后的X线束为薄扇形束即可,且线束宽度近似等于层厚。而在MSCT的数据采集中,在长轴方向上有多排检测器排列采集数据(接收信号) ,故X射线束沿长轴方向的总宽度应大于等于数排检测器沿长轴方向的宽度总和才行。所以, MSCT扫描中被利用的X线束形状应是以X 射线管为顶点(射出X线之处,称为焦点)的四棱锥形,这样的X线束才能同时覆盖多排检测器(实际使用时不一定要全覆盖)。称这样的X线束称为"小孔束"或厚扇形束。

2-32何谓容积数据? 多层螺旋CT的重建主要优点有哪些?

答:所谓容积数据系指三维分布的数据。由于容积数据的获取,使得在此基础上的重建有了许多新的优点,这些优点也表现为多层CT优点。MSCT的最大优势首先是实现了重建的各向同性(16层以上CT) ,如长轴分辨率和横向分辨率几乎完全相同,并且都很高(如16层CT纵向分辨率为0.6mm,横向为0. 5mm) ; 第二是大大地提高了检查速度(16层CT被称为亚秒级扫描CT,其单圈扫描的时间可短到半秒) ,这些优点为动态器官重建及加快临床检查奠定基础;第三是为各种回顾性重建及三维重建的高质量提供保证。

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

近代物理课后答案

近代物理课后答案 光电11 2.5根据能量和动量守恒定律,证明:光子和自由电子相碰撞不可能产生光电效应。 证:假定自由电子可以吸收一个光子,不失一般性设电子初始静止,光子未被吸收前,能 量和动量守恒 2 / h m c E h c P ν ν ?+= ? = ? ,吸收后的能量和动量守恒 / E h c P ν ?= ? ? == ? ? 。得到 =2 m c=,但这是不可能的。故题设正确 2.7波长为0.1 nm的X射线光子的动量和能量各为多少? 解:动量34924 / 6.6310/0.110 6.6310/ p h kg m s λ--- ==??=?? 能量/1240/0.112.4 E hc keV λ === 2.8由50 KeV电压加速的电子,在轫致辐射中产生最短X射线波长是多少? 解:3 /1240/50100.0248 hc E nm λ==?= 2.13已知电子的动能分别为1 MeV和1 GeV,求它们的德布罗意波长是多少? 解:电子能量太大,需考虑相对论效应,波长 h hc p pc λ=== 1MeV 的电子波长872fm λ== 1GeV 的电子波长 1.24fm λ== 2.13微观粒子的波动性可以用波长和频率表征,试问用实验方法能够直接确定其中的哪一个?对另一个的确定能说些什么? 答:戴维斯-革末实验测量了物质波的波长,不能直接测量物质波的能量 2.14根据电子的德布罗意波长说明:在原子中电子的轨道概念已失去意义,在电视机显像管中运动的电子为什么仍旧可以用电子轨道概念?(设显像管加速电压为10 KeV,管长为0.5 m)

答:以氢原子基态为例,电子的动能为13.6eV ,对应德布罗意波长约0.34nm ,氢原子半径才0.053nm ,轨道概念在原子中失去意义;而电视显像管中10keV 电子的德布罗意波长0.0124nm ,远小于显像管的长度0.5m ,显像管中的电子仍旧可以使用轨道概念 2.17动能为5.0 MeV 的α粒子垂直入射到厚度为0.1μm ,质量密度为41.7510?3Kg/m 的金箔,试求散射角大于090的粒子数是全部入射粒子的百分之几? 解:2 22221231cos /2[()()]4sin /24 dn a a Nt d Nt b b Nt n θθπθθπθθπθ==-=??,12/2,θπθπ== 其中436 232121.7510100.110 6.0210 5.3410197A t Nt N m A ρ--????==??=? 而2102 1.4427945.545 Z e a fm E πε==??=,所以散射角大于900的概率为 2.18 α粒子质量比电子质量大7300多倍,若速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明α粒子的最大散射角约为410-rad 。 证:正碰时α粒子动量改变最大,α粒子与电子碰撞前后能量、动量守恒得 2221212 /2/2/2Mv Mv mv Mv Mv mv ?=+?=+?, 由此得到12Mv Mv mv -=和2222 1111/()()2()mv M v v v v v v v v v =-=+--,于是有 12()2M v v mv P m tg P Mv Mv M θ-?==,即422~107400 m rad M θ- 2.21对一次电离的氦粒子+He 和两次电离的锂离子++Li ,分别计算: (1)电子的第一玻尔轨道半径; (2)电子处在基态时的能量; (3)电子由第一激发态跃迁到基态时所发射的光子的波长。 解:类氢离子的轨道半径和能量分别为2 11,n n r r r Z ==0.053nm , 221122,13.6n hcRZ Z E E E eV n n =-==-,2121(1)hc Z E n λ=-,波长为

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

近代物理课后答案

近代物理课后答案 光电11根据能量和动量守恒定律,证明:光子和自由电子相碰撞不可能产生光电效应。证:假定自由电子可以吸收一个光子,不失一般性设电子初始静止,光子未被吸 收前,能量和动量守恒 2 / h m c E h c P ν ν ?+= ? = ? ,吸收后的能量和动量守 恒/ E h c P ν ?= ? ? == ? ? =,该式成立要求2 m c=,但这是不可能的。故题设正确 波长为 nm的X射线光子的动量和能量各为多少 解:动量34924 / 6.6310/0.110 6.6310/ p h kg m s λ--- ==??=?? 能量/1240/0.112.4 E hc keV λ === 由50 KeV电压加速的电子,在轫致辐射中产生最短X射线波长是多少 解:3 /1240/50100.0248 hc E nm λ==?= 已知电子的动能分别为1 MeV和1 GeV,求它们的德布罗意波长是多少 解:电子能量太大,需考虑相对论效应,波长 h hc p pc λ=== 1MeV 的电子波长872fm λ== 1GeV 的电子波长 1.24fm λ== 微观粒子的波动性可以用波长和频率表征,试问用实验方法能够直接确定其中的哪一个对另一个的确定能说些什么 答:戴维斯-革末实验测量了物质波的波长,不能直接测量物质波的能量

根据电子的德布罗意波长说明: 在原子中电子的轨道概念已失去意义,在电视机显像管中运动的电子为什么仍旧可以用电子轨道概念(设显像管加速电压为10 KeV ,管长为 m ) 答:以氢原子基态为例,电子的动能为,对应德布罗意波长约,氢原子半径才,轨道概念在原子中失去意义;而电视显像管中10keV 电子的德布罗意波长,远小于显像管的长度,显像管中的电子仍旧可以使用轨道概念 动能为 MeV 的α粒子垂直入射到厚度为μm ,质量密度为41.7510?3Kg/m 的金箔,试求散射角大于090的粒子数是全部入射粒子的百分之几 解:2 22221231cos /2[()()]4sin /24 dn a a Nt d Nt b b Nt n θθπθθπθθπθ==-=??,12/2,θπθπ== 其中436 232121.7510100.110 6.0210 5.3410197A t Nt N m A ρ--????==??=? 而2102 1.4427945.545 Z e a fm E πε==??=,所以散射角大于900的概率为 α粒子质量比电子质量大7300多倍,若速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明α粒子的最大散射角约为410-rad 。 证:正碰时α粒子动量改变最大,α粒子与电子碰撞前后能量、动量守恒得 2221212 /2/2/2Mv Mv mv Mv Mv mv ?=+?=+?, 由此得到12Mv Mv mv -=和2222 1111/()()2()mv M v v v v v v v v v =-=+--,于是有 12()2M v v mv P m tg P Mv Mv M θ-?==,即422~107400 m rad M θ- 对一次电离的氦粒子+He 和两次电离的锂离子++Li ,分别计算: (1)电子的第一玻尔轨道半径; (2)电子处在基态时的能量;

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

近代物理主要知识点及思考题答案

一、光学全息照相 1.全息照相原理:全息照相是以物理光学理论为基础的,借助参考光与物光的相互作用,在感光板上以干涉条纹的形式记录下物体的振幅和位相的全部信息。 2.全息照相的过程分两步: (1)造像,设法把物体光波的全部信息记录在感光材料上; (2)建像,照明已被记录下的全部信息的感光材料,使其再现原物的光波。 3.全息照相的主要特点: ①立体感强②具有可分割性③同一张全息片上可重叠拍摄多个全息图④全息照片再现时,像可放大缩小⑤全息照片再现时,像的亮度可变化。 4.拍摄系统的技术要求: ①对光源的要求:拍摄全息图必须用具有高度空间和时间相干性的光源; ②对系统稳定性的要求:需要一个刚性和防震性都良好的工作台; ③对光路的要求:参考光和物光两者的光程差要尽量小;两者之间的夹角应小于45°; ④对全息干板的要求:需要制作优良的全息图,一定要有合适的记录介质。 二.光电效应法测普朗克常数 1.截止电压:光电流随加速电压的增加而增加,加速电压增加到一定值后,当光电流达到饱和值I M,I M,与入射光强成正比。当U变成负值时,光电流迅速减小,当U<=U0时,光电流为0,这个相对于阴极是负值的阳极电压U0被称为截止电压。(对于不同频率的光,其截止电压不同) 2.为了获得准确的截止电位,实验所用光电管需要满足的条件: ①对所有可见光谱都比较灵敏; ②阳极包围阴极,当阳极为负电压时,大部分光子仍能射到阳极; ③阳极没有光电效应,不会产生反向电流; ④暗电流很小。 3. 红限:所谓红限是指极限频率。以为光从红到紫频率逐渐升高。发生光电效应的条件是:光的频率大于等于某一极限频率。也就是比这个频率高的光(比这种光更靠近紫色那一端)能发生光电效应。而频率比它更低(也就是更靠近红色那一端)的光不能发生光电效应。所以就把这个极限频率叫做靠近红端的极限。简称红限! 4.反向电流:入射光照射阳极或从阴极反射到阳极之后都会造成阳极光电子发射。加速电压U为负值时,阳极发射的电子向阴极迁移形成阳极反向电流。 5.暗电流:在无光照射时,外加反向电压下光电管流过的微弱电流。 6.为了准确测定截止电位,常用方法:(1)交点法(2)拐点法。 7.光电效应法测普朗克常量的关键是:获得单色光、确定截止电压、测出光电管的伏安特性曲线 8.光电效应:当光照射金属时,光的能量仅部分的以热的形式被物体吸收,而另一部分则转化为金属中某些电子的能量,会使电子逸出金属表面,这种现象称为光电效应。 9. 光电效应的基本实验事实有哪些? 答:①光电流随加速电压的增加而增加,加速电压增加到一定值后,当光电流达到饱和值 I M,I M,与入射光强成正比。 ②光电子的初动能与入射光频率成线性关系,而与入射光的强度无关 ③光电效应有阈频率存在,该频率称为红限 10.爱因斯坦光电效应方程推导求出h

相关文档
最新文档