2019-2020年高中数学 第一章三角函数1.2.2同角三角函数的基本关系教案 新人教A版必修4
高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=
−
15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.
【高中数学】三角函数线与同角三角函数的基本关系

左=
1
cos x1 sin x sin x1 sin x
cos x 1 sin x
= 1 sin2 x
cos x 1 sin x
= cos2 x = 1 sin x 右,所以原式成立。
cos x
证法2:因为
1-sin x1 sin x
1 sin2 x cos x cos x 且1-sinx≠0,cosx≠0,所以 cos x 1 sin x 1 sin x cos x
在Rt△OMP中,由勾股定理有 MP2 + OM2= OP2=1
y2 + x2 =1
sin2α+cos2α=1
根据三函数的定义当
k k Z
sin
2 tan
cos
同一个角α的正弦、余弦的平方 和等于1,商等于角α的正切.
y
P(x,y) 1α
MO
x
A(1,0)
同角三角函数的 基本关系
25
sin 3 tan 3,求sin, cos的值.
sin 解: cos
3
sin2 cos2 1
sin
3 2
或
sin
3 2
cos
1 2
cos
1 2
例7、求证:cosx 1 sin x 1 sin x cosx
证法1:由cosx≠0,知sinx≠-1,所以1+sinx≠0,于是
同角三角函数的基本关系式总结如下:
①平方关系:sin2 cos2 1
②商数关系:tan sin cos
例6 已知sin 3 ,求cos, tan的值.
5
解:因为sinα<0,sinα≠-1,所以α是第三或第四象
1.2.2同角三角函数的基本关系

1.2.2同角三角函数的基本关系猜想:sin 2α+cos 2α=1 αααcos sin tan =二、知识探究(一):基本关系(1、以正弦线MP 、余弦线OM 和半径OP 三者的长度构成直角三角形,由勾股定理得sin 2α+cos 2α=12、根据三角函数的定义当)(2Z k k ∈+≠ππα时,有αααtan cos sin =) 思考1:如图,设α是一个任意角,它的终边与单位圆交于点P ,那么,正弦线MP 和余弦线OM 的长度有什么内在联系?由此能得到什么结论?MP 2+OM 2=1sin 2α+cos 2α=1思考2:上述关系反映了角α的正弦和余弦之间的内在联系,根据等式的特点,将它称为平方关系.那么当角α的终边在坐标轴上时,上述关系成立吗?sin 2α+cos 2α=1思考3:设角α的终边与单位圆交于点P(x ,y ),根据三角函数定义,有sin α=y ,cos α=x ,)0(tan ≠=x xy α, 由此可得sin α,cos α,tan α满足什么关系? αααtan cos sin =思考4:上述关系称为商数关系,那么商数关系成立的条件是什么?)(2Z k k ∈+≠ππα思考5:平方关系和商数关系是反映同一个角的三角函数之间的两个基本关系,它们都是恒等式,如何用文字语言描述这两个关系?sin 2α+cos 2α=1 αααtan cos sin = 同一个角的正弦、余弦的平方和等于1,商等于这个角的正切.三、知识探究(二):基本变形思考1:对于平方关系sin 2α+cos 2α=1可作哪些变形?sin 2α=1-cos 2αcos 2α=1-sin 2α(sinα+cos α)2=1+2sinαcos α(sinα-cos α)2=1-2sinαcos α思考2:对于商数关系αααtan cos sin =可作哪些变形? s inα=cos αtan α αααtan sin cos = 四、课本例6练习P20 1、2、3、4五、课本例7练习P20 5六、小结1.同角三角函数的两个基本关系是对同一个角而言的,由此可以派生出许多变形公式,应用中具有灵活、多变的特点.2.利用平方关系求值时往往要进行开方运算,因此要根据角所在的象限确定三角函数值符号,必要时应就角所在象限进行分类讨论.3.化简、求值、证明,是三角变换的三个基本问题,具有一定的技巧性,需要加强训练,不断总结、提高.七、习题例1、化简︒-440sin 12分析1:︒=︒=︒-=︒-80cos 80cos 80sin 1440sin 1222分析2:︒=︒=︒=︒=︒-80cos 440cos |440cos |440cos 440sin 122练习1、4sin 12-练习2、教材P22 B 组2例2、已知tanα=2,求下列各式的值.ααααsin 11sin 112cos sin 11++-⨯)()( 例3、已知π<<=+q q q 0,51cos sin 求sin q -cos q 的值. 练习3、P21 12练习4、已知21cos sin =+q q ,求sin 4q +cos 4q 的值. 例4、 已知tanα=2,(1)求sinα和cosα的值. (2)1sin cos sin 5cos 3cos sin sin 222++--ααααααα求 (3)αααα22cos 3cos sin sin 2-+求八、作业P21习题1.2A 组:11 13(1)(2)。
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

5
55
5
5
3.已知cos α= 1 ,且α是第四象限角,则sin α=( )
2
A . 1
B .3 C .3 D . 1
2
2
2
2
【解析】选C.因为α是第四象限角,所以sin α<0,
所以 sin 1cos21(1)23.
22
6
4.化简:s i n =_______.
tan
【解析】
sin tan
10
10 10
方法二:(cosα+2sinα)2= cos24sincos4sin2
sin2cos2
1 4 ta n 4 ta n 2 1 4 3 4 3 2 4 9
由已知条件得
分子分母同除以cos2α可得关于tanα的方程.
(cos2sin)2 sin2cos2
5,
12
【解析】方法一:因为cosα+2sinα= 5 , 所以cosα=-2sinα 5 , 又因为sin2α+cos2α=1,所以sin2α+(-2sinα- )2=5 1, 整理得5sin2α+4 s5 inα+4=0,( si5 nα+2)2=0,
sin sin
cos.
答案:cos θ cos
7
5.已知tan φ=- 2 ,φ∈( ,π),则sin φ=_____.
2
sin 2 cos 2 1,
【解析】由已知得
sin cos
所以
2,
sin2(sin)2 1, 2
所以sin2φ= 2 ,由φ∈( , π)得sin φ>0,
3
2
限决定的,不可凭空想象.
11
【高中数学必修四】1.2.2同角三角函数的基本关系

复习回顾
1.任意角的三角函数定义?
2.任意角的三角函数线定义?
归纳探索
sin 30 45 60 150
1 2
2 2
3 2
cos tan
3 2
2 2
sin cos
2 2
3 3
1 1 1 1
sin cos 3 3
1
3
3 3
1
1)从左向右证
2)从右向左证
3)左右两边同时证
4)证其等价变形的成立性
单方向证明时选取“由繁到简”的方向.
练习
2sin 3cos (1)已知 tan 3求 sin 4cos
(2) ( 3) 已知 tan 3求角三角函数的基本关系
sin cos sin cos cos sin cos sin cos cos
sin cos cos cos sin cos cos cos
弦化切
tan 1 tan 1
21 3 21
同角三角函数基本关系:
sin cos 1
2 2
称为平方关系
sin tan cos
关于两种关系
1.“同角”的概念与角的表达形式无关.
称为商数关系
如 : sin 2 3 cos 2 3 1;
2.关系式(公式)必须在定义域允许的范围内成立. 3.掌握公式的正用、逆用、变形用。
3
3 3
1 2
1 2
3 2
sin cos 1
2 2
sin tan cos
同角三角函数间的基本关系-高中数学知识点讲解

同角三角函数间的基本关系1.同角三角函数间的基本关系【知识点的认识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.푠푖푛훼(2)商数关系:푐표푠훼= tanα.2.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cos_α,其中k∈Z.公式二:sin(π+α)=﹣sin_α,cos(π+α)=﹣cos_α,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sin_α,cos(﹣α)=cos_α.公式四:sin(π﹣α)=sin α,cos(π﹣α)=﹣cos_α.휋휋公式五:sin(2―α)=cosα,cos(2―α)=sinα.휋휋公式六:sin(2+α)=cosα,cos(2+α)=﹣sinα3.两角和与差的正弦、余弦、正切公式(1)C(α﹣β):cos (α﹣β)=cosαcosβ+sinαsinβ;(2)C(α+β):cos(α+β)=cosαcosβ﹣sinαsinβ;(3)S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;(4)S(α﹣β):sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)T(α+β):tan(α+β)=푡푎푛훼+푡푎푛훽1―푡푎푛훼푡푎푛훽.(6)T(α﹣β):tan(α﹣β)=푡푎푛훼―푡푎푛훽1+푡푎푛훼푡푎푛훽.4.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;1/ 2(2)C2α:cos 2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)T2α:tan 2α=2푡푎푛훼1―푡푎푛2훼.【解题方法点拨】诱导公式记忆口诀:푘휋对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇2数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.2/ 2。
最新1.2.2-同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系教案教学目标:1. 通过三角函数定义,导出同角三角函数的基本关系,并能运用同角三角函数的基本关系进行三角函数的化简和证明2. 同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式,通过本节的学习,学生应明了如何进行三角函数式的化简于三角恒等式的证明。
3. 通过同角三角函数关系的应用是学生养成探究、分析的习惯,提高三角恒等式等变形的能力,树立转化与化归的思想方法。
重点难点:教学重点:课本的两个公式的推导及应用。
教学难点:三角恒等式的证明。
教学过程一、复习引入:填一填:想一想:你能根据上面的表格得出同一个角α的三个三角函数之间有一些什么关系?二、讲解新课:同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系) 1.由三角函数的定义,我们可以得到以下关系:(1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos ααα=说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如sin tan (,)cos 2k k Z απααα=≠∈;③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α=22sin 1cos αα=-,sin cos tan ααα=等。
三、例题分析: (一)求值问题:例1.已知3sin 5α=-且α是第三象限角,求角α的余弦和正切值.变式: 已知3sin 5α=-,求角α的余弦和正切.小结:1.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。
在求值中,确定角的终边位置是关键和必要的。
有时,由于角的终边位置的不确定,因此解的情况不止一种。
2.解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
第一章1.2-1.2.2同角三角函数的基本关系

2sin α(1+sin α) 1+sin α
=
=右边.
2sin αcos α
cos α
∴原式成立. 法二:左边—右边=
所以,左边=右边,原式成立.
[巧妙解法] 由 cos2α=1-sin2α得 -cos2α=(sin α+1)(sin α-1),
sin α+1 -cos α
2.三角函数式化简技巧: (1)化切为弦,即把正切函数都化为正、余弦函数, 从而减少函数名称,达到化繁为简的目的; (2)对于含有根号的,常把根号里面的部分化成完全 平方式,然后去根号达到化简的目的.
[变式训练]
化简: sin
sin2x x-cos
x-sitnanx2+x-cos1
x .
解:原式= sin
所以 sin α-cos α>0,
又(sin α-cos α)2=1-2sin αcos α=197,
所以 sin
α-cos
α=
17 3.
归纳升华
三角函数求值的常用方法
1.若已知 tan α=m,求其他三角函数值,其方法
tan α=m, 是解方程组
求出 sin α和 cos α的
sin2α+cos2α=1,
[变式训练] 已知 tan α =43且角 α 在第三象限,求
sin α ,cos α 的值.
解:由
tan
α
=csions
α α
=43,
得 sin α =43cos α .
又 sin2α +cos2α =1,
所以196cos2α+cos2α =1.即 cos2α =295.
又角 α 在第三象限, 所以 cos α =-35, 所以 sin α =43cos α =-45.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学第一章三角函数1.2.2同角三角函数的基本关系教
案新人教A版必修4
一、教学目标:
1、知识与技能
(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余
各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式
证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生
分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等
变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.
2、过程与方法
由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习
已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;
利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学
知识.
3、情态与价值
通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生
分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.
二、教学重、难点
重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 及,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.
教学用具:圆规、三角板、投影
四、教学设想
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各
不同三角函数之间的联系,实现不同函数值之间的互相转化.
1.探究:三角函数是以单位圆上点的坐标来定义的,你
能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
如图:以正弦线,余弦线和半径三者的长构成直角三角形,
而且.由勾股定理由,因此,即.
根据三角函数的定义,当时,有.
这就是说,同一个角的正弦、余弦的平方等于1,商等于
角的正切.
2.例题讲评
例6.已知,求的值.
三者知一求二,熟练掌握.
3. 巩固练习页第1,2,3题
4.例题讲评
例7.求证:.
通过本例题,总结证明一个三角恒等式的方法步骤.
5.巩固练习页第4,5题
6.学习小结
(1)同角三角函数的关系式的前提是“同角”,因此,.
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
五、评价设计
(1)作业:习题1.2A组第10,13题.
(2)熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关
系式;注意三角恒等式的证明方法与步骤.。