高数收敛定义

合集下载

高数收敛知识点总结

高数收敛知识点总结

高数收敛知识点总结高等数学中,收敛是指某个数列或级数在某个极限下趋于无穷大。

以下是高数中与收敛相关的重要知识点:1. 数列的极限数列的极限是指数列中的数当$n$趋近于无穷大时的极限。

如果存在这样一个数$A$,使得对于任意正数$\epsilon$,都存在正整数$N$,使得当$n>N$时有$|a_n-A|<\epsilon$,则称数列$a_n$收敛于$A$。

如果不存在这样一个数$A$,则称数列$a_n$发散。

2. 级数的收敛与发散级数是无数项加和的表达式,如果一个级数的部分和数列收敛,则这个级数也收敛。

具体地,对于一个级数$\sum\limits_{n=1}^{\infty}a_n$,其部分和数列为$S_n=\sum\limits_{k=1}^{n}a_k$,如果$S_n$收敛于某个数$S$,那么称级数$\sum\limits_{n=1}^{\infty}a_n$收敛,记为$\sum\limits_{n=1}^{\infty}a_n=S$;如果$S_n$发散,则称级数$\sum\limits_{n=1}^{\infty}a_n$发散。

3. 收敛级数的比较判别法对于两个级数$\sum\limits_{n=1}^{\infty}a_n$和$\sum\limits_{n=1}^{\infty}b_n$,如果对于充分大的$n$,有$|a_n|\leqslant kb_n$,其中$k$是某个正常数,那么有以下结论:当$\sum\limits_{n=1}^{\infty}b_n$收敛时,$\sum\limits_{n=1}^{\infty}a_n$也收敛;当$\sum\limits_{n=1}^{\infty}a_n$发散时,$\sum\limits_{n=1}^{\infty}b_n$也发散。

4. 收敛级数的比值判别法对于一个级数$\sum\limits_{n=1}^{\infty}a_n$,如果极限$\lim\limits_{n\to\infty}\left|\dfrac{a_{n+1}}{a_n}\right|$存在,记为$r$,则有以下结论:当$r<1$时,$\sum\limits_{n=1}^{\infty}a_n$收敛;当$r>1$时,$\sum\limits_{n=1}^{\infty}a_n$发散;当$r=1$时,比值判别法无法判断级数的收敛性。

高数复习笔记

高数复习笔记

第一章1、映射:Y中有唯一与x对应的元素,f为x到y的映射,y称为像,x称为原像条件:x,y均为非空集合,但是y反过来对应的x不一定是唯一的可以多个x对应一个y,不可一个x对应一个y。

y中所有元素均被对应,f称为满射。

一个x对应着一个y是单射,若即是单射又是满射则是双射。

2、函数的有界性:上有界,下有界。

恒小于一个值,恒大于一个值。

有界的充要条件是即有上界又有下界(函数绝对值恒小于一正数)数列收敛的定义1数列收敛极限唯一2数列收敛,数列一定有界3从某一项开始大于零,则其极限大于零4数列收敛,子数列收敛两函数相同的条件:定义域,表达式4、函数极限:δ,函数极限定义:定义、ε5、极限运算法则无穷小加无穷小为无穷小(零是无穷小,但是无穷小不一定为零)有界函数(常数)×无穷小也是无穷小6、重要极限7、极限存在准则:单调有界有极限夹逼准则函数的保号性常见等价无穷小1、sinx~x~tanx~ln(1+x)~arcsin(x)~arctan(x)~e x-12、1-cosx~1/2x23、(1+x)a-1函数连续间断定义某一点连续(左右极限存在且相等等于该点函数值,称之为连续1、左极限等于该点函数值——左连续,右极限等于该点函数值——右连续2、闭区间连续。

右左端点处对应左右连续,开区间上连续间断点类型1、没定义2、有定义,极限不存在3、有定义,极限存在。

但是极限不等于函数值1、第一类间断点左右极限都存在(都相等但是不等于函数值——可去间断点)(极限不相等,跳跃间断点)2、第二类间断点左右极限至少有一个不存在称为第二类间断点基本初等函数必连续(三角、反三角,幂函数,指数函数,对数函数)加减乘除(分母不为零)、复合函数只要原函数连续,则连续最值定理:闭区间连续函数一定可以取到最大最小值零点定理:端点处函数值异号,开区间内存在零点(开区间使用)介值定理:闭区间连续函数,区间内比存在一点,使其函数值取到最大值最小值之间(闭区间使用,且多个函数相加存在)第二章函数导数存在就是可导可导一定连续(可以推出极限值等于函数值)不连续一定不可导函数倒数存在——函数左右导数存在且相等验证可导与否,先看是否连续,后看左右导数是否相等Secx=1/cosx cscx=1/sinx三角函数N 阶导数——sinx 求导——sin(x+n*pai/2) cosx 同理1')(!*)1()1(++-=+n nn n b ax a n b ax 乘积函数求N 阶导数隐函数求导(两侧同时对x 求导,最后解出导数)参数方程求导)(')(')()(t t f dx dy t x t f y ϕϕ===可导《=》可微=>连续第三章三个条件拉格朗日中值定理:1、拉格朗日等价形式:)(*])([')()(a b a b a f a f b f --+=-θ2、三个点,采用两次拉格朗日定理 柯西中值定理:二阶可导——一阶可导——连续 洛必达法则:(存在局限性,如果上下求导最后极限不存在,但是其极限有可能存在,洛必达法则不适用) 1、0/0型。

高数定理定义归纳

高数定理定义归纳

2012年考研数学高数定理定义归纳第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中00(或A0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f (x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x →0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

高数:级数敛散判别法

高数:级数敛散判别法

则称无穷级数收敛;
S un 级数的和

lim
n
Sn
不存在,
则称无穷级数发散 。
n1
rn S Sn
uk
级数的余项。
lim
n
rn
0
无穷级数收敛。
kn1
若un≥0 (n=1, 2, 3, …) , un 正项级数。 Sn是单调增加数列。
n1
正项级数 un 收敛
n1
部分和序列 Sn有界 。
比较判别法
1 n 1
np n1n p dx
n n1
1 xp
dx
1
Sn
1
1 2p
1 3p
1
4p
1
np
1
2nddxx 1 xxpp
231dxxp1pn p11n
dx n1x1p
1 p 1
,
因而 Sn有上界。 由基本定理可知, 当p>1时p级数收敛。
9.2.2 比较判别法
定理2 (比较判别法) 设 un , vn 是两个正项级数, 且
设 un , vn 是两个正项级数, 且存在自然数N,
n1 n1
使当 n>N 时有 un≤kvn (k>0为常数) 成立, 则
(1) 若强级数 vn 收敛 , 则弱级数 un 也收敛 ;
n1
n1
(2) 若弱级数 un 发散 , 则强级数 vn 也发散 。
n1
n1
比较对象

p级数
1 np
,
p>1收敛,p<1发散。
证: 因为
1
nn 1
1 n (n 1)
发散 。
1 1 n 1, 2,

高数上1.3数列极限与性质

高数上1.3数列极限与性质
2n2 n 4 2 2 2n2 n 4 n
所以
n2 n 4 1
lim
n
2n2
n
4
2
分析:
3 n2 nn44
22n22n2 n
n4
4
1 2
3 2
3n 22n
22n2n43nn4
1 n4
这对是任一意个不>易0,取求N解=的[1绝/对]即值可不。等式,必须使用放大法
为了去掉绝对值,不妨设n>4,则有
对 ε >0, 数列点xn落入U(1, ε ) |xn-1|<ε
对于任意给定的正数 ,(这个正数可以任意小), 一定存在某一时刻N, 距离|xN1| , 而且从N以后 的所有xn与1的距离|xn1|都小于 ,
当 越变越小时, 始终存在时刻N, 当n>N时, 都有 |xn1|< ,
当 0 时, 距离 |xn1| →0.
,只要
n
10000时,

xn
1
1, 10000
给定 0,
只要 n N ( [1])时,
有 xn 1 成立.
定义 如果对于任意给定的正数 (不论它 多么小),总存在正整数 N ,使得对于n N 时 的一切 xn,不等式 xn a 都成立,那么就称 常数 a是数列 xn的极限,或者称数列 xn收敛 于 a,记为
则当n N时,
就有 n (1)n1 1 即lim n (1)n1 1.
n
n
n
例2 证明 lim qn 0,其中q 1. n
证 任给 0, 若q 0, 则 lim qn lim 0 0;
n
n
若0 q 1, xn 0 qn , n ln q ln ,

《高数》第十一章-习题课:级数的收敛、求和与展开

《高数》第十一章-习题课:级数的收敛、求和与展开

概念:
为收敛级数

收敛 , 称

发散 , 称
绝对收敛 条件收敛
Leibniz判别法: 若

则交错级数
收敛 , 且余项
4
例1. 若级数
均收敛 , 且
证明级数
收敛 .
证: 0 c n a n bn a n (n 1 , 2 , ), 则由题收敛


(1)n
n0
x2n ,
x (1,1)

arctan
x

x
01
1 x2
d
x
(1)n x2n1, n02n 1
x [1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n1 2n 1
n02n 1
25
f
a 1 时收敛 ; a 1 时发散.
s 1 时收敛;
a 1 时, 与 p 级数比较可知 s 1 时发散.
7
P257 题3. 设正项级数 和 都收敛, 证明级数
也收敛 .
提示:

lim
n
un

lim
n
vn

0
,存在
N
>
0, 当n
>N

又因
2( un2 vn2 )
思考: 如何利用本题结果求级数
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1 1
2 n1
f (0 ) f (0 ) 1
2
2
28
作业
P257 6 (2); 7 (3); 9(1) ; 10 (1) ;

高数定理定义总结

高数定理定义总结

高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果l im(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

高数 数列的极限

高数 数列的极限
机动 目录 上页 下页 返回 结束
2. 收敛数列一定有界. 证: 设 取
1 , 则 N , 当 n N 时, 有
xn a a 1 a
xn a 1, 从而有

M max x1 , x2 , , xN , 1 a xn M ( n 1 , 2 , ) .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f (n).
数列的极限
( 1) 观察数列 {1 n
n 1
} 当 n 时的变化趋势.
播放
问题: 当 n 无限增大时, x n是否无限接近于某一 确定的数值?如果是,如何确定? 通过上面演示实验的观察:
( 1)n1 当 n 无限增大时, xn 1 无限接近于 1. n

比较可知

xn xn1 ( n 1, 2 , )
xn (1 1 ) n 1 1 n
机动 目录 上页 下页 返回 结束

1 )n xn (1 n
11
11
3 1 2
n 1
3
根据准则 2 可知数列 xn 有极限 . 记此极限为 e , 即
n
lim (1 1 ) n e n
e 为无理数 , 其值为
e 2.718281828459045
原题 目录 上页 下页 返回 结束

例3. 设 q 1 , 证明等比数列 的极限为 0 . 证:
xn 0
欲使 只要 即
ln . 亦即 n 1 ln q 1 ln , 则当 n > N 时, 就有 因此 , 取 N ln q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数收敛定义
高等数学中的收敛定义是一个重要的概念,它在分析、微积分和实变函数等数学领域中都有着广泛的应用。

收敛定义是描述数列或函数趋于某个极限值的方式,它使我们能够精确地刻画数学对象的变化规律和性质。

在数列中,收敛定义描述了数列中的每一项逐渐趋近于某个极限的情况。

具体而言,对于一个数列{an},如果存在一个实数a,对于任意一个给定的正数ε,都存在一个正整数N,使得当n>N时,|an-a|<ε成立,那么我们说数列{an}收敛到a。

其中,|an-a|表示数列中第n项与极限值a之差的绝对值。

对于函数而言,收敛定义描述了函数在某个点附近的极限情况。

具体而言,对于一个函数f(x),如果存在一个实数a,对于任意一个给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,|f(x)-a|<ε成立,那么我们说函数f(x)在点a处收敛到a。

收敛定义的核心思想是通过极限值的存在来描述数列或函数的趋近性。

在数学分析中,收敛定义是讨论极限存在与否、确定极限值以及证明极限性质的重要工具。

它在微积分中的应用尤为广泛。

收敛定义在数学分析中用于判断数列是否收敛。

通过给定的正数ε,我们可以找到一个正整数N,使得当数列中的项数超过N时,数列中的每一项与极限值之差的绝对值都小于ε。

这意味着数列中的项
逐渐趋近于极限值,从而我们可以确定数列的极限是否存在。

收敛定义在微积分中用于刻画函数在某点处的极限性质。

通过给定的正数ε,我们可以找到一个正数δ,使得当自变量与待求极限点的距离小于δ时,函数值与极限值之差的绝对值都小于ε。

这意味着函数在极限点附近的取值逐渐趋近于极限值,从而我们可以确定函数在该点处的极限性质。

除了判断数列和函数的收敛性外,收敛定义还在实变函数中有着重要的应用。

通过对实变函数的收敛定义的研究,我们可以得到诸如极限的唯一性、保号性、四则运算性质以及函数连续性等重要结论。

这些结论为实变函数的研究提供了基础,并在实际问题的分析和求解中发挥着重要的作用。

在数学分析和微积分的学习中,收敛定义是一个基础而重要的概念。

深入理解和掌握收敛定义,对于我们正确理解和应用数学知识具有重要意义。

只有通过准确的定义和严格的推导,我们才能建立起正确的数学思维方式,解决实际问题,为更高层次的数学学习打下坚实的基础。

收敛定义在高等数学中起着重要的作用。

它不仅帮助我们判断数列和函数的收敛性,还为数学分析和微积分等领域的研究提供了基础。

通过理解和应用收敛定义,我们能够更好地理解数学知识的本质,提高数学思维的准确性和深度,为解决实际问题提供有力支持。


此,对于学习和掌握高等数学的同学们来说,深入理解和运用收敛定义是至关重要的。

相关文档
最新文档