焦炉荒煤气余热回收原理

合集下载

热管技术在荒煤气余热回收上的应用

热管技术在荒煤气余热回收上的应用

热管技术在荒煤气余热回收上的应用一、炼焦荒煤气余热利用技术背景。

1、炼焦荒煤气余热利用技术的必要性。

炼焦化学工业是影响国民经济基础的清洁能源转化的流程工业,是炼焦煤通过干馏、实现焦炭和其关联产品的生产工艺模式,属于典型的能源流程产业。

焦炭生产过程中,配合煤在焦炉中被隔绝空气加热干馏,生成焦炭的同时产生大量的荒煤气。

从炼焦生产过程热平衡分布看,从焦炉炭化室推出的950℃〜1050℃红焦带出的显热余热占焦炉支出热的37%,650℃〜750℃焦炉荒煤气带出热(中温佘热)占焦炉支出热的36%,180℃〜230℃焦炉烟道废气带出热(低温余热)占焦炉支出热的16%,炉体表面热损失(低温余热)占焦炉支出热的11%。

炼焦荒煤气余热回收利用的经济效益显著。

理论及实验数据表明,每生产1 吨红焦的高温荒煤气余热回收后至少能产生0. 1吨0. 6兆帕蒸汽,当前,我国年产焦炭约35300万吨,如其荒煤气余热全部得到回收利用,则半至少可回收3530万吨0.6兆帕蒸汽,折合标煤约380万吨,年可减排二氧化碳量993万吨,节能潜力巨大。

为实施清洁生产,持续减少资源及能源消耗、减少污染物的产生与排放,焦化行业已成为国家节能降耗方面重点关注行业,面临着巨大的节能减排压力。

2、我国炼焦荒煤气余热利用技术的进程。

目前,焦化行业传统做法是喷洒大量氨水,使荒煤气温度降低,进入后续煤化工产品回收加工工段。

这样的结果是,荒煤气带出的热量被白白浪费掉,既流失了荒煤气热能,还增加了水资源的消耗。

炼焦荒煤气余热冋收利用技术在我国经历了近30年的研究历程。

上世纪70年代,采用夹套上升管,夹套内冷却水吸收荒煤气所携带的热量而汽化,产生蒸汽,实现热能的回收利用,简称为“焦炉上升管汽化冷却装置”,这一技术曾一度被多家焦化企业釆用,后因上升管的筒体焊缝拉裂、漏水、漏汽等问题,运行几年后基本停用。

后来经过改进,有的企业把冷却水换成了导热油,导热油与高温荒煤气间接换热,被加热的高温导热油用于煤焦油蒸馏、干燥入炉煤、蒸氨等。

焦炉荒煤气余热回收技术应用分析

焦炉荒煤气余热回收技术应用分析

第6期 收稿日期:2018-02-02作者简介:姜 崴(1973—),山东乳山人,本科,高级工程师,1997年毕业于太原理工大学精细化工专业,目前从事工艺设计方面的工作。

焦炉荒煤气余热回收技术应用分析姜 崴(山西国控环球工程有限公司,山西太原 030024)摘要:焦炉荒煤气含有大量的焦炉热量。

纵观传统焦化工艺,处于集气管内的焦炉荒煤气需要利用喷氨水的手段将其冷却降温,这种做法既会损耗多量的电能,还会导致荒煤气热量的浪费。

本文将结合焦炉荒煤气的特点,分析和探讨焦炉荒煤气余热回收技术。

关键词:荒煤气;余热回收;应用分析中图分类号:TQ083.4;TQ520.8 文献标识码:A 文章编号:1008-021X(2018)06-0109-01 我国焦炭产量在世界范围内处于前列,然而整体科技水平不高,许多焦化企业面临着亏损。

我国焦炭大部分被用来炼铁。

焦炉荒煤气携带着大量的热量,不合理利用的话会造成巨大的损耗。

鉴于这一现实情况,焦化企业要积极调整工艺结构,优化和完善焦炉荒煤气余热回收技术。

1 焦炉荒煤气以及煤焦油结焦的特征荒煤气内含有多种成分,不仅含有净煤气,还含有硫化氢、煤焦油、水分等成分。

硫化氢作为荒煤气中的成分之一,在干燥状态下不会对金属造成腐蚀和破坏。

然而,当焦化企业利用换热器回收荒煤气时,由于换热器壁面与荒煤气之间的温度差异,会导致水蒸气凝结或煤焦油凝结,使得可融入水的硫化氢在水蒸气或煤焦油之中溶解,进而对换热器的金属壁面造成严重的腐蚀破坏,对设备的安全使用造成威胁,可能导致严重的安全隐患。

煤焦油内含有多种成分,根据沸点的高低可分为沥青、蒽油、洗油等成分。

实践证明,煤焦油的凝结温度为450℃,凝结之后的煤焦油会顺着换热器的避免往下流动,当流动到换热器的底部时,凝结后的煤焦油在炭化室的高温辐射下得到再一次分解,其中煤焦油中的固体成分将在换热器表面附着,导致积碳现象。

当换热器避免的温度远远低于煤焦油的温度时,煤焦油会迅速冷凝成为结焦,这些现象都是制约焦炉荒煤气余热回收技术发展的难题,攻克焦炉上升管换热器运行问题有助于促进荒煤气余热回收技术的发展。

余热回收的原理与设计

余热回收的原理与设计

余热回收的原理与设计余热回收是一种能源利用的方式,通过回收工业过程中产生的废热,将其转化为可用的热能,实现能源资源的高效利用。

本文将介绍余热回收的原理与设计,以及其在实际应用中的一些关键问题。

一、余热回收的原理工业生产过程中,往往会产生大量的废热,这些废热如果不加以利用,将会浪费大量的能源资源。

余热回收的原理就是通过一系列的热交换和能量转化过程,将废热转化为可用的热能,以满足其他工艺过程或提供供暖等热能需求。

余热回收的原理主要包括以下几个方面:1.热交换:余热回收系统通过热交换器将废热与冷却介质进行热交换,将高温的废热传递给冷却介质,使其升温,同时冷却介质的温度下降,实现能量的转移。

2.能量转化:通过热交换过程,废热中的热能被传递给冷却介质,使其温度升高。

然后,利用热能转换设备(如蒸汽发生器、热泵等)将热能转化为其他形式的能量,如蒸汽、热水、电能等。

3.能量利用:转化后的能量可用于其他工艺过程,例如用蒸汽发生器产生蒸汽,用于供暖、发电或工艺加热等。

二、余热回收的设计余热回收系统的设计需要考虑多个因素,包括废热的温度、流量、性质等,以及回收后的能量利用方式等。

以下是一些常见的余热回收系统设计要点:1.热交换器的选择:热交换器是余热回收系统的核心部件,其性能直接影响回收效果。

根据废热的温度和流量等参数,选择合适的热交换器类型,如板式热交换器、管壳式热交换器等。

2.热能转化设备的选型:根据回收后的能量利用需求,选择合适的热能转化设备。

如需产生蒸汽,可选用蒸汽发生器;如需产生热水,可选用热水锅炉;如需产生电能,可选用热电联供系统等。

3.系统的热平衡:在设计余热回收系统时,需要考虑废热与冷却介质之间的热平衡问题,以确保能量的有效转移。

合理选择冷却介质的流量、温度等参数,以实现废热的高效回收。

4.系统的安全性:余热回收系统应考虑安全因素,包括防止废热泄漏、冷却介质的腐蚀等。

选择适当的材料和设计合理的系统结构,以确保系统的安全运行。

清洁型热回收捣固焦炉工作原理、特点与护炉设备详解

清洁型热回收捣固焦炉工作原理、特点与护炉设备详解

清洁型热回收捣固焦炉工作原理、特点与护炉设备详解一、清洁型热回收捣固焦炉的工作原理及其特点:(一)QRD-2000清洁型热回收捣固焦炉工作原理:1、热回收焦炉工作原理是将炼焦煤捣固后装入炭化室,利用炭化室主墙、炉底和炉顶储蓄的热量以及相邻炭化室传入的热量使炼焦煤加热分解,产生荒煤气,荒煤气在自下而上逸出的过程中,覆盖在煤层表面,形成第一层惰性气体保护层,然后向炉顶空间扩散,与由外部引入的空气发生不充分燃烧,生成的废气形成煤焦与空气之间的第二层惰性气体保护层。

2、由于干馏产生的荒煤气不断产生,在煤(焦)层上覆盖和向炉顶的扩散不断进行。

使煤(焦)层在整个炼焦周期内始终覆盖着完好的惰性气体保护层,使炼焦煤在隔绝空气的条件下加热得到焦炭。

3、在炭化室内燃烧不完全的气体通过炭化室主墙下降火道到四联拱燃烧室内,在耐火砖的保护下再次与进入的适度过量的空气充分燃烧,燃烧后的高温废气送去发电并脱除二氧化硫后排入大气。

(二)特点:1、有利于焦炉实现清洁化生产:⑴、焦炉采用负压操作的炼焦工艺,从根本上消除了炼焦过程中烟尘的外泄。

⑵、炼焦炉采用了水平接焦,最大限度地减少了推焦过程中焦炭跌落产生的粉尘。

⑶、在备煤粉碎机房、筛焦楼、熄焦塔顶部等处采用了机械除尘。

⑷、在精煤场采用了降尘喷水装置。

⑸、炼焦工艺和环保措施相结合,更容易实现焦炉的清洁化生产。

⑹、该焦炉没有回收化学产品和净化焦炉煤气的设施,在生产过程中不产生含有化学成分的污水,不需要建设污水处理车间。

⑺、在全厂生产过程中熄焦时产生的废水,经过熄焦沉淀池沉淀后循环使用不外排从而减少焦炉热修。

⑻、焦炉生产工艺简单,没有大型鼓风机、水泵等高噪声设备。

⑼、在全厂生产过程中产生噪声的设备有精煤粉碎机、焦炭分级筛、焦炉机械等。

⑽、精煤粉碎机和焦炭分级筛采用低噪声设备,在安装和使用过程中采取了降低噪声的措施,厂房周围的噪声低于50dB。

⑾、焦炉机械的噪声主要来源于捣固机,捣固工艺采用液压捣固,捣固过程中产生的噪声很低,一般低于40dB从而减少焦炉热修。

焦炉废气交换系统工作原理

焦炉废气交换系统工作原理

焦炉废气交换系统工作原理
焦炉废气交换系统是一种利用焦炉排放的高温废气进行能量回收的装置。

其工作原理如下:
1. 焦炉燃烧:在焦炉燃烧过程中,炉内煤炭被加热并变成焦炭,同时释放出大量热能形成高温废气。

2. 废气排放:焦炉废气经过烟囱排放到大气中。

3. 烟气净化:在焦炉废气交换系统之前,废气会经过烟气净化系统进行处理,包括除尘、脱硫等工艺,以满足环保排放要求。

4. 烟气回收:焦炉废气交换系统中,高温废气通过烟气换热器与待加热介质进行热交换。

烟气换热器由一系列管道组成,介质在管道外流动,而废气在管道内流动,通过管壁的传热,废气的热能被传递给介质。

5. 能量回收:在烟气换热器中,待加热的介质(如水蒸气或热媒)接受废气传递的热量,温度升高。

这样,废气的高温能量得以回收,而介质的温度升高可以用于其他工艺或设备的加热。

通过焦炉废气交换系统的工作,废气排放后的热能得到回收利用,不仅提高了能源利用效率,还减少了焦炉燃烧产生的废气对环境的污染。

同时,回收的热能可以降低其他工艺或设备的能源消耗,达到节能减排的效果。

炼焦荒煤气余热回收任重道远_丰恒夫

炼焦荒煤气余热回收任重道远_丰恒夫

中国冶金报/2010年/9月/9日/第C02版原料行业炼焦荒煤气余热回收任重道远丰恒夫炼焦生产是典型的能源再加工和热能的再回收利用过程,焦炭和炼焦煤气是其主要的能源产品。

煤在干馏过程中产生的高温荒煤气,其余热的回收与利用历来是焦化行业重点技术之一。

炼焦过程中热量损失分布炼焦荒煤气余热回收利用的必要性炼焦化学工业是影响国民经济基础的清洁能源转化的流程工业,是炼焦煤通过干馏、实现焦炭和其关联产品的生产工艺模式,属于典型的能源流程产业。

焦炭生产过程中,配合煤在焦炉中被隔绝空气加热干馏,生成焦炭的同时产生大量的荒煤气。

从炼焦生产过程热平衡分布看,从焦炉炭化室推出的950℃~1050℃红焦带出的显热(高温余热)占焦炉支出热的37%,650℃~750℃焦炉荒煤气带出热(中温余热)占焦炉支出热的36%,180℃~230℃焦炉烟道废气带出热(低温余热)占焦炉支出热的16%,炉体表面热损失(低温余热)占焦炉支出热的11%。

在占焦炉支出热最多的两项中,对焦炭带出的显热,目前已有成熟的干熄焦装置回收并发电,而对焦化荒煤气带出的显热,虽然从上世纪70年代末期国内就开始回收尝试,但至今未形成成熟、可靠、高效的回收利用技术。

炼焦荒煤气余热回收利用的经济效益显著。

理论及中试数据表明,每生产1吨红焦的高温荒煤气余热回收后至少能产生0.1吨0.6兆帕蒸汽,2009年我国生产焦炭35300万吨,如其荒煤气余热全部得到回收利用,则至少可回收3530万吨0.6兆帕蒸汽,折合标煤约380万吨,年可减排二氧化碳量993万吨,节能潜力巨大。

为实施清洁生产,持续减少资源与能源消耗、减少污染物的产生与排放,焦化行业已成为国家在节能降耗方面重点关注行业,面临着巨大的节能减排压力。

我国炼焦荒煤气余热回收利用的进程从炼焦炉炭化室内产生的650℃~700℃高温荒煤气,其氢气及甲烷、苯碳氢化合物的体积含量分别达60%、35%,经钢制的上升管逸出。

为了冷却高温荒煤气,目前世界焦化业传统的方法是喷洒大量70℃~75℃的循环氨水,循环氨水吸热而大量蒸发,使荒煤气温度得以降低,进入后序煤化工产品回收加工工段。

余热回收利用原理

余热回收利用原理

余热回收利用原理余热回收利用是指在工业生产或能源利用过程中,将产生的废热进行有效回收利用的技术。

余热是指在各种工业生产和能源利用过程中,未能被充分利用的热能,通常以废气、废水、废热的形式存在。

余热回收利用原理是通过各种技术手段将这些废热进行回收和再利用,以达到节能减排的目的。

首先,余热回收利用的原理是基于热力学第一定律的能量守恒原理。

根据能量守恒定律,能量在一个封闭系统内不会减少或增加,只会从一种形式转化为另一种形式。

工业生产和能源利用过程中产生的废热,实际上是未能被充分利用的能量形式。

通过余热回收利用技术,可以将这些废热进行有效地回收和再利用,从而实现能量的再转化和再利用,达到节能减排的效果。

其次,余热回收利用的原理是基于热力学第二定律的熵增原理。

根据热力学第二定律,熵在一个封闭系统内只能增加,不能减少。

工业生产和能源利用过程中产生的废热,实际上是增加了系统的熵值。

通过余热回收利用技术,可以将这些废热进行有效地回收和再利用,减少系统的熵增,从而实现能源的有效利用和系统的熵值控制。

最后,余热回收利用的原理是基于环境保护和可持续发展的需要。

随着工业化进程的加快和能源消耗的增加,废热排放已成为环境污染和资源浪费的重要问题。

通过余热回收利用技术,可以将这些废热进行有效地回收和再利用,减少对环境的污染,实现资源的可持续利用,符合环境保护和可持续发展的需要。

综上所述,余热回收利用原理是基于能量守恒、熵增和环境保护的基本原理,通过各种技术手段将工业生产和能源利用过程中产生的废热进行有效回收和再利用,达到节能减排、资源可持续利用和环境保护的目的。

余热回收利用技术的发展和应用,对于推动工业生产和能源利用的可持续发展具有重要意义。

烟气余热回收

烟气余热回收

烟气余热回收烟气余热回收是一种利用工业烟气中的热能,将其转化为有用的能源的技术。

在工业生产过程中,许多设备会产生大量的烟气,并且其中蕴含着大量的热能。

如果不加以回收利用,这些烟气中的热能将会成为一种浪费。

利用烟气余热回收技术,可以将这些烟气中的热能转化为电力、热水等形式,实现能源的有效利用。

一、烟气余热回收的原理烟气余热回收的原理是利用烟气中所含的高温热能,通过热交换器等设备将其传递给工作介质,使其温度升高,从而实现能量的转化。

具体而言,烟气在经过工业设备后温度较高,热能丰富,而同一工艺中的其他设备或介质却需要能量供应才能进行正常运行。

通过在烟气和工作介质之间设置热交换器,将烟气中的热能传递给工作介质,使其温度升高并得到利用。

烟气在释放了热能后会冷却下来,然后被排出。

二、烟气余热回收的应用领域1. 电力发电领域烟气余热回收技术在电力发电领域得到了广泛应用。

发电厂中燃气轮机、燃煤发电等设备产生的烟气中含有大量的热能,通过热交换器回收这些热能,可以增加发电系统的整体效率,并减少对外部能源的依赖。

2. 石油化工领域在石油化工生产过程中,许多工艺所产生的烟气含有高温热能,通过烟气余热回收技术进行回收利用,不仅可以提高生产过程的能源利用率,还可以降低生产成本。

3. 钢铁冶炼领域钢铁冶炼过程中,高炉煤气以及其它烟气所含的热能可以通过余热回收技术回收利用。

回收过程中,烟气中的热能被传递给工作介质,使其升温后可以用于生产过程中的加热需求,从而实现能源的循环利用。

4. 建材行业在建材行业中,如水泥生产过程中,熟料窑炉烟气中的高温热能可以通过余热回收设备回收利用,为其他工艺提供热能,减少能源的消耗。

三、烟气余热回收的优势1. 提高能源利用效率通过烟气余热回收技术,可以将烟气中的热能转化为有用的能源,在一定程度上提高了能源的利用效率。

这有助于减少对外部能源的需求,降低能源消耗成本。

2. 减少环境污染利用余热回收技术,可以减少工业排放的烟尘、废气等污染物的含量,起到了环保的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦炉荒煤气余热回收原理
焦炉荒煤气余热回收是指通过对焦炉排出的煤气进行处理和利用,将其余热转化为能量或热量的过程。

该技术应用于工业生产中,可以
提高能源利用效率,降低能源消耗和环境污染,具有重要的经济和环
境效益。

本文将详细介绍焦炉荒煤气余热回收的原理及应用。

焦炉是用来生产焦炭的装置,焦炭是一种重要的冶金原料,在钢铁、铁合金等行业得到广泛应用。

在焦炉的生产过程中,焦炭的制作
需要对煤进行加热处理,产生大量的高温煤气。

这些煤气中含有丰富
的余热,如果直接排放到大气中,会造成能源浪费和环境污染。

焦炉荒煤气余热回收的原理主要包括煤气处理和余热回收两个部分。

首先,焦炉排出的煤气需要经过净化处理,去除其中的灰尘、硫
化氢等杂质,以保证后续利用的稳定和安全。

接着,煤气进入余热回
收系统,在其中发生一系列的热交换过程,使煤气中的余热转化为可
利用的能量或热量。

焦炉荒煤气余热回收的具体流程如下:首先,煤气被引导进入煤
气净化器,通过过滤和洗涤等方法,去除其中的固体颗粒和可溶性硫
化物等杂质。

这样做的目的是为了保护后续设备的安全运行,减少杂质对设备的腐蚀和堵塞影响。

然后,净化后的煤气进入余热回收系统中的换热器,与流经其它管道的冷却介质进行热量交换。

通过这种方式,煤气中的高温余热被传递给冷却介质,使其温度升高。

同时,煤气自身温度下降,减少对环境的热污染。

煤气与冷却介质的流动方式可以是并流式或逆流式,根据具体情况选择,以达到最佳的热交换效果。

经过换热器后,冷却介质温度升高,可以进一步利用其所含的热量进行工业生产或供暖等用途。

冷却介质会被送回源头,通过循环使用,达到节约能源的目的。

同时,煤气在换热器中降温后,进一步净化处理,去除其中的水蒸汽和有害物质,确保后续利用的安全性。

最后,煤气经过换热器和净化处理后,所剩余的废气被排放到大气中,此时其温度已经降到较低水平,对环境影响较小。

这样一来,焦炉荒煤气的余热就得到了有效的回收利用,不仅减少了能源浪费,还降低了环境污染。

焦炉荒煤气余热回收技术已经在钢铁、化工、建材等领域得到广泛应用。

其中,较为常见的利用方式是将回收的热量用于工业生产或
供暖。

比如,余热可以用来加热锅炉中的水或蒸汽,提供热源给工艺
过程或供暖系统。

此外,余热还可以用于发电,通过驱动发电机来产
生电能,满足工厂的电力需求。

总之,焦炉荒煤气余热回收是利用焦炉排放的煤气中所含的余热,通过净化和换热等技术转化为可利用的能量或热量的过程。

该技术可
以提高能源利用效率,减少环境污染,具有重要的经济和环境效益。

随着工业生产的不断发展,焦炉荒煤气余热回收技术将会得到更广泛
的应用和推广。

相关文档
最新文档