地铁基坑监测总结
基坑安全监测个人总结

基坑安全监测个人总结引言在建筑施工过程中,基坑工程是一个非常重要且危险的部分。
基坑工程的施工不仅涉及到工地内部人员的安全,还直接影响到周围道路、建筑物的稳定和安全。
为了保障基坑工程的安全进行,我参与了基坑安全监测工作并进行了总结,旨在总结经验,提高施工安全水平。
了解工程特点在进行基坑安全监测之前,我首先对基坑工程的特点进行了深入了解。
基坑工程需要挖掘土方,因此涉及到土体力学、水文水资源和结构工程等多个学科领域。
对于不同类型的土壤,其稳定性和变形特征也有所不同。
因此,在进行监测时,需要根据具体的土壤类型和工程条件制定相应的监测方案。
理论知识与实践经验相结合基坑安全监测涉及到土壤力学、结构工程和工程测量等多个学科,而这些学科的理论知识是进行监测的基础。
因此,我在实践过程中注重学习和理解相关理论知识,并将其应用于实际操作中。
在工程实践中,我认识到只有理论知识是不够的,需要经验来指导。
在监测工作中,我与一些经验丰富的工程师进行了合作,并向他们请教相关问题。
通过与他们的交流和实际操作中的摸索,我积累了一定的实践经验,提高了自己的监测水平。
持续监测与及时反馈基坑工程是一个动态的施工过程,土体的变形和稳定性会随着时间的推移而发生变化。
因此,基坑安全监测需要持续进行,并及时反馈监测数据给相关人员,以便及时采取相应的措施。
在进行监测工作时,我密切关注监测数据的变化,并定期将数据整理和分析,以便及时发现异常情况。
一旦监测数据超过了预警值或者变化趋势明显,我会立即向相关人员进行汇报,并提出相应的处理建议。
与相关部门合作基坑工程不仅仅是土建施工,还需要与其他专业进行紧密合作。
在进行基坑安全监测时,我主动与结构工程师、土木工程师和施工人员进行沟通和协作。
通过与他们的合作,我更加全面地了解了基坑工程的整体情况,并能够将监测数据与工程进度相结合,为相关决策提供科学依据。
不断提高技术水平在进行基坑安全监测工作中,我不断学习新的监测技术和方法,并将其应用于实践中。
上海地铁明珠线某站基坑施工监测总结

上海地铁明珠线某站基坑施工监测总结轨道交通明珠线二期工程长阳路车站基坑施工监测总结上海市轨道交通明珠线二期工程长阳路站基坑施工监测总结建设单位:施工单位:监测单位:总经理:总工程师:编写:参加人员:二零零二年十月目录一、工程概况………………………………………………………1二、地质条件及周围环境情况 (1)(一)地质条件 (1)(二)周围环境 (2)三、监测内容与测点布置 (2)四、基坑土体加固 (3)五、基坑挖土施工概况 (5)(一)、挖土施工情况 (5)(二)、变形情况 (7)1)、围护墙体变形情况 (7)2)、支撑情况 (10)3)、地表及管线沉降情况 (13)4)、建筑物沉降情况 (13)六、认识和体会 (13)地铁某站基坑施工监测总结一、工程概况工程建设单位:上海市xx建设公司工程设计单位:上海市x建筑设计院工程监理单位:xx建设监理有限公司工程施工单位:上海市xx建筑工程有限公司xx路车站位于大连路、长阳路交界处,车站呈南北走向,主体位于大连路下,穿越长阳路。
车站采用双柱三跨钢筋混凝土结构,预留与规划的地铁4号线的“T字形”换乘段。
车站主体围护结构采用地下连续墙,顺筑法施工。
长阳路及大连路上大量的市政管线在施工前随道路翻交进行了搬迁。
车站的北端头井邻近的正泰橡胶厂均已拆迁。
道路翻交后车站东侧紧邻大连路,长阳路绕南端头井通过,车站西、北侧为居民住宅。
整个车站施工区已形成封闭,已完全具备连续施工的场地条件。
车站全长221m,标准段宽21.6m,端头井宽26m;标准段基坑开挖深度15.29m,端头井基坑开挖深度17.49m,换乘段基坑开挖深度为22.48m;车站中心顶板覆土3.50m。
车站深基坑围护结构采用地下连续墙,不同位置的厚度、深度及入土比如下表,混凝土强度等级为C30,抗渗等级为0.8Mpa,钢筋保护层外层70mm,内层50mm。
地墙位置地墙厚度(㎜)地墙深度(m)入土比墙趾土层标准段6029.2 0.91⑤1-2标准段(近正泰橡胶厂处)8030.5 0.99⑤1-2北端头井1035.5 1.00 ⑤001-2南端头井8032.2 0.84⑤1-2换乘段100042 0.87⑦15道斜撑,换乘段6道支撑。
基坑监测类个人总结

基坑监测类个人总结背景基坑工程作为现代城市建设的一部分,由于其大规模、复杂性和特殊性,对基坑监测的要求也越来越高。
我在过去的一段时间内参与了基坑监测工作,累积了一些经验和教训,在此总结分享给大家。
监测目标基坑监测的目标是保证基坑工程的安全运行,及时掌握基坑变形和变化趋势,预测可能发生的灾害,为调整工程施工计划或采取相应措施提供依据。
主要监测目标包括但不限于以下几个方面:1. 地下水位:监测地下水位的变化情况,为基坑降水提供参考。
2. 周边建筑物:监测周边建筑物的位移、沉降和裂缝情况,判断是否对周边建筑物造成影响。
3. 地下管线:监测地下管线的变化,防止损坏或冲击到地下管线。
4. 地表变形:监测基坑边坡、挡墙的变形,及时发现并采取相应措施。
监测方法基坑监测主要采用传统的物理监测和现代化的遥感监测相结合的方式。
传统的物理监测主要包括设置测点,通过测量位移、沉降和应力等参数来监测基坑变形情况。
而遥感监测主要是通过无人机、卫星等技术手段,利用图像处理、变形分析等方法来实现对基坑的监测。
1. 物理监测:在基坑周边设置监测点,通过经纬仪、水准仪、测量经验等手段测量位移和沉降。
此外,还可以采用倾斜仪、地震仪等设备来监测基坑的倾斜、振动等参数。
2. 遥感监测:利用无人机、卫星等设备进行空中遥感监测。
通过获取高分辨率的影像图像,运用图像处理和变形分析等技术手段,实现对基坑的变形监测。
监测技术基坑监测技术涉及多个领域,需要综合运用地质、测绘、摄影测量、计算机等学科的知识和技术手段。
1. 地质勘探:在开始基坑开挖前,进行地质调查和勘探,了解地质情况和地下水位,为后续监测提供重要数据。
2. 测绘技术:使用全站仪、经纬仪、水准仪等设备进行基坑边界的测量,获取准确的三维坐标数据。
3. 遥感技术:运用无人机、卫星等设备获取高分辨率的影像图像,通过图像处理和变形分析等技术手段对基坑进行监测。
4. 摄影测量:运用航摄、地面摄像等手段获取基坑表面的影像数据,通过图像处理和分析,了解基坑表面的变形情况。
地铁基地综合监控工作总结

地铁基地综合监控工作总结
近年来,地铁基地综合监控工作在我国地铁行业中扮演着越来越重要的角色。
地铁基地综合监控工作不仅是地铁安全生产的重要保障,也是地铁运营管理的重要组成部分。
在过去的一年中,我们地铁基地综合监控工作取得了一系列成绩,也面临了一些挑战。
在此,我们对过去一年的地铁基地综合监控工作进行总结,以期在今后的工作中更好地发挥作用。
首先,我们地铁基地综合监控工作在安全生产方面取得了显著成绩。
通过加强
设备维护和技术改进,我们成功提高了地铁基地的安全生产水平,大大降低了事故发生的概率。
同时,我们还建立了一套完善的应急预案,有效应对了各种突发事件,保障了地铁基地的安全稳定运行。
其次,在运营管理方面,地铁基地综合监控工作也取得了一定成绩。
我们通过
引进先进的监控技术和管理系统,提高了地铁基地的运营效率和服务质量。
同时,我们还加强了对地铁基地各项指标的监测和分析,及时发现问题并采取措施加以解决,为地铁基地的持续发展提供了有力的支撑。
然而,地铁基地综合监控工作也面临一些挑战。
首先,地铁基地的规模越来越大,监控范围也越来越广,这给监控工作带来了一定的压力。
其次,随着科技的发展,监控设备和系统不断更新换代,我们需要不断学习和适应新技术,才能更好地发挥监控的作用。
总的来说,地铁基地综合监控工作在过去一年取得了一定成绩,但也面临一些
挑战。
我们将继续加强监控设备的维护和更新,提高监控技术和管理水平,努力保障地铁基地的安全稳定运行,为地铁行业的发展做出更大的贡献。
地铁基坑监测地地总结

天津地铁6号线土建施工第八合同段施工监测总结报告编制:审核:审批:2015年10月1.总体概述 (1)1.1工程位置 (1)1.2工程简况 (1)1.3 沿线周边环境 (1)1.4 工程地质与水文地质 (1)2.编制依据 (3)3.监测范围及内容 (3)4.车站基坑监测点位(孔)布设情况 (4)4.1围护墙顶水平位移、沉降点位布设情况 (4)4.2 围护结构变形布设情况 (4)4.3 地面沉降点位布设 (4)4.4地下水位点位布设 (4)4.5 支撑轴力点位布设 (4)4.6建筑物沉降监测点布设 (5)4.7 管线监测点位布设 (5)5.监测控制值 (6)6.车站主体部分变形监测数据分析 (7)6.1 基坑周围建筑物沉降监测数据 (7)6.2 地下管线沉降监测 (7)6.3 围护体顶部水平位移监测 (8)6.4 围护体顶部垂直位移监测 (9)6.5 地表沉降监测 (10)6.6地下水位监测 (11)6.7支撑轴力监测 (12)6.8围护体、土体内部水平位移观测数据 (13)7.结论 (17)8.致谢 (18)9.监测测点布置图 (18)1.总体概述1.1工程位置车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。
养鱼池路交通导改至车站盖板上方。
车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。
1.2工程简况基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。
围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。
地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。
基坑监测等级为一级。
1.3 沿线周边环境十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。
天津泰嘉热力管理中心中山北路供热站辅助房(位于车站西南侧,距离端头井9.7m,条基,一层砖混)。
基坑监测个人工作总结报告

一、前言基坑监测是保障基坑工程安全的重要手段,我作为一名基坑监测工程师,在过去的一年里,在领导和同事们的帮助下,通过不断学习、实践和总结,取得了一定的成绩。
现将一年来的工作总结如下:一、工作内容1. 监测方案编制与实施根据工程实际情况,结合规范要求,编制了基坑监测方案,明确了监测项目、监测方法、监测周期、监测精度等。
在实施过程中,严格按照方案进行监测,确保监测数据的准确性和及时性。
2. 监测仪器设备管理对监测仪器设备进行定期检查、维护和保养,确保设备正常运行。
同时,对监测数据进行分析和处理,及时发现异常情况,为施工提供依据。
3. 监测数据采集与处理采用先进的监测技术,对基坑周边环境、支护结构、土体等监测项目进行数据采集。
对采集到的数据进行实时处理,分析监测数据变化趋势,为施工方提供决策支持。
4. 监测报告编制根据监测数据,分析基坑工程的安全状况,编制监测报告,并及时向施工方汇报。
对监测报告进行审核、修改和完善,确保报告质量。
5. 监测现场管理对监测现场进行巡查,确保监测设施完好,及时发现问题并处理。
与施工方、监理方保持良好沟通,确保监测工作顺利进行。
二、工作亮点1. 提高监测精度通过不断学习和实践,熟练掌握了各种监测仪器的使用方法,提高了监测精度。
在监测过程中,对异常数据进行及时处理,确保了基坑工程的安全。
2. 优化监测方案根据工程实际情况,对监测方案进行优化,减少了监测次数,降低了监测成本。
3. 提高团队协作能力在项目实施过程中,与施工方、监理方保持良好沟通,共同解决监测过程中遇到的问题,提高了团队协作能力。
4. 提升自身素质通过不断学习,提高了自己的专业知识和技能,为更好地完成工作打下了坚实基础。
三、工作不足与改进措施1. 监测数据分析能力有待提高在监测数据分析方面,还需进一步提高自己的专业素养,以便更好地发现和解决问题。
改进措施:加强学习,参加相关培训,提高数据分析能力。
2. 监测现场管理需加强在监测现场管理方面,还需进一步规范操作,提高工作效率。
基坑监测总结报告

基坑监测总结报告基坑监测总结报告一、总体概述基坑监测是针对基坑开挖过程中可能出现的地质灾害风险进行的实时监测工作。
本次基坑监测工作从开始开挖到基坑完工共计持续了三个月,主要监测目标为基坑周边建筑物的变形情况和基坑水位变化情况。
通过多种监测手段和方法,监测数据显示整个开挖过程中没有出现严重的地质灾害和安全事故发生。
二、监测方法和设备本次基坑监测工作采用了多种监测方法和设备,包括自动测绘仪、全站仪、GPS定位仪等,确保了监测数据的准确性和真实性。
同时,建立了一套完善的监测体系,包括监测网、监测点、传感器等。
监测数据通过无线传输技术实现实时采集和监控。
三、监测结果分析1. 基坑周边建筑物变形情况:通过对基坑周边建筑物进行实时监测,发现变形情况较为平稳,基本未发生明显的倾斜、下沉等变形现象。
监测数据显示变形量均在安全范围内,没有出现超过预警值的情况。
2. 基坑水位变化情况:基坑开挖过程中,对地下水位变化进行了连续监测。
监测数据显示,随着基坑的逐渐加深,地下水位有所上升,但未超过安全标准范围。
在施工过程中,采取了相应的降水措施,有效控制了地下水位的变化,保证了施工安全。
四、监测数据评估针对获取的监测数据,进行了综合评估。
通过对数据的对比和分析,得出以下结论:1. 基坑周边建筑物的变形情况较为稳定,未发生超出安全范围的情况,施工对建筑物的影响较小。
2. 基坑水位变化在允许范围内,并通过降水措施得到了有效控制,保证了施工的顺利进行。
3. 基坑监测设备和技术的应用,能够对基坑施工过程中的地质灾害风险进行及时监测和预警,大大提高了施工的安全性和可靠性。
五、存在问题和建议1. 目前监测设备和技术的应用还有一定的局限性,监测范围有限。
在下一次基坑监测工作中,应考虑对监测范围进行扩大,并加强对监测数据的分析和处理。
2. 基坑施工过程中的变形情况和地下水位变化是相互影响的,今后的监测工作中,应加强两者之间的关联性研究,以更好地预测和控制地质灾害风险。
地铁基坑监测总结

精品文档,放心下载,放心阅读天津地铁6号线土建施工第八合同段施工监测总结报告精品文档,超值下载编制:审核:审批:2015年10月1.总体概述 (1)1.1工程位置 (1)1.2工程简况 (1)1.3 沿线周边环境 (1)1.4 工程地质与水文地质 (2)2.编制依据 (3)3.监测范围及内容 (3)4.车站基坑监测点位(孔)布设情况 (4)4.1围护墙顶水平位移、沉降点位布设情况 (4)4.2 围护结构变形布设情况 (4)4.3 地面沉降点位布设 (4)4.4地下水位点位布设 (5)4.5 支撑轴力点位布设 (5)4.6建筑物沉降监测点布设 (5)4.7 管线监测点位布设 (5)5.监测控制值 (6)6.车站主体部分变形监测数据分析 (7)6.1 基坑周围建筑物沉降监测数据 (7)6.2 地下管线沉降监测 (8)6.3 围护体顶部水平位移监测 (9)6.4 围护体顶部垂直位移监测 (9)6.5 地表沉降监测 (10)6.6地下水位监测 (11)6.7支撑轴力监测 (12)6.8围护体、土体内部水平位移观测数据 (13)7.结论 (17)8.致谢 (18)9.监测测点布置图 (18)1.总体概述1.1工程位置车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。
养鱼池路交通导改至车站盖板上方。
车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。
1.2工程简况基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。
围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。
地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。
基坑监测等级为一级。
1.3 沿线周边环境十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津地铁6号线土建施工第八合同段施工监测总结报告编制:审核:审批:2015年10月1.总体概述 (1)1.1工程位置 (1)1.2工程简况 (1)1.3 沿线周边环境 (1)1.4 工程地质与水文地质 (1)2.编制依据 (3)3.监测范围及内容 (3)4.车站基坑监测点位(孔)布设情况 (4)4.1围护墙顶水平位移、沉降点位布设情况 (4)4.2 围护结构变形布设情况 (4)4.3 地面沉降点位布设 (4)4.4地下水位点位布设 (4)4.5 支撑轴力点位布设 (4)4.6建筑物沉降监测点布设 (5)4.7 管线监测点位布设 (5)5.监测控制值 (6)6.车站主体部分变形监测数据分析 (7)6.1 基坑周围建筑物沉降监测数据 (7)6.2 地下管线沉降监测 (7)6.3 围护体顶部水平位移监测 (8)6.4 围护体顶部垂直位移监测 (9)6.5 地表沉降监测 (10)6.6地下水位监测 (10)6.7支撑轴力监测 (11)6.8围护体、土体内部水平位移观测数据 (12)7.结论 (16)8.致谢 (17)9.监测测点布置图 (17)1.总体概述1.1工程位置车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。
养鱼池路交通导改至车站盖板上方。
车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。
1.2工程简况基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。
围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。
地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。
基坑监测等级为一级。
1.3 沿线周边环境十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。
天津泰嘉热力管理中心中山北路供热站辅助房(位于车站西南侧,距离端头井9.7m,条基,一层砖混)。
河北饭店(位于车站西南侧,距离端头井25m,条基,四层砖混)。
中山北路管线均距离基坑较远,养鱼池路横跨车站逆做顶板上方管线中DN1000铸铁水管与Φ1000钢筋砼雨水管为二级风险源,设计变形控制参考值为20mm。
1.4 工程地质与水文地质1.4.1 工程地质天津地处华北平原,属海积、冲积低平原。
本场地位于中山北路上,地势较平坦,各孔孔口大沽高程介于1.98~1.45m之间。
根据本次勘察资料,该场地埋深60.00m深度范围内,地基土按成因年代可分为以下10层,按力学性质可进一步划分为18个亚层,自上而下分别为:①1层杂填土;①2层素填土;③1层粘土;③3层淤泥质粉质粘土;④1层粉质粘土;④2层粉土;⑥3层粉土;⑥4层粉质粘土;⑦层粉质粘土;⑧1层粉质粘土;⑧2层粉土;⑨1层粉质粘土;⑨2层粉砂;⑩1层粉质粘土;⑪1层粉质粘土;⑪2层粉砂;⑪3层粉质粘土;⑫1层粉质粘土;1.4.2 水文地质根据地基土的岩性分层、室内渗透试验结果,场地埋深50.00m以上可划分为3个含水层:潜水含水层为:①1层杂填土、①2层素填土、③1层粘土、③3层淤泥质粉质粘土、④1层粉质粘土、④2层粉土、⑥3层粉土、⑥4层粉质粘土。
含水介质颗粒较细,水力坡度小,地下水径流十分缓慢。
排泄方式主要有蒸发、人工开采和向下部承压水、地表水体渗透。
⑦层粉质粘土及⑧1层粉质粘土属不透水~微透水层,为潜水含水层与其下承压含水层的相对隔水层。
第一承压含水层为:⑧2层粉土、⑨2层粉砂,该承压含水层水头大沽标高为0.12m。
⑩1层粉质粘土、⑪1层粉质粘土为该承压含水层隔水底板。
第二承压含水层为:⑪2层粉砂,该承压含水层水头大沽标高为-1.02m。
⑪3层粉质粘土、⑫1层粉质粘土为承压含水层隔水底板。
第一、二层承压水间隔水层厚4.65m-10.1m地下水的温度,埋深在5.00m范围内随气温变化,5.00m以下随深度略有递增,一般为14~16℃。
根据勘察资料,本场地地下潜水在干湿交替的情况下,对混凝土结构具有弱腐蚀性。
在无干湿交替的情况下,对混凝土结构具有微腐蚀性。
本场地第一承压水对混凝土结构具有中等腐蚀性;本场地第一承压水对钢筋混凝土结构中的钢筋具有微腐蚀性。
根据室内渗透试验,结合场地场地东侧金钟河大街站抽水试验结果,岩土工程勘察报告提供埋深约50m 以上各层土的渗透系数及渗透性如下表2.编制依据(1)《地下铁道施工及验收规范》(GB50299-1999,2003年版);(2)《建筑基坑工程监测技术规范》(GB50497-2009);(3)《建筑变形测量规范》(JGJ8-2007);(4)《城市地下水动态观测规程》(CJJ/T76-98);(5)《建筑与市政降水工程技术规范》(JGJ/T111-98);(6)《城市轨道交通工程测量规范》(GB50308-2008);(7)《工程测量规范》(GB50026-2007);(8)《国家一、二等水准测量规范》(GB/T12897-2006);(9)《建筑地基基础设计规范》(GB50007-2011);(10)《建筑基坑支护技术规程》(JGJ 120-2012);3.监测范围及内容根据施工设计图纸规定基坑施工的平面影响范围以两倍基坑开挖深度(H)确定,则北宁公园站平面影响范围为34m,即在距基坑34m范围内的地下管线及建筑物作为本工程监测保护的对象。
为了及时收集、反馈和分析周围环境及围护结构在施工中的变形信息,实现信息化施工,确保施工安全。
根据施工现场环境条件及围护设计单位规定的本工程变形控制保护等级为一级的要求,确定本工程设置以下几方面监测内容:(1)、围护墙顶水平位移、沉降;(2)、围护结构变形;(3)、地面沉降;(4)、地下水位;(5)支撑轴力;(6)建筑物沉降;(7)管线沉降。
4.车站基坑监测点位(孔)布设情况4.1围护墙顶水平位移、沉降点位布设情况在基坑压顶梁上每隔20m布设一个点,共32个,水平位移与墙顶沉降点位公用。
4.2 围护结构变形布设情况在围护结构内部共布设32根测斜管。
4.3 地面沉降点位布设在基坑周围共布设16个监测断面共计128个地表沉降监测点。
4.4地下水位点位布设在基坑周围共布设10个水位监测孔。
4.5 支撑轴力点位布设共选7个监测断面,7组钢筋计。
4.6建筑物沉降监测点布设在基坑周围共布设15个建筑物监测点。
4.7 管线监测点位布设在基坑周围共布设18个管线监测点5.监测控制值6.车站主体部分变形监测数据分析2013年4月至2015年3月,我公司根据天津地铁6号线北宁公园站基坑的施工进度先后进行了10个项目的监测。
现对整个期间的数据分析如下:6.1 基坑周围建筑物沉降监测数据在基坑周围建筑物共布设了15个监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年4月18日对建筑物进行首次观测,只2014年6月25日东区最后一段顶板浇筑完毕,然后又连续观测到2014年9月18日,总518天。
累计最大沉降点JGC-13,最大累计为3.76mm,沉降速率为0.007258mm/d。
最小累计沉降点为点JGC-15,沉降量为1.99mm,沉降速率为0.003841mm/d,整个过程变化量均在控制范围内。
基坑监测正常。
图1建筑物沉降变化历时曲线6.2 地下管线沉降监测在基坑周围管线的点共布设了18个污水管线监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年9月21日对地下管线进行首次观测,只2014年6月25日东区最后一段顶板板浇筑完毕,然后又连续观测到2014年9月18日,总共362天。
西区观测至2015年4月底。
累计最大沉降点GCG-11,沉降量为-14.28mm,沉降速率为-0.03944mm/d。
累计最小沉降点为点GCC-17,沉降量为-1.60mm,沉降速率为0.0044mm/d,整个过程变化量均在控制范围内。
基坑监测正常。
图2 地下管线沉降历时曲线图6.3 围护体顶部水平位移监测在基坑围护体顶部水平位移的点共布设了32个监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年10月31日对围护体顶部水平位移进行首次观测,只2014年6月25日东区最后一段顶板浇筑完毕,然后又连续观测到2014年9月18日,总共239天。
西区观测至2015年4月底。
累计最大变形点ZQS28,变形量为12.96mm,变形速率为0.0402mm/d。
累计最小变形点为点ZQS01,变形量为5.41mm,沉降速率为0.0168mm/d,整个过程变化量均在控制范围内。
基坑监测正常。
图3围护体顶部水平位移变化历时曲线6.4 围护体顶部垂直位移监测在基坑围护体顶部垂直位移的点共布设了32个监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年10月25日对围护体顶部水平位移进行首次观测,只2014年6月25日东区最后一段顶板浇筑完毕,然后又连续观测到2014年9月18,总共245天。
西区观测至2015年4月底。
累计最大沉降点ZQC29,沉降量为21.89mm,沉降速率为0.0893mm/d。
累计最小沉降点为点ZQC15,沉降量为10.22mm,沉降速率为0.0417mm/d,整个过程变化量均在控制范围内。
基坑监测正常。
图4围护体顶部垂直位移测点历时变化曲线图6.5 地表沉降监测在基坑周围地表沉降的点共布设了128个监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年8月3日对围护体顶部水平位移进行首次观测,只2014年6月25日东区最后一段顶板浇筑完毕,然后测点连续观测到2014年9月18日,总共410天。
西区观测至2015年4月底。
累计最大沉降点DBC-11-03,沉降量为-37.05mm,沉降速率为-0.0903mm/d。
累计最小沉降点为点DBC-16-07,沉降量为0.97mm,沉降速率为0.0023mm/d,整个过程变化量均在控制范围内。
基坑监测正常。
图5地表沉降变化历时曲线6.6地下水位监测在基坑周围地下水位的点共布设了10个监测点,具体点位见(监测点布设图)我公司根据施工进度与2013年10月25日对围护体顶部水平位移进行首次观测,只2014年6月25日最后一段顶板浇筑完毕,然后又连续观测到2014年9月18日,总共328天。
西区观测至2015年4月底。
在整个监测过程中,水位变化最大的为DSW2-3最大水位1740mm。
基坑监测正常。
图6地下水位变化历时曲线6.7支撑轴力监测根据工程需要,在北宁公园站基坑轴力监测,一共设置了7道混凝土支撑,相应布设了7个监测断面,21个钢支撑中布设了21个轴力计。
(详见监测点布设图)在整个监测过程中,第一道混凝土支撑最大受力4831.619KN,第二道钢支撑最大受力1381.542 KN,带三道钢支撑最大受力715.289 KN,端头井第四道最大受力1122.578 KN。