离散控制系统分析方法

合集下载

离散系统的稳定性分析

离散系统的稳定性分析

同时有
w z 1 z 1
(7-53)
其中 z,w 均为复变量,写作
z x jy w u jv
(7-54)
将式(7-54)代入式(7-53),并将分母有理化,整理后得
离散系统的稳定性分析
3. 劳斯判据在z域中的应用
将式(7-54)代入式(7-53),并将分母有理化,整理后得
w
u
jv
x x
jy jy
自动控制工程基础与应用
离散系统的稳定性分析
1. s平面与z平面的映射关系
(1)s 平面的虚轴在 z 平面上的映射。将 s 平面虚轴
的表达式 s j 代入 z eTs ,得 z ejT ,表示 z 平面上模
始终为 1(与 无关)、幅角为T 的复变数。由于其幅角
是 的函数,当 从 s
2
( s
点 z 均处在上述单位圆内。因此得出结论:整个 s 左半平面在 z 平面上的映象是以原点为圆 心的单位圆内部区域。
离散系统的稳定性分析
1. s平面与z平面的映射关系
(3)s 右半平面在 z 平面上的映射。对于 s 右半平面,由于所有复变数 s j 均具 有 0 ,所以映射到 z 平面上, z eT ejT 的模 eT 均大于1,不论 取何值,相应的点 z
图7-19 由z平面到w平面的映射
自动控制工程基础与应用
z2 1.792z 0.368 0 解得
z1 0.237 ,z2 1.555 因为 z2 在单位圆外,所以系统是不稳定的。
离散系统的稳定性分析
3. 劳斯判据在z域中的应用
连续系统中的劳斯判据是判别闭环特征根是否全在s左半平面,从而确定系统的稳
定性。
作双线性变换
z w1 w 1

离散控制系统分析方法

离散控制系统分析方法

离散控制系统分析方法离散控制系统分析方法指的是对离散控制系统进行建模、分析和设计的方法。

离散控制系统是一种基于离散时间的系统,其输入、输出和状态都是离散的。

离散控制系统广泛应用于工业自动化、通信网络、数字信号处理等领域,因此对其进行有效的分析和设计具有重要意义。

下面将介绍几种常用的离散控制系统分析方法。

1.差分方程法差分方程法是离散控制系统分析的基本方法之一、它通过建立系统的差分方程来描述系统的动态行为。

差分方程的形式类似于连续时间系统的微分方程,但系统状态的变化是以离散时间为单位进行的。

通过求解差分方程,可以得到离散时间下的系统响应。

2.离散频域分析方法离散频域分析方法是一种基于频域的分析方法,主要用于对离散时间系统的频率特性进行分析。

离散频域分析方法常用的工具包括离散傅里叶变换(DFT)、离散余弦变换(DCT)等。

通过对系统的输入和输出信号进行频域分析,可以确定系统的频率响应、幅频特性、相频特性等。

3.状态空间法状态空间法是一种用于描述离散控制系统的方法。

它通过引入状态变量,将系统的动态行为用一组状态方程来表示。

状态方程可以通过差分方程、差分方程组等形式来表示。

状态空间法可以方便地进行系统分析和控制器设计,并且可以应用于线性和非线性离散控制系统。

4.频域折叠法频域折叠法是一种基于频域的系统分析方法,主要用于对离散时间系统的稳定性和性能进行分析。

频域折叠法的基本思想是通过对系统的幅频特性进行折叠,将连续时间系统的频域特性转化为离散时间系统的频域特性。

通过对折叠后的频域特性进行分析,可以得到系统的稳定域、稳定裕度等性能指标。

5.传函数法传函数法是一种常用的线性离散控制系统分析方法。

它通过将离散时间系统表示为输入信号和输出信号之间的比值,建立系统的传函数模型。

传函数法可以方便地进行系统分析和控制器设计,并且可以应用于多输入多输出(MIMO)离散控制系统。

总结起来,离散控制系统分析方法包括差分方程法、离散频域分析方法、状态空间法、频域折叠法和传函数法等。

第七章离散系统分析

第七章离散系统分析
2
( s 3) z s3 z ( s 1 ) ( s 2 ) sT sT ( s 1)(s 2) z e s 1 ( s 1)(s 2) z e s 2
2z z T ze z e 2T z z (e T 2e 2T ) 2 z ( e T e 2T ) z e 3 T
理想单位脉冲序列
T (t )
n
(t nT )

(7 1)
在数学上, (t) 表示的是宽度为零, 幅值为无穷大的单 位脉冲。 实际上的脉冲函数是脉宽很小的矩形函数,叫 脉冲函数如图7-4(c)所示。
采样开关的输出信号:
e * (t ) e(t ) (t nT ) e(nT ) (t nT )
整理后得
1 e Ts 2 G h ( s ) T (1 Ts)( ) Ts
(7 19)
将s=jω带入式(7-19),可得一阶保持器的频率特性为
T sin 2 G h ( j ) T 1 T 2 2 T 2
(arcctgT T ) (7 20)
*
T
连续信号的频谱为 E( j ) 采样信号的频谱为 E* ( j)
E ( j )
*
1 T
-ωmax0 ωmax
-3ωs
-2ωs
-ωs -ωmax 0 ωmax ωs
E * ( j )
1 T
2ωs
3ωs
-ωs
-ωmax0 ωmax
ωs
1 E ( s-) -2ω E ( s jn ) -ωs-ωm 0 ωm ωss 2ωs 3ωs 3ωs T s n

自动控制原理第7章离散控制系统

自动控制原理第7章离散控制系统
差分方程描述了系统在离散时间点的行为,通过求解差分方程可 以预测系统未来的输出。
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方

动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方

通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。

自动控制原理第九章线性离散控制系统

自动控制原理第九章线性离散控制系统

e -Ts
1 - e-Ts s
注意:这里的输入为1×δ(t),是单位幅 值脉冲经理想脉冲调制后的信号,即单 位理想脉冲,其拉氏变换为1。
16
u( t )
1
0
uh( t )
1
0T
1 0 -1
说明:零阶保持器实际的传递函数
u( t )
零阶 uh ( t )
保持器
实际的 u( t ) 1( t ) - 1( t - )
t
7
单位幅值脉冲与理想脉冲的区别
δT (t)
1
δT (t)
0 T 2T
t
0 T 2T
t
用 1( t ) 表示 0 时刻的单位幅值脉冲,则第nT 时刻的单位幅值 脉冲为 1( t - nT ) 1( t - nT ) - 1( t - nT - ) , n 0 , 1, 2,
当 0 时, 其拉氏变换为
- s - max 0 max s
2s
s 2max 时
F( j )
- s - max 0 max s
2s
13
s 2max 时
F( j )
- 2s
-
-
s
max
0
max
s
2s
只有满足 s 2max,采样信号 f ( t ) 才包含了原信号
f ( t )的全部信息,因此可以不失真地重现原信号。
说明:采样定理只提供了选择采样周期的理论依据,对于 实际的反馈控制系统,连续反馈信号的上限频率(带宽) 通常难以准确地确定,因此选择采样周期一般依靠估计。
15
u( t )
1
0
uh( t )
1
0T
1 0 -1

自动控制原理第7章2

自动控制原理第7章2
连续系统的劳斯-赫尔维茨判据,是通过系统特征方程的系 数及其符号来判别系统的稳定性。这个判据实质是判断系统特征 方程的根是否都在s平面左半平面。但是在离散时间线性系统中 需要判断系统特征根是否都在z平面上的单位圆内。因此连续时 间线性系统的劳斯-赫尔维茨判据不能直接使用,必须寻找一个 新变量。
2020/12/3
上述变换关系的正确性证明如下: (a)在w平面的虚轴上,Re[w]=0,则有
w1 w1 即 z w1 1 w 1
2020/12/3
9
(b)w平面的左半平面,Re[w]<0,则有
w1 w1 即 z w1 1 w 1
(c)w平面的右半平面,Re[w]>0,则有
w1 w1 即
z w1 1 w 1
列出劳斯表,根据劳斯-赫尔维茨判据可以判定, 系统是稳定的。
2020/12/3
11
(4) z平面上的根轨迹 通常,离散时间系统的闭环特征方程为
1 G(z) 0
其中G(z)为开环脉冲传递函数。离散系统的闭环特征方程式在 形式上,与连续系统的完全相同,因此,z平面上的根轨迹作 图方法与s平面的作图方法相同。需注意:在连续时间系统中, 稳定边界是虚轴,而在离散系统中,稳定边界是单位圆。
根据pj在单位圆内的位置不同,所对应的瞬态分量的形式 也不同,如图7.30所示。只要闭环极点在单位圆内,则对应
的瞬态分量总是衰减的;极点越靠近原点,衰减越快。不过,
当极点为正时为指数衰减;极点为负或为共轭复数,对应为
振荡衰减。
Im
z平面
o
t
o
t
1
0
o
t
o
t
o
t
1 Re
不同闭环极点的瞬态分量

51. 如何分析离散控制系统的稳定性?

51. 如何分析离散控制系统的稳定性?

51. 如何分析离散控制系统的稳定性?嘿,咱们今天来聊聊怎么分析离散控制系统的稳定性这个事儿。

咱们先得搞清楚啥是离散控制系统。

简单说,就像咱们平时玩的跳格子游戏,一格一格的,不是连续的那种,这离散控制系统啊,也是这样,它的信号不是一直连着的,而是隔一段才有一个值。

那怎么去分析它稳不稳定呢?这可得有点小窍门。

咱们先来说说 z 变换,这可是个重要的工具。

就好比你有一堆杂乱的积木,通过 z 变换,能把它们整理得规规矩矩,更容易看出规律。

比如说,一个系统的传递函数,经过 z 变换,就能得到一个新的表达式,从这里咱们就能开始分析稳定性啦。

还有那个特征方程,这就像是系统的“密码锁”。

如果能解开这个方程,找到它的根,就能知道系统稳不稳定。

要是这些根都在单位圆内,那系统就是稳定的;要是有根跑到单位圆外面去了,那可就麻烦喽,系统就不稳定啦。

给你讲个我之前遇到的事儿吧。

有一次,我带着几个学生一起研究一个离散控制系统的稳定性。

那系统的方程复杂得让人头疼,大家一开始都有点懵。

其中有个学生特别较真儿,不停地尝试各种方法,一会儿画个图,一会儿又算一堆式子。

我就在旁边看着,偶尔给他们一点小提示。

最后啊,经过大家的努力,终于找到了关键所在,成功分析出了系统的稳定性。

那一瞬间,大家的脸上都洋溢着成就感,那种感觉可太棒了!再说说 Jury 判据,这也是个分析稳定性的好帮手。

它就像是一个精准的测量尺,能帮咱们准确判断系统的根是不是都在单位圆内。

总之啊,分析离散控制系统的稳定性,需要咱们掌握好这些工具和方法,多动手多思考。

就像解一道复杂的谜题,只要有耐心,有方法,总能找到答案的。

希望今天讲的这些能让你对分析离散控制系统的稳定性有更清楚的认识,加油哦!。

《自动控制原理》离散系统的动态性能分析

《自动控制原理》离散系统的动态性能分析

7-6 离散系统的动态性能分析线性定常离散系统的动态性能分析方法:时域法 ,根轨迹法, 频域法本节主要内容(1)在时域中求取离散系统的时间响应,指出采样器和保持器对系统动态性能的影响。

(2)在z平面上离散系统闭环极点与其动态性能之间的关系。

(3)离散系统的根轨迹分析(讲义没有,增加的)一.离散系统的时间响应及性能指标● 分析系统动态性能时,通常假定外作用输入为单位阶跃函数)(1t 。

● 如果可以求出离散系统的闭环脉冲传递函数由)(/)()(z R z C z =φ, 输入为单位阶跃函数)1/()(-=z z z R ,则系统输出的z 变换函数)(1)(z z z z C φ-= ● 通过z 反变换,可以求出输出信号的脉冲序列)(*t c。

● )(*t c 代表线性定常离散系统在单位阶跃输入作用下的响应过程。

● 离散系统时域指标的定义与连续系统相同。

● 根据单位阶跃响应)(*t c 可以方便地分析离散系统的动态性能。

例7-28 设有零阶保持器的离散系统如图7-41所示,其中)(1)(t t r =,s T 1=,1=K 。

试分析该系统的动态性能。

(注Word 与PPT 中编号不同) 解 先求开环脉冲传递函数)(z G 。

因为)1()1(1)(2s e s s s G --+= 对上式z 变换,可得 ])1(1[)1()(21+-=-s s Z z Z G查z 变换表,求出 )368.0)(1(264.0368.0)(--+=z z z Z G 再求闭环脉冲传递函数632.0264.0368.0)(1)()(2+-+=+=z z z z G z G z φ 单位阶跃输入时:321632.0632.121264.0368.0)()()(----+-+==zz z z z R z z C φ 展开得:+++++++++=---------887654321868.0868.0802.0895.0147.14.14.1368.0)(z z z z zz z z z z C 由上式求得系统在单位阶跃作用下的输出序列)(nT c 为:单位阶跃响应曲线:根据,...)2,1,0)((=n nT c 数值,绘图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 离散控制系统分析方法
一、实验目的
利用MATLAB 对各种离散控制系统进行时域分析。

二、实验指导
1.控制系统的稳定性分析
由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s 平面的左半平面,则该系统是一个稳定系统。

对离散系统而言,如果一个系统的全部极点都位于z 平面的单位圆内部,则该系统是一个稳定系统。

一个连续的稳定系统,如果所有的零点都位于s 平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。

一个离散的稳定系统,如果所有零点都位于z 平面的单位圆内,则称该系统是一个最小相位系统。

由于Matlab 提供了函数可以直接求出控制系统的零极点,所以使用Matlab 判断一个系统是否为最小相位系统的工作就变得十分简单。

2.控制系统的时域分析
时域分析是直接在时间域对系统进行分析。

它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。

这是一种既直观又准确的方法。

Matlab 提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。

其中常用的函数列入表1,供学生参考。

例1.z z z H 5.05
.1)(2+=
试绘出其单位阶跃响应及单位斜波输入响应。

解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下:
num=[1.5];
den=[1 0.5 0];sysd=tf(num,den,0.1)
[y,t,x]=step(sysd);
subplot(1,2,1)
plot(t,y);
xlabel('Time-Sec');
ylabel('y(t)');
gtext('单位阶跃响应')
grid;
u=0:0.1:1;
subplot(1,2,2)
[y1,x]=dlsim(num,den,u);
plot(u,y1)
xlabel('Time-Sec');
ylabel('y(t)');
gtext('单位速度响应')
grid
二、实验内容
1、MATLAB在离散系统的分析应用
对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s,被
控对象的传递函数为
2
()
s(0.11)(0.05s1)
G s
s
=
++
,数字控制器
0.36
()
0.98
z
D z
z
-
=
+
,试
求该系统的闭环脉冲传递函数和单位阶跃响应。

图1 计算机控制系统结构图
实验步骤:
1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=0.1;
>> sys=tf([2],[0.005 0.15 1 0]); %将传函分母展开>> sys1=c2d(sys,T,'zoh');
>> sys2=tf([1 -0.36],[1 0.98],0.1);
>> sys3=series(sys2,sys1)
执行语句后,屏幕上显示系统的开环脉冲传递函数为:
sys3 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717 --------------------------------------------------
z^4 - 0.5232 z^3 - 0.9201 z^2 + 0.4922 z - 0.04879
Sample time: 0.1 seconds
2).求其闭环脉冲传递函数,可以输入下列matlab语句来实现:
>> sys4=tf([1]);
>> sys5=feedback(sys3,sys4,-1)
执行语句后,会显示系统的开环脉冲传递函数为:
sys5 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717
--------------------------------------------------
z^4 - 0.4896 z^3 - 0.8641 z^2 + 0.4752 z - 0.05151
Sample time: 0.1 seconds
3).最后可用下列命令绘制该离散系统的单位阶跃响应,其结果如图所示:>> step(sys5)
离散系统的单位阶跃响应曲线为:
4).还可以绘制该离散系统的单位脉冲响应,其结果如图所示:
>> impulse(sys5)
实验结果:
2、SIMULINK在离散系统的分析应用
所给的离散系统的Simulink仿真模型如图2所示,在建立的仿真模型中,设置数字控制器和零阶保持器的采样时间为0.1s。

运行仿真模型就可以获得系统的单位阶跃响应,该离散系统的单位阶跃响应曲线,如图3。

图2 系统的单位阶跃响应Simulink仿真模型
图3 离散系统的单位阶跃响应曲线
图4 系统的单位脉冲响应Simulink仿真模型设置脉冲输入参数如下:
图5 离散系统的单位脉冲响应曲线实验结果:
问题分析:在实验的过程中,由于对matlab软件熟练度不足和对软件某些认识上的不足,使得程序在运行过程中出现了许多差错,而对专业知识理解的不到位,使得软件实践和理论知识之间产生了隔阂。

最后在老师和同学的帮助下,最终完成了实验,得到了满意的结果和正确的答案。

希望自己将来在matlab的学习与应用中取得进步,感谢老师的教导和帮助!
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档