三维图形几何变换与投影变换
三维变换及三维观察

x
y
y
0 0 0 1 0 0 0 1 0 0 0 s
x
y
z
x s s
y s
式中s≥1 时,图形整体缩小;
0<s<1时,图形整体放大;
s<0时,图形关于原点做对称等比变换, 当-1<s<0时,图形关于原点做对称整体放大;
当s<-1,图形关于原点做对称整体缩小。
需要注意的是,由于使用的三维坐标系一般是右手坐标系, 因此当沿坐标轴往坐标原点看过去时,沿逆时针方向旋转 的角为正向旋转角,如图所示,即满足右手法则,大拇指 指向旋转轴的正方向,四指转的方向为旋转正方向。反向 旋转将旋转角取负值即可。
三维基本几何变换——旋转变换
绕Z轴旋转时,三维物体的z坐标
保持不变,而x,y坐标发生变化,
三维基本几何变换——旋转变换
z
y X
图7-3 三维旋转的方向与角度
17
三维基本几何变换——旋转变换
三维旋转变换可以分解为多次的二维旋转变换。分别取x,y, z为旋转轴,绕每个旋转轴的三维旋转可以看成是在另外两
个坐标轴组成的二维平面上进行的二维旋转变换,而将二
维旋转变换组合起来,就可得到总的三维旋转变换。
T
1 RZ
cos( ) sin( ) sin( ) cos( ) 0 0 0 0
37
三维复合变换
同二维复合变换类似,三维复合变换是指图形作一次以上的变
换。三维复合变换也具有同样的齐次坐标计算形式,变换结果
是每次变换矩阵的乘积。
P' P T P (T1 T2 T3 Tn )
几何变换的认识和基本原理

几何变换的认识和基本原理几何变换是指通过对平面上的点、线、面进行位置、形状或尺寸上的改变,从而得到一个新的图形。
在计算机图形学和计算机视觉等领域,几何变换是非常重要的基础知识。
本文将介绍几何变换的认识和基本原理。
一、平移变换平移变换是指将一个图形沿着某个方向平行移动一定的距离。
平移变换可以用以下公式表示:[x', y'] = [x + dx, y + dy]其中,(x, y)是原始图形上的一个点,(dx, dy)是平移的距离,(x', y')是平移后得到的新点的坐标。
二、旋转变换旋转变换是指将一个图形绕着某个中心点按照一定的角度旋转。
旋转变换可以用以下公式表示:[x', y'] = [x*cosθ - y*sinθ, x*sinθ + y*cosθ]其中,(x, y)是原始图形上的一个点,θ是旋转的角度,(x', y')是旋转后得到的新点的坐标。
三、缩放变换缩放变换是指将一个图形按照一定的比例因子放大或缩小。
缩放变换可以用以下公式表示:[x', y'] = [s*x, s*y]其中,(x, y)是原始图形上的一个点,s是缩放的比例因子,(x', y')是缩放后得到的新点的坐标。
四、对称变换对称变换是指将一个图形关于某一直线或某一点进行对称。
对称变换可以分为关于x轴对称、关于y轴对称、关于原点对称等。
不同类型的对称变换具体的公式略有不同,但原理都是将图形上的点映射到其关于对称轴的对称位置。
五、仿射变换仿射变换是指将一个图形通过平移、旋转和缩放等基本变换来进行综合变换。
仿射变换可以用以下矩阵表示:[x', y'] = [a*x + b*y + c, d*x + e*y + f]其中,a、b、c、d、e、f为变换矩阵中的参数,(x, y)是原始图形上的一个点,(x', y')是变换后得到的新点的坐标。
空间几何中的投影变换

在空间几何中,投影变换是一种常见的变换,它具有广泛的应用。
投影变换可以用来描述物体在特定的空间中的位置和形状。
通过投影变换,我们可以将三维物体映射到二维平面上,从而方便地进行分析和计算。
投影变换的基本概念是将三维空间中的一个点映射到二维平面上的一个点。
在这个过程中,因为从三维到二维的映射是一种减维的过程,所以必然会有信息的丢失。
这种丢失可以从几何和图形的角度进行理解。
在几何上,投影变换可以分为正交投影和透视投影。
正交投影是指从一个点到另一个平面的投影,这个投影是垂直于平面的。
透视投影则不同,它是通过将一个点投影到另一个平面来实现的,但是这个投影并不垂直于平面。
在图形学中,投影变换是非常重要的。
它可以用来创建逼真的三维图像,同时也是计算机图形学的基础。
通过投影变换,我们可以实现三维场景的渲染和显示,从而创造出令人惊叹的视觉效果。
在实际应用中,投影变换有许多实际的应用。
例如,在建筑设计中,设计师可以使用投影变换来可视化建筑物的外观和结构。
在工程和制造领域,投影变换可以用来帮助工程师和设计师更好地理解产品的几何形状和物理属性。
此外,在计算机科学领域,投影变换也是一项重要的技术。
在图像处理和计算机视觉中,我们经常需要将三维图像或场景转换为二维图像进行分析和处理。
投影变换提供了一种有效的方法来实现这个转换,从而使得计算机能够理解和处理图像。
投影变换也被广泛应用于虚拟现实和增强现实技术中。
通过投影变换,我们可以将虚拟对象或信息叠加在真实世界的图像上,从而创造出逼真的虚拟体验。
这种技术已经应用于游戏、娱乐和教育等多个领域。
总之,空间几何中的投影变换是一种重要的几何转换方法。
通过投影变换,我们可以将三维空间中的物体和场景映射到二维平面上,从而方便地进行分析和计算。
它在建筑设计、工程和制造、计算机图形学以及虚拟现实等领域有着广泛的应用。
投影变换的理论和实践为我们理解和处理三维世界提供了重要的工具和技术。
计算机形学中的几何变换与投影技术

计算机形学中的几何变换与投影技术计算机形学是计算机科学与计算机图形学中重要的一个领域,它研究如何在计算机上对图形进行表示、创建、编辑和呈现。
其中,几何变换和投影技术是计算机形学中常用且核心的技术之一,它们在计算机图形学领域中被广泛应用。
一、几何变换在计算机图形学中,几何变换是指对图形进行平移、旋转、缩放和扭曲等操作,从而改变图形的位置、形状和大小,以满足特定需求。
1. 平移变换平移变换是对图形进行沿着指定方向和距离的移动。
在二维空间中,平移变换可以表示为:x' = x + dxy' = y + dy其中,(x', y')是平移后的坐标,(x, y)是原始坐标,(dx, dy)是平移的向量。
2. 旋转变换旋转变换是对图形进行绕指定点或绕原点的旋转操作。
在二维空间中,旋转变换可以表示为:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x', y')是旋转后的坐标,(x, y)是原始坐标,θ是旋转角度。
3. 缩放变换缩放变换是对图形进行放大或缩小的操作。
在二维空间中,缩放变换可以表示为:x' = x * sxy' = y * sy其中,(x', y')是缩放后的坐标,(x, y)是原始坐标,(sx, sy)是缩放因子。
4. 扭曲变换扭曲变换是对图形进行形状的变换,使得某些部分被拉伸或收缩。
扭曲变换可以通过矩阵运算进行表示,具体操作较为复杂。
二、投影技术在计算机图形学中,投影技术是指将三维空间中的图形映射到二维平面上的过程。
常见的投影技术包括平行投影和透视投影。
1. 平行投影平行投影是一种保持图形中平行线在投影后保持平行的投影方式。
在三维空间中,平行投影可以表示为:x' = xy' = y其中,(x', y')是投影平面上的坐标,(x, y)是三维空间中的坐标。
计算机图形学13投影变换

将坐标原点平移到点(a,b)。
01
平行投影
02
俯投影视图 将立体向xoy面作正投影,此时Z坐标取0;
03
投影变换 平行投影
使水平投影面绕X轴旋转-90,使与正投影面处于同一平面; 最后让图形沿Z轴平移dx=tx , dy=ty; 将x轴、y轴反向以与U、V两坐标轴方向一致; 将坐标原点平移至点O
不平行于投影面的平行线的投影会汇聚到一个点,这个点称为灭点(Vanishing Point)。 坐标轴方向的平行线在投影面上形成的灭点称作主灭点。 一点透视有一个主灭点,即投影面与一个坐标轴正交,与另外两个坐标轴平行。 两点透视有两个主灭点,即投影面与两个坐标轴相交,与另一个坐标轴平行。 三点透视有三个主灭点,即投影面与三个坐标轴都相交。
湖北大学 数计学院
1
讨论(续):
2
类似,若主灭点在 Y 轴或 X 轴上,变换矩阵可分别写为:
二点透视投影的变换矩阵
湖北大学 数计学院
在变换矩阵中,第四列的p,q,r起透视变换作用 当p、q、r中有两个不为0时的透视变换称为二点透视变换。假定p!=0, r!=0, q=0; 将空间上一点(x,y,z)进行变换,可得如下结果:
7.4 投影变换 7.4.2 平行投影 斜平行投影求法
知投影方向矢量为(xp,yp,zp)
设形体被投影到XOY平面上
形体上的一点(x,y,z)在xoy平面上投影后→(xs,ys)
∵投影方向矢量为(xp,yp,zp)
∴投影线的参数方程为:
01
03
02
04
05
7.4 投影变换 7.4.2 平行投影 斜平行投影求法 因为 所以 若令
则矩阵式为:
6.2三维图形投影变换技术1

P(x,y,z)
(x y z 1)*
0 1 0
=(x’y’z’1)
0 0 1 0 0 0 0 1
平行投影方向为Y轴 投影面为 平行投影方向为 轴,投影面为o-xz面, 面
则空间中任意一点P(x,y,z)投影到 投影到o-xz面上获 则空间中任意一点 投影到 面上获 得点P’(x’,y’,z’)的关系是 得点 的关系是
•x’=x •y’=y •z’=0 用矩阵表示: 用矩阵表示:
1 0 0 0 0
(x y z 1)*
三维坐标
0 1 0
=(x’y’z’1)
投影后的 二维坐标
0 0 0 0 0 0 0 1
变换矩阵
•投影方向:x轴,投影面 面 投影方向: 轴 投影面yz面 投影方向 •投影方向:y轴,投影面 面 投影方向: 轴 投影面xz面 投影方向 •投影矩阵为多少? 投影矩阵为多少? 投影矩阵为多少
投影视点E-观察者的眼睛 投影面xy面 透视投影(投影视点 观察者的眼睛 投影面 面) 投影视点 观察者的眼睛,投影面
投影方法:从视点E经过形体的各个点,向投影平 投影方法 视点 经过形体的各个点, 经过形体的各个点
画射线,这些射线和投影面o-xy的交点形成投影像 的交点形成投影像 面画射线,这些射线和投影面 的交点 (也就是具有真实立体感的二维图形)。
前面讲的内容解决了如何在计算机中定义一个立体形体, 前面讲的内容解决了如何在计算机中定义一个立体形体 ,下面 我们来解决第二个问题: 我们来解决第二个问题:
•如何将三维形体作为二维图像 如何将三维形体作为二维图像 如何将三维形体作为二 •在图像显示器等输出装置上 在图像显示器等输出装置上 在图像显示器 •表示出来? 表示出来? 表示出来
有趣的几何变换问题解决关于几何变换的有趣问题

有趣的几何变换问题解决关于几何变换的有趣问题几何变换是数学中的一个重要概念,它描述了图形在平面或空间中的位置、形态、方向等属性随时间或其他变量的变化过程。
在几何学中,有许多有趣的问题与几何变换相关。
本文将探讨一些有趣的几何变换问题,并解决这些问题。
1. 平移变换平移变换是最基本的几何变换之一,它描述了图形在平面或空间中沿着特定的向量移动的过程。
我们现在来考虑一个有趣的问题:如何用平移将一个正方形变成一个长方形?解决方案:设正方形的四个顶点分别为A、B、C、D,边长为a。
我们可以将正方形向右平移一个距离为a的向量,然后将右下角的顶点D沿着与原来的底边平行的方向平移一个距离为2a的向量。
这样,我们就完成了从正方形到长方形的变换。
通过这个简单的平移变换,我们将一个图形的形状完全改变了。
2. 旋转变换旋转变换是几何变换中常见的一种,它描述了图形围绕一个中心点旋转的过程。
现在我们来解决一个有趣的问题:如何用旋转将一个长方形变成一个菱形?解决方案:设长方形的四个顶点分别为A、B、C、D,其中AB为底边,CD为顶边。
我们可以选择将长方形绕中心点O逆时针旋转45°,然后将旋转后的长方形顶点B和D分别沿着原来的底边AB和顶边CD 平移一个距离为AB的向量。
这样,我们就完成了从长方形到菱形的变换。
通过旋转变换和平移变换的组合,我们成功改变了图形的形状。
3. 缩放变换缩放变换是一种改变图形尺寸的几何变换,它描述了图形在平面或空间中被放大或缩小的过程。
我们现在来解决一个有趣的问题:如何用缩放将一个三角形变成一个等腰三角形?解决方案:设三角形的三个顶点分别为A、B、C,其中AB为底边,AC为等腰边。
我们可以选择以顶点A为中心,将三角形沿着底边AB缩放为原来的2倍,然后再以顶点A为中心,将缩放后的三角形沿着等腰边AC缩放为原来的2倍。
这样,我们就完成了从三角形到等腰三角形的变换。
通过缩放变换,我们改变了图形尺寸,并且保持了图形的形状特征。
9-10讲 第4章 变换-几何变换及投影

当a≠c时,即x 方向的变化与y方向的变化不同时, ≠ 时 方向的变化与 方向的变化不同时, 方向的变化不同时 视图中的图形会有伸缩变化,图形变形。 视图中的图形会有伸缩变化,图形变形。 当 a=c=1, b=d=0则 Xv=Xw,Yv=Yw, 图形完全相同 。 , 则 = , = , 图形完全相同。
14
4.2.3 窗口区和视图区的坐标变换
2. 变换过程 窗口-视图二维变换 窗口 视图二维变换
从应用程序得到 图形的用户坐标 对窗口区域 进行裁剪 窗口至视 区的变换 显示或 绘图
窗口-视图三维变换 窗口 视图三维变换
从应用程序得到图 形的三维用户坐标 投影 对窗口区 域裁剪 窗口至视 区的变换 显示或 绘图
16
4.3.1 齐次坐标
齐次坐标表示法: 维向量表示一个n维向量 齐次坐标表示法 用n+1维向量表示一个 维向量 维向量表示一个 (x,y)点对应的齐次坐标为 其中x 问题1:点对应的齐次坐标为(x 空间中的一点, 非齐次坐标表示方式唯一吗? 问题 点对应的齐次坐标为 h,yh,h), 其中 h=hx, yh=hy, 空间中的一点 非齐次坐标表示方式唯一吗 h≠0. 因此,普通坐标与齐次坐标的关系为“一对多” ? 因此,,(x,y)点对应的齐次坐标为三维空间的一条直 问题2: 空间中的一点 其齐次坐标表示方式唯一吗 问题 普通坐标与齐次坐标的关系为“一对多” 这样, 这样 空间中的一点, 其齐次坐标表示方式唯一吗? 点对应的齐次坐标为三维空间的一条直
y2 z2
5
4.1 变换的数学基础
4.1.2 矩阵基础知识
矩阵的加法运算 数乘矩阵 矩阵的乘法运算 零矩阵运算 单位矩阵 矩阵逆运算 转置运算 矩阵的基本性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 实验目的
1)掌握4*4矩阵乘法运算的编程实现。
2)掌握平移、比例、旋转三种基本三维几何变换矩阵生成。
3)掌握正交投影图的生成和绘制方法。
2 实验要求
1)三维坐标系的原点位于屏幕中心,X轴水平向右,Y轴垂直向上,Z轴垂直于坐标屏幕,指向屏幕外。
2)设计实现三维图形变换类,具有平移、比例、旋转三维几何变换功能,以及正交投影变换功能。
3)使用第二章的直线类绘制正四面体的是三维线框模型,要求体心位于坐标原点,使正四面体同时绕Y轴匀速旋转,并相对于体心点来回缩放。
4)使用双缓冲机制,绘制正四面体三维线框模型的二维正交投影图,要求投影到XOY平面。
3 详细设计
3.1 核心算法及类型设计
void CTrans3DView::BuildPointEdge()
{
double d=400;
P[0].x=d/2; P[0].y=d/2; P[0].z=d/2;
P[1].x=d/2; P[1].y=-d/2; P[1].z=-d/2;
P[2].x=-d/2; P[2].y=-d/2; P[2].z=d/2;
P[3].x=-d/2; P[3].y=d/2; P[3].z=-d/2;
E[0].SetPointsIndex(0,1);
E[1].SetPointsIndex(0,2);
E[2].SetPointsIndex(0,3);
E[3].SetPointsIndex(1,2);
E[4].SetPointsIndex(1,3);
E[5].SetPointsIndex(2,3);
}
void CTrans3DView::OnDraw(CDC*pDC)
{
CTrans3DDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)
return;
// TODO: 在此处为本机数据添加绘制代码
CRect rect;
GetClientRect(&rect);
pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(rect.Width(),rect.Height());
pDC->SetViewportExt(rect.Width(),-rect.Height());
pDC->SetViewportOrg(rect.Width()/2,rect.Height()/2);
//双缓冲机制
CDC MemDC;
CBitmap NewBitmap,*pOldBitmap;
MemDC.CreateCompatibleDC(pDC);
NewBitmap.CreateCompatibleBitmap(pDC,rect.Width(),rect.Height()); //兼容位图
pOldBitmap = MemDC.SelectObject(&NewBitmap); //将兼容位图选入MemDc
MemDC.FillSolidRect(rect,pDC->GetBkColor());
MemDC.SetMapMode(MM_ANISOTROPIC);
MemDC.SetWindowExt(rect.Width(),rect.Height());
MemDC.SetViewportExt(rect.Width(),-rect.Height());
MemDC.SetViewportOrg(rect.Width()/2,rect.Height()/2);
Line *line = new Line; //动态创建直线绘制类对象
//绘制坐标轴
line->SetLineColor(RGB(0,0,0));
line->MoveTo(CP2(-rect.Width()/2,0)); //X轴
line->LineTo(CP2(rect.Width()/2,0),&MemDC);
line->MoveTo(CP2(0,-rect.Height()/2)); //Y轴
line->LineTo(CP2(0,rect.Height()/2),&MemDC);
//旋转、缩放、正交投影变换
CTrans3 tans;
tans.SetPoints(P,4);
//在0.5~2.0之间缩放
static double s = 1.0;
static double step = 0.01;
if(s>=2.0 || s<=0.5)
step = -step;
s += step;
tans.Scale(s,s,s);
//绕Y轴匀速逆时针旋转
static float theta = 0.0;
theta += 1.0;
if (theta > 360)
theta = 0.0; tans.RotateY(theta); //二维正交投影 tans.ProjXOY();
//绘制动态旋转和缩放的四面体 for (int i=0; i<6; i++) { line->SetLineColor(RGB (0,255,0));
line->MoveTo(tans.m_p2Screen[E[i].Start]); line->LineTo(tans.m_p2Screen[E[i].End],&MemDC);
}
delete line;
//将内存位图拷贝到屏幕
pDC ->BitBlt(-rect.Width()/2,-rect.Height()/2,rect.Width(),rect.Height(),&MemDC,-rec t.Width()/2,-rect.Height()/2,SRCCOPY );
MemDC.SelectObject(pOldBitmap); NewBitmap.DeleteObject(); Invalidate(FALSE );
}
3.2 程序设计实现及流程图
平移变换矩阵
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢
⎢⎣⎡=1010
000100001z y
x
t t t t T 绕x ,y ,z 旋转变换矩阵
⎥⎥⎥⎥⎦
⎤⎢
⎢⎢
⎢⎣⎡-=010
00
0cos sin 00sin cos 000
01
ααααrx T ⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡-=10
0cos 0sin 0100sin 0cos ααα
αry T
⎥⎥
⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡-=100
01000cos sin 00sin cos ααααrz T 比例变换矩阵
⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡=10
00
000000000z y x s S S S T 流程图:
4 典型测试结果
5 实验问题总结
通过这次试验让我知道了要实现三维图形几何变换主要还是依靠二位图形几何变换的变换矩阵,包括平移变换矩阵,绕X、Y、Z旋转变换矩阵,比例变换矩阵,正交投影变换矩阵。
通过这几个变换矩阵相乘即可可到三维图形最终的变换矩阵,将其与原来的矩阵做一次相乘即可得到最终矩阵。
透视投影变换的过程分为两步:从世界坐标系到观察坐标系的观察变换;从观察坐标系到屏幕坐标系的透视变换。
观察变换和透视变换也分别通过一个变换矩阵实现。