15.3 第2课时 分式方程的应用

合集下载

渭南市实验中学八年级数学上册 第十五章 分式 15.3 分式方程 课时2 分式方程与实际问题的综合教

渭南市实验中学八年级数学上册 第十五章 分式 15.3 分式方程 课时2 分式方程与实际问题的综合教

第十五章分式15.3 分式方程课时2 分式方程的应用【知识与技能】(1)进一步熟练地解可化为一元一次方程的分式方程.(2)熟练地列可化为一元一次方程的分式方程解应用题.【过程与方法】建立分式方程模型的过程,体会建模思想.【情感态度与价值观】在探索分式方程解决实际问题的过程中,体会数学在实际生活中的广泛应用.在不同的实际问题中审清题意设未知数,列分式方程,解决实际问题.在不同的实际问题中,设未知数列分式方程.多媒体课件.教师出示问题:1.列方程解应用题的一般步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)验;(6)答.(教师板书)2.由学生讨论,我们现在所学过的应用题有哪些类型?学生举手回答上面的两个问题,教师点评.在学生讨论的基础上,教师归纳、总结,基本上有五种:(出示投影)(1)行程问题:路程=速度×时间,而行程问题中又分相遇问题和追及问题.(2)数字问题:在数字问题中,要掌握十进制数的表示法.(3)工程问题:工作量=工作时间×工作效率.(4)顺水、逆水问题:v顺水=v静水+v水,v逆水=v静水-v水.(5)利润问题:售价-进价=利润率×进价.教师引入:有一些实际问题,我们可以通过列分式方程解决.(板书课题)教师:同学们,我们一起来看几个例子(教师依次出示教材P152例3、P153例4):例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成总工程的,设乙队单独施工1个月能完成总工程的,那么甲队半个月完成总工程的(),乙队半个月完成总工程的(),两队半个月完成总工程的().教师引导学生在用式子表示上述的量之后,再根据“甲、乙两个工程队的工程总量=总工程量”这一相等关系建立方程.教师示范解答过程,强调必须检验这一过程.例4某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?学生讨论,教师引导.先指导学生读题,理清速度、路程和时间所对应的式子,再抓住“相同的时间”这一关键词,得出相等的数量关系,即“提速前的路程÷提速前的速度=提速后的路程÷提速后的速度”,从而建立方程.学生自己独立完成解答过程,教师再演示解答过程.注意:教师帮助学生解决含有字母的计算问题,求出关于x的方程的解.教师提醒:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).最后教师总结:(1)在实际问题中,有时题目中包含多个相等数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系.(2)在检验过程中,不仅要检验所得的根是否为原分式方程的根,还要检验这个根在实际问题中是否具有实际意义,如时间非负、人数为正数等.(3)在一些实际问题中,有时直接设问题所求的量为未知数可能比较麻烦,可以间接地设未知数.接着教师让学生独立完成教材P154练习第1,2题,同桌之间互相检查.列分式方程解应用题按下列步骤进行:(1)审题,了解已知量与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部(或大部分)含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验所求得的根是不是增根,以及是否符合实际意义;(6)写出答案.第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是( D )A.1,2,3 B.1, 2 ,3 C.3,4,8 D.4,5,62.正十边形的一个内角的度数是( D )A.108°B.120°C.135°D.144°3.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A )A.40°B.60°C.80°D.90°4.如图,D,B,C,E四点共线,∠ABD+∠ACE=230°,则∠A的度数为( A )A.50°B.60°C.70°D.80°(第4题图)(第6题图)(第7题图)5.一个正多边形的外角等于45°,则这个正多边形的内角和是( B )A.1 440°B.1 080°C.900°D.720°6.如图,AD是△ABC的中线,已知△ABD的周长为22 cm,AB比AC长3 cm,则△ACD 的周长为( A )A.19 cm B.22 cm C.25 cm D.31 cm7.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数为( C )A.135°B.120°C.105°D.75°8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n 的值有( D )A.4个B.5个C.6个D.7个9.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是( B )A.45°B.50°C.55°D.80°(第9题图)(第10题图)10.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是( B )A.36°B.72°C.50°D.46°二、填空题(每小题3分,共18分)11.工人师傅盖房子时,常将房梁设计成如图所示的图形,使其牢固不变形,这是利用三角形的稳定性.(第11题图) (第14题图) (第16题图)12.若三角形两边长分别是2,4,第三边长为偶数,则第三边长为4. 13.若一个n 边形的外角和与它的内角和之和为1 800°,则边数n =10.14.如图,在△ABC 中,∠ACB =90°,AD 平分∠CAB,交边BC 于点D ,过点D 作DE⊥AB,垂足为点E.若∠CAD=20°,则∠EDB 的度数是40°.15.已知a ,b ,c 是三角形的三条边,则化简|a -b +c|-|c -a -b|=2c -2b .16.如图,在△ABC 中,∠A =84°,点O 是∠ABC,∠ACB 平分线的交点,点P 是∠BOC,∠OCB 平分线的交点,若∠P=100°,则∠ACB 的度数是56°.三、解答题(共72分)17.(6分)求图中∠α的度数.(1)解:∠α=360°-65°-70°-(180°-40°)=85°.(2)解:∠α=180°-(360°-90°-90°-40°)=40°.18.(6分)若三角形的三边长分别是2,x ,10,且x 是不等式x +14 <1-1-x 5的正偶数解,试求第三边的长x.解:原不等式可化为5(x +1)<20-4(1-x),解得x <11,又根据三角形的三边关系,得10-2<x <10+2,解得8<x <12,∵x 是正偶数,∴x =10,∴第三边的长为10.19.(6分)如图,AD 是△ABC 的高,AE 是△ABC 的角平分线,若∠BAC∶∠B∶∠C=6∶3∶1,求∠DAE 的度数.解:∵∠BAC∶∠B∶∠C=6∶3∶1,∴设∠BAC=6α,则∠B=3α,∠C =α,∵∠BAC +∠B+∠C=180°,∴6α+3α+α=180°,解得α=18°,∴∠BAC =108°,∠B =54°,∠C =18°.∵AD 是△ABC 的高,∴∠ADB =90°,∴∠BAD =180°-90°-54°=36°,∵AE 是△ABC 的角平分线,∴∠BAE =12 ∠BAC=12×108°=54°,∴∠DAE =∠BAE -∠BAD=54°-36°=18°.20. (8分)如图,在Rt △ABC 中,∠ACB =90°,∠A =34°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E.(1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB=90°,∠A =34°,∴∠CBD =∠ACB+∠A=124°,∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=62°.(2)∵∠ECB=90°,∠CBE =62°,∴∠CEB =90°-∠CBE=28°,∵DF ∥BE ,∴∠F =∠CEB=28°.21.(8分)如图,D 是△ABC 的边BC 上的一点,且∠1=∠2,∠3=∠4,∠BAC =66°,求∠DAC 的度数.解:∵∠4=∠1+∠2,∠1=∠2,∴∠4=2∠1,∵∠3=∠4,∴∠3=2∠1,∵∠BAC =66°,∴180°-∠2-∠3=180°-∠1-2∠1=66°,解得∠1=38°,∴∠DAC =∠BAC-∠1=66°-38°=28°.22.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB,且分别交CD ,BC 于点E ,F ,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,∴∠ACD +∠DCB=90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B=90°,∴∠ACD =∠B.(2)∵∠CEF=∠CAF+∠ACD,∠CFE =∠B+∠FAB,又∵AF 平分∠CAB,∴∠CAF =∠FAB,由(1)知∠ACD=∠B,∴∠CEF =∠CFE.23.(9分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120°的三角形?若存在,请举例说明.解:设三角形的另一个内角为γ.(1)∵α=2β,且α+β+γ=180°,∴当α=100°时,β=50°,则γ=30°,∴这个“特征三角形”的最小内角的度数是30°.(2)不存在.∵α=2β,且α+β+γ=180°,∴当α=120°时,β=60°,则γ=0°,此时不能构成三角形,∴不存在“特征角”为120°的三角形.24.(9分)如图,在△ABC 中(AC >AB),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60 cm 和40 cm 两部分,求边AC 和AB 的长.(提示:设CD =x cm )解:∵AD 是BC 边上的中线,∴BD =CD ,设BD =CD =x cm ,AB =y cm ,∵AC =2BC ,∴AC =4x cm ,分为两种情况:①若AC +CD =60 cm ,AB +BD =40 cm 时,则⎩⎪⎨⎪⎧4x +x =60,x +y =40, 解得⎩⎪⎨⎪⎧x =12,y =28, 即AC =4×12=48(cm ),AB =28 cm ,BC =2×12=24(cm ),此时符合AC >AB 和三角形三边关系;②若AC +CD =40 cm ,AB +BD =60 cm 时,则⎩⎪⎨⎪⎧4x +x =40,x +y =60, 解得⎩⎪⎨⎪⎧x =8,y =52,即AC =4×8=32(cm ),AB =52 cm ,不符合AC >AB ,舍去.综上所述,AC 的长为48 cm ,AB 的长为28 cm .25.(12分) “转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题.(1)请你根据已经学过的知识求出下面星形图①中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图①中星形截去一个角,如图②,请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图②中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图③中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?(只需写出结论,不需要写出解题过程)解:(1)如图①,∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A +∠B+∠C+∠D+∠E=180°.(2)如图②,∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A +∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.(3)根据题(2)可得出规律:图①中,∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了(180×5)度,则∠A+∠B+∠C+∠D+∠E +∠F+∠G+∠H+∠M+∠N=180°×5+180°=1 080°.2.5 等腰三角形的轴对称性同步测试题(满分120分;时间:120分钟)班级____________姓名___________成绩_________一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 已知等腰三角形中,腰=,底=,则这个三角形的周长为()A. B. C. D.2. 的三边长分别,,,且=,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3. 下列条件中,不能得到等边三角形的是()A.有两个内角是的三角形B.有两边相等且是轴对称的三角形C.有一个角是且是轴对称的三角形D.三边都相等的三角形4. 在等腰中,,、分别是底角的平分线,,图中等腰三角形有()A.个B.个C.个D.个5. 已知等腰三角形的一个外角等于,则这个三角形的三个内角的度数分别是()A.、、B.、、C.、、D.、、或、、6. 如图,在中,,,以为圆心,的长为半径作圆弧,交于点,连接,则等于()10A. B.C. D.7. 下列说法:①在中,若,则为等边三角形;②在中,若,则为等边三角形;③有两个角都是的三角形是等边三角形;④一个角为的等腰三角形是等边三角形.其中正确的个数为()A.个B.个C.个D.个8. 已知,,为的各边边长,当时,则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形9. 如图,正方形网格中,网格线的交点称为格点,已知,是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A. B. C. D.二、填空题(本题共计 8 小题,每题 3 分,共计24分,)10. 已知等腰三角形的一个外角为,则它的顶角的度数为________.11 已知一个等腰三角形的一个角是,其顶角的度数为________.12. 有一个角是________的等腰三角形是等边三角形.13. 如果一个三角形的两条角分线又是它的两条高线,则这个三角形是________三角形.14 如图,在的正方形网格中,点、分别在格点上,在图中确定格点,则以、、为顶点的等腰三角形有________个.15 如图,已知在矩形中,对角线,相交于点,且,,则图中长度为的线段有________条.16 如图,已知,,,,…,以此类推,若,则________.三、解答题(本题共计 8 小题,共计72分,)17. 画一个,在射线上任选一点,画,与交于点,试判断的形状.18. 如图,在中,=,于点,平分交于点,交于点,求证:=.19 如图,在中,,,,,求的度数.20. 如图,在等边中,点,分別在边,上,,过点作丄,交的延长线于点.求的度数;若,求,的长.21 如图,在中,=,点,点分别是,上一点,且.若=,=,求的度数.22. 如图,已知等边三角形,是边上一点,作交于点,交延长线于点,求证:=.23 如图,等边边长为,点是等边的中心,连接.将线段绕点顺时针旋转,设旋转角为._________;如图,当时,线段旋转到,求证在旋转过程中,当时,直接写出点经过的路径长.。

人教版八年级数学上册课件:15.3 分式方程(第二课时)

人教版八年级数学上册课件:15.3 分式方程(第二课时)
设,注意单位要统一,选择一个未知量用未知数表示, 并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值. (5)验:即验根,要检验所求的未知数的值是否适合分式 方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意单位和答案完整.
3.(2019新疆)两个小组同时从甲地出发,匀速步行到乙 地,甲乙两地相距7500米,第一组的步行速度是第二 组的1.2倍,并且比第二组早15分钟到达乙地.设第 二组的步行速度为x千米/小时,根据题意可列方程是 (D)
4.某学校食堂需采购部分餐桌,现有A、B两个商家,A
商家每张餐桌的售价比B商家的优惠13元.若该校花 费2万元采购款在B商家购买餐桌的张数等于花费1.8 万元采购款在A商家购买餐桌的张数,则A商家每张餐
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬 衫售完后的总利润不低于1950元,则第二批衬衫每件 至少要售多少元? (2)设第二批衬衫每件售价y元.根据题意,得 30×(200-150)+15(y-140)≥1950, 解得y≥170. 答:第二批衬衫每件至少要售170元.
桌的售价为( A )
A.117元
B.118元
C.119元
D.120元
5.某园林队计划由6名工人对180平方米的区域进行绿 化,由于施工时增加了2名工人,结果比计划提前3小 时完成任务,若每人每小时绿化面积相同,求每人每 小时的绿化面积.设每人每小时的绿化面积为x平方
米,请列出满足题意的方程是

6.某校学生捐款支援地震灾区,第一次捐款总额为 6600元,第二次捐款的总额为7260元,第二次捐款的 总人数比第一次多30人,而且两次人均捐款额恰好相 等,则第一次捐款的总人数为 300 人.

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册
在规定日期内完成,问规定日期是多少天?
拓展应用
解:设规定日期为x天,根据题意,得
1
x 3
1


3

1
x x4
x4


解得:x=12.
经检验:x=12是原方程的解且符合题意.
答:规定日期为12天.
回顾反思
1. 本节课探究了分式的哪些问题?
2. 在探寻分式方程的应用时,你经历了哪些数学活动?在
(2)数字问题:在数字问题中要掌握十进制数的表示法;
(3)工程问题:基本公式: 工作量=工时×工效以及它的两个变式 ;
回顾复习
(4)顺水逆水问题:顺水速度= 轮船速度+水流速度 ,
逆水速度= 轮船速度-水流速度 ;
(5)利润问题:基本公式: 利润=售价-进价,利润率=利润÷进价.
探究新知
学生活动一 【一起探究】
的工作效率比原计划提高20%,结果提前2天完成任务.设原计
划每天铺设x米,下面所列方程正确的是( A )
720
720

2
x
( x 20%) x
720
720
C.

2
(1 20%) x
x
A.
720
720

2
(1 20%) x
x
720
720
D.

x 2 (1 20%) x
B.
拓展应用
x
x 2x
解得x=30,
经检验x=30为原方程的根且符合题意.
∴2x=60.
答:甲队单独完成这项工程需30天,乙队单独完成这项工程
需60天.
课后作业
1.课本P154 习题15.3第3,5题.

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

解:在不耽误工期的情况下只能选择方案(1)或(3).设工期为 x 天,则甲队 单独完成需 x 天,乙队单独完成需(x+5)天,由题意得:4x+x+x 5=1,解得 x=20,经检验 x=20 是原方程的解,且符合题意,则方案(1)需工程款 1.5×20 =30(万元),方案(3)需工程款 1.5×4+1.1×20=28(万元),∵28<30,∴在 不耽误工期的情况下,方案(3)最省工程款.
知识点三:百分率问题
3.(舟山中考)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲 检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个, 则根据题意,可列出方程: 3x00=x2-0020×(1-10%) .
知识点四:商品销售问题 4.(广东中考)某公司购买了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等. (1)求该公司购买的 A、B 型芯片的单价各是多少元? (2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购买了多少 条 A 型芯片?
【规范解答】(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小 时搬运(x+30)千克材料.根据题意,得x1+00300=8x00.解得 x=120.经检验,x =120 是原方程的解,且符合题意.当 x=120 时,x+30=150.答:A 型机 器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料; (2)设购进 A 型机器人 a 台,则购进 B 型机器人(20-a)台.根据题意,得 150a +120(20-a)≥2800.解得 a≥430.∵a 是整数,∴a≥14.答:至少购进 A 型机 器人 14 台.

八年级上册数学15.3第2课时列分式方程解决实际问题

八年级上册数学15.3第2课时列分式方程解决实际问题

课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;


=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++
解: 设实际用了 天,则原计划用 天,改建的自行车道距离: , ,解得 ,经检验, 是原分式方程的解, 付给工程队的费用: (万元)答:付给工程队的费用为 万元.
能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.

人教版数学八年级初二上册 15.3.2分式方程的应用---工程问题 名师教学教案 教学设计反思

人教版数学八年级初二上册 15.3.2分式方程的应用---工程问题 名师教学教案 教学设计反思
知识讲解
(难点突破)
活动一:看谁算的快
1.甲车要运480方土需要6天,则甲车平均一天要运多少方土?( )
2.甲车要运一堆土需要6天,则甲平均一天要运这堆土的几分之几?( )
3.甲车要运一堆土需要x天,则甲平均一天要运这堆土的几分之几( )
活动二:典型例题
例3:两个工程队又共同参与了二期筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
从学生角度分析为什么难
学生审题不清,找不到隐含条件,找等量关系比较困难,其次计算能力慢、弱,常常忘了检验。
难点敎學方法
引导式敎學法、自主式探究法
敎學环节
敎學过程
导入
1、用额敏火车站的效果图与建设中的额敏火车站引入。
2、工程问题基本量有哪些?有怎样的关系?
(设计意图:教师点明了本节课的学习内容同时提出了问题,引发学生注意与思考,并自然过渡到新课。)
问 1:甲队单独完成需要几个月?
2:乙队单独完成需要几个月?
3:哪个队的施工速度快?
分析:可以借助表格,搞清楚各各量,找出等量关系。
类比整式方程解决实际问题归纳总结方式方程解决实际问题的一般步骤,
审:审清题意,找出数量关系和相等关系;
设:选择恰当的未知数,注意单位和语言完整;
列:根据数量和相等关系,正确列出方程;
小结
我的收获我来讲
1、工作量=工作效率×工作时间
2、列分式方程解决实际问题的一般步骤为:审、设、列、解、
单位名称
额敏县第六中学
填写时间
2020年6月29日
学科
数学
年级/册
八年级(上)
教材版本
人教版

人教版八年级数学上册教案:15.3.2 列分式方程解决实际问题

人教版八年级数学上册教案:15.3.2 列分式方程解决实际问题
(2)数字问题
在数字问题中要掌握十进制数的表示法.
(3)工程问题
基本公式:________________;
(4)顺水逆水问题
顺水速度=____________;逆水速度=____________.
温故知新,唤醒学生的已有知识体系,为本节课作知识的铺垫.
活动
一:
创设
情境
导入
新课
【课堂引入】问题:一艘轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流速度为3千米/时,求轮船在静水中的速度.分析:设轮船在静水中的速度为x千米/时,则顺水航行的速度为________千米/时,逆水航行的速度为________千米/时,顺水航行的时间为________时,逆水航行的时间为________时,根据题意,可得方程________________________________.1.利用课件提出实际应用问题:求出车速.
解得x=1.
检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的 ,可知乙队的施工速度快.
1.通过例题教学使学生掌握基础知识、基本的运算方法,掌握解决数学问题的基本技能,增强学生解决问题的能力.2.通过例题教学使学生掌握基本的数学语言、规范其解题书写格式.3.通过例题教学提高学生分析问题解决问题的能力.
(4)列车提速前行驶skm所用的时间与列车提速后行驶(s+50)km所用的时间相同;(5) , ;(6) =
解:设提速前这次列车的平均速度为xkm/h,则提速前它行驶skm所用时间为 h;提速后列车的平均速度为(x+v)km/h,提速后它行驶(s+50)km所用时间为 h.根据行驶时间的等量关系,得 = .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
180
200
分析:设小轿车的速度为x千米/小时
列表格如下:
路程 速度
面包 车
200
x+10
小轿 车 180 x
时间
200 x 10
180 x
等量关系: 面包车的时间=小轿车的时间
解:设小轿车的速度为x千米/小时,则面包 车速度为x+10千米/小时,依题意得
180 200 x x 10
讲授新课
一 列分式方程解决工程问题
例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月完 成总工程的三分之一,这时增加了乙队,两队又共同工作了半 个月,总工程全部完成.哪个队的施工速度快?
表格法分析如下: 设乙单独完成这项工程需要x天.
工作时间(月) 工作效率
甲队
3
1
2
3
乙队
1
1
2
x
等量关系:
0
180 200
300
解:设小轿车提速为x千米/小时,依题意得
100 120 100 90 x
解得x=30 经检验,x=30是原方程的解,且x=30,符合 题意.
答:小轿车提速为30千米/小时.
2.两车发现跟丢时,面包车行驶了200公里,小
轿车行驶了180公里,小轿车为了追上面包车,
他就马上提速,他们约定好在s公里的地方碰头,
3.验根有哪几种方法? 有两种方法:第一种是代入最简公分母;第
二种代入原分式方程.通常使用第一种方法.
4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式 是什么?
基本上有4种: (1)行程问题: 路程=速度×时间以及它的两个变式; (2)数字问题: 在数字问题中要掌握十进制数的表示法; (3)工程问题: 工作量=工时×工效以及它的两个变式; (4)利润问题: 批发成本=批发数量×批发价;批发数量=批 发成本÷批发价;打折销售价=定价×折数;销售利润=销售收 入一批发成本;每本销售利润=定价一批发价;每本打折销售 利润=打折销售价一批发价,利润率=利润÷进价。
他们正好同时到达,请问小轿车提速多少km/h?
路程 速度
面包 车
s-200
100
小轿 车
s-180
90+x
时间
s 200 100
s 180 x 90
0
180 200
S
解:设小轿车提速为x千米/小时,依题意得
s 200 s 180
100
x 90
解得x=
10s s 200
经检验: x 10s 是原方程的解,且x 10s 满足题意。
第十五章 分 式
15.3 分式方程
第2课时 分式方程的应用
学习目标
1.理解数量关系正确列出分式方程.(难点) 2.在不同的实际问题中能审明题意设未知数,列分式
方程解决实际问题分式方程的基本思路是什么?
分式方程
转化 去分母
整式方程
2.解分式方程有哪几个步骤? 一化二解三检验
做一做
抗洪抢险时,需要在一定时间内筑起拦洪大坝, 甲队单独做正好按期完成,而乙队由于人少,单 独做则超期3个小时才能完成.现甲、乙两队合作 2个小时后,甲队又有新任务,余下的由乙队单独 做,刚好按期完成.求甲、乙两队单独完成全部 工程各需多少小时?
解析:设甲队单独完成需要x小时,则乙队需要 (x+3)小时,根据等量关系“甲工效×2+乙工效 ×甲队单独完成需要时间=1”列方程.
s 200
s 200
答:小轿车的提速为 10s km/ h. s 200
3.小轿车平均提速vkm/h,用相同的时间,小轿车 提速前行驶skm,提速后比提速前多行驶50km,提 速前小轿车车的平均速度为多少km/h?
2.通常间接设元,如× ×单独完成需 x(单位时间),则
可表示出其工作效率; 3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队
工作效率的和”. 4.解题方法:可概括为“321”,即3指该类问题中三量关系, 如工程问题有工作效率,工作时间,工作量;2指该类问题中 的“两个主人公”如甲队和乙队,或“甲单独和两队合作”; 1指该问题中的一个等量关系.如工程问题中等量关系是:两 个主人公工作总量之和=全部工作总量.
设乙单独 完成这项工程需要x天.则乙队的工作效率是 1
甲队的工作效率是 1 ,合作的工作效率是 ( 1 1)
x
.
3
x3
工作时间(月) 工作效率
甲单独
1
1
3
两队合作
1
(1 1)
2
x3
工作总量(1) 表格为 “3行4列
1
此时方程是:3
1

1 2

(1 3

1 x
)

1
知识要点
工程问题 1.题中有“单独”字眼通常可知工作效率;
解得x=90
注意两次检验: (1)是否是所列方程的解; (2)是否满足实际意义.
经检验,x=90是原方程的解, 且x=90,x+10=100,符合题意.
答:面包车的速度为100千米/小时, 小轿车的速度为90千米/小时.
做一做
1.小轿车发现跟丢时,面包车行驶了200公里, 小轿车行驶了180公里,小轿车为了追上面包车, 他就马上提速,他们约定好在300公里的地方碰 头,他们正好同时到达,请问小轿车提速多少 km/h?
解得 x=1.
检验:当x=1时,6x≠0.
所以,原分式方程的解为x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,而甲队单独
施工需3个月才可以完成全部任务,所以乙队的施工速度快.
想一想:本题的等量关系还可以怎么找?
甲队单独完成的工作总量+两队合作完成的工作总量=“1”
此时表格怎么列,方程又怎么列呢?
解:设甲队单独完成需要x小时,则乙队需要
(x+3)小时.
由题意得
.
解得x=6.
经检验x=6是方程的解.∴x+3=9.
答:甲单独完成全部工程需6小时,乙单独完 成全部工程需9小时.
解决工程问题的思路方法:各部分工作量之和等 于1,常从工作量和工作时间上考虑相等关系.
二 列分式方程解决行程问题
例2 朋友们约着一起开着2辆车自驾去黄山玩, 其中面包车为领队,小轿车车紧随其后,他们同 时出发,当面包车车行驶了200公里时,发现小 轿车车只行驶了180公里,若面包车的行驶速度 比小轿车快10km/h,请问面包车,小轿车的速度 分别为多少km/h?
工作总量(1)
1 2 1 2x
甲队完成的工作总量+乙队完成的工作总量=“1”
解:设乙单独 完成这项工程需要x个月.记工作总量为1,甲的
工作效率是 1 ,根据题意得
3
1 (1 1) 1 1 1, 3 2 x2

1 1 1. 2 2x
方程两边都乘以6x,得
3x 3 6x.
相关文档
最新文档