2020版高考数学(理科)大一轮精准复习精练:1.1集合的概念及运算含解析
2020版高考数学(天津专用)大一轮精准复习精练:1.1 集合的概念及运算 含解析

专题一集合与常用逻辑用语【真题典例】1.1集合的概念及运算挖命题【考情探究】2.深刻理解、掌握交、并、补集的概念,熟练掌握集合的交、并、补的运算和性质,能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.破考点【考点集训】考点一集合的含义与表示1.(2018课标Ⅱ,2,5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4答案 A2.(2012课标全国,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案 D考点二集合间的基本关系3.已知集合A={0,a},B={x|-1<x<2},且A⊆B,则a可以是()A.-1B.0C.1D.2答案 C4.若集合A={x|0<x<1},B={x|x2-2x<0},则下列结论中正确的是()A.A∩B=⌀B.A∪B=RC.A⊆BD.B⊆A答案 C考点三集合的基本运算5.已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则(∁U A)∩B=()A.{1}B.{3,5}C.{1,6}D.{1,3,5,6}答案 B6.若集合A={x|-3<x<1},B={x|x<-1或x>2},则A∩B=()A.{x|-3<x<2}B.{x|-3<x<-1}C.{x|-1<x<1}D.{x|1<x<2}答案 B7.设全集U={x|x<5},集合A={x|x-2≤0},则∁U A=()A.{x|x≤2}B.{x|x>2}C.{x|2<x<5}D.{x|2≤x<5}答案 C8.(2016北京,1,5分)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案 C炼技法【方法集训】方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2014大纲全国,2,5分)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[-1,0)D.(-1,0]答案 B2.(2014重庆,11,5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.答案{7,9}方法2集合间的基本关系的解题方法3.已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=NB.M∩N=NC.M∪N=ND.M∩N=⌀答案 B方法3解决与集合有关的新定义问题的方法4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,则符合条件的非空集合A的个数是()A.10B.11C.12D.13答案 B过专题【五年高考】A组自主命题·天津卷题组1.(2018天津,1,5分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}答案 B2.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案 C3.(2017天津,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案 B4.(2016天津,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D5.(2015天津,1,5分)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 AB组统一命题、省(区、市)卷题组1.(2015重庆,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=⌀C.A⫋BD.B⫋A答案 D2.(2017课标Ⅰ,1,5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀答案 A3.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.0答案 B4.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案 C5.(2016课标Ⅰ,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.--B.-C.D.答案 D6.(2016课标Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案 C7.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案 A8.(2014课标Ⅱ,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案 D9.(2014课标Ⅰ,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案 A10.(2018北京,20,14分)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.解析(1)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,M(α,β)=[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(3)设S k={(x1,x2,…,x n)|(x1,x2,…,x n)∈A,x k=1,x1=x2=…=x k-1=0}(k=1,2,…,n),S n+1={(x1,x2,…,x n)|x1=x2=…=x n=0},所以A=S1∪S2∪…∪S n+1.对于S k(k=1,2,…,n-1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2,…,n-1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=(x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n-1).令B={e1,e2,…,e n-1}∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.C组教师专用题组1.(2018北京,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案 A2.(2017北京,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案 A3.(2017浙江,1,4分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案 A4.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案 C5.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案 B6.(2015福建,1,5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.⌀答案 C7.(2015山东,1,5分)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案 C8.(2014浙江,1,5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.⌀B.{2}C.{5}D.{2,5}答案 B9.(2014四川,1,5分)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1}D.{-1,0}答案 A10.(2014辽宁,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D11.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}12.(2014重庆,11,5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=. 答案{7,9}【三年模拟】一、选择题(每小题5分,共30分)1.(2018天津河北一模,1)已知集合U={-2,-1,0,1,2},A={1,2},B={-2,-1,2},则A∪(∁U B)=()A.{1}B.{2}C.{1,2}D.{0,1,2}答案 D2.(2018天津十二区县模拟,1)设集合A={x∈N||x|≤2},B={y|y=1-x2},则A∩B=()A.[-2,1]B.{0,1}C.{1,2}D.[0,1]答案 B3.(2019届天津一中月考,1)已知集合A={x|0<x≤3,x∈N},B={x|y=-},则集合A∩(∁R B)=()A.{1,2}B.(0,3]C.{1,2,3}D.(0,3)答案 A4.(2018天津和平三模,1)已知集合A={x|(x2-1)(x-2)=0},B=x x∈N*,且∈N*,则A∪B等于()A.{1,2}B.{-1,4}C.{-1,1,2,4}D.{-1,1,2,3,4}答案 C5.(2018天津耀华中学月考,9)已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)答案 C6.(2017天津南开模拟,1)设集合A={-1,0,2},集合B={-x|x∈A,且2-x∉A},则B=()A.{1}B.{-2}C.{-1,-2}D.{-1,0}答案 A二、填空题(每小题5分,共15分)7.(2019届天津耀华中学月考,9)若集合A={x||2x-1|<3},B=x≤0,则A∩B=.答案--8.(2018天津耀华中学二模,10)已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B=.答案(0,1]9.(2017天津河西二模,9)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=. 答案1或2。
2020版高考数学新增分大一轮新高考专用讲义:第一章 1.1 集合的概念及运算 Word版含解析

姓名,年级:时间:§1。
1 集合的概念及运算最新考纲1。
通过实例,了解集合的含义,体会元素与集合的“属于”关系.2。
能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4。
在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7。
能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2。
集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B 中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3。
集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A可以得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A。
题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1。
2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc

第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2017江苏01)已知集合{}1,2A =,{}2,3B a a =+,若{}1AB =,则实数a 的值为 . 解析 由题意233a +…,故由{}1A B =,得1a =.故填1.2.(2017天津理1)设集合{}1,2,6A =,{}2,4B =,{}|15C x x =∈-R 剟,则()A B C =( ).A.{}2B.{}1,2,4C.{}1,2,4,6D.{}|15x x ∈-R 剟解析 因为{1,2,6},{2,4}A B ==,所以{1,2,6}{2,4}{1,2,4,6}AB ==, 从而(){1,2,4,6}[1,5]{1,2,4}A BC =-=.故选B .3.(2017北京理1)若集合{}–2<1A x x =<,{}–13B x x x =<>或,则AB =( ). A.{}–2<1x x <- B.{}–2<3x x <C.{}–1<1x x <D.{}1<3x x <解析 画出数轴图如图所示,则{}21A B x x =-<<-.故选A.31-1-2 4.(2017全国1理1)已知集合{}1A x x =<,{}31x B x =<,则( ).A. {}0A B x x =<B. A B =RC. {}1A B x x =>D. A B =∅解析{}1A x x =<,{}{}310x B x x x =<=<,所以{}0AB x x =<,{}1A B x x =<.故选A. 5.2017全国2理2)设集合{}1,2,4A =,{}240B x x x m =-+=.若1A B =,则B =( ).A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 解析 由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.6.(2017全国3理1)已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则A B 中元素的个数为( ).A .3B .2C .1D .0 解析 集合A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,如图所示,所以AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.7.(2017山东理1)设函数y =A ,函数()ln 1y x =-的定义域为B ,则A B =( ).A.()1,2B.(]1,2C.()2,1-D.[)2,1-解析 由240x -…,解得22x -剟,所以[]22A =-,.由10x ->,解得1x <,所以(),1B =-∞.从而{}{}{}=|22|1|21A B x x x x x x -<=-<剟?.故选D. 8.(2017浙江理1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =( ).A.()1,2-B.()01,C.()1,0-D.()1,2解析 P Q 是取,P Q 集合的所有元素,即12x -<<.故选A .第二节 命题及其关系、充分条件与必要条件题型4 四种命题及真假关系1.(2017山东理3)已知命题:p 0x ∀>,()ln 10x +>;命题:q 若a >b ,则22a b >,下列命题为真命题的是( ).A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝解析 由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题;令1a =,2b =-,验证可知,命题q 为假.故选B.题型5 充分条件、必要条件、充要条件的判断1.(2017天津理4)设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 ππ10sin 121262θθθπ-<⇔<<⇒<.但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A. 2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ).A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017浙江理6)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件解析 46111466151021S S a d a d a d +=+++=+,5121020S a d =+. 当0d >时,有4652S S S +>,当4652S S S +>时,有0d >.故选C .题型6 充分条件、必要条件中的含参问题——暂无第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假——暂无题型8 全(特)称命题——暂无题型9 根据命题真假求参数的范围——暂无。
新高考数学理一轮总复习知能演练1.1集合的概念与运算(含答案详析)

一、选择题1.会合 P={ x|y=x+ 1} ,会合 Q= { y|y=x- 1} ,则 P 与 Q 的关系是 ()A. P=Q B .P QC.P Q D.P∩Q=?分析:选 B.依题意得, P={ x|x+ 1≥ 0} = { x|x≥ - 1} , Q={ y|y≥ 0} ,∴ P Q.2.(2011 高·考课标全国卷 )已知会合 M= {0,1,2,3,4} ,N= {1,3,5} ,P= M∩ N,则 P 的子集共有 ()A.2个B.4 个C.6 个D.8 个22= 4(个 ).分析:选 B.∵ M= {0,1,2,3,4} ,N= {1,3,5} ,∴ M∩N= {1,3} .∴ M∩ N 的子集共有3. (2012 高·考山东卷 ) 已知全集 U = {0,1,2,3,4} ,会合 A={1,2,3} , B= {2,4},则 (?U A)∪B 为()A. {1,2,4} B . {2,3,4}C. {0,2,4} D .{0,2,3,4}分析:选 C.由题意知 ?U A= {0,4} ,又 B= {2,4} ,∴(?U A)∪ B= {0,2,4} .应选 C.4.(2011 高·考北京卷 )已知会合P= { x|x2≤ 1} ,M= { a} .若 P∪ M= P,则 a 的取值范围是 ()A. (-∞,-C. [ -1,1]1]B.[1,+∞ )D .(-∞,-1]∪[1,+∞ )分析:选 C.由 P∪M =P,有 M ? P.∴a2≤ 1,∴- 1≤ a≤ 1.应选 C.5. (2011 高·考广东卷 )已知会合A={( x, y)|x, y 为实数,且x2+ y2= 1} , B= {( x, y)|x,y 为实数,且 y= x} ,则 A∩ B 的元素个数为 ()A. 0 B . 1C. 2 D .3分析:选 C.法一: A 为圆心在原点的单位圆, B 为过原点的直线,故有 2 个交点,应选C.222,2,x+ y = 1,x=2x=-2法二:由可得或应选 C.y=x,2,2,y=2y=-2二、填空题6.(2012 ·考四川卷高)设全集 U= { a,b,c,d} ,会合 A= { a,b} ,B= { b,c,d} ,则 (? U A)∪ (?U B)= ________.分析: ?U A= { c,d} , ?U B= { a} ,∴(?U A)∪ (?U B)= { a, c, d} .答案: { a, c, d}7.(2013 南·京月考 )已知会合A= {(0,1) ,(1,1), (- 1,2)} , B= {( x, y)|x+ y-1= 0, x, y ∈Z },则A∩B=________.分析: A、B 都表示点集, A∩B 即是由 A 中在直线 x+ y-1= 0 上的全部点构成的会合,代入考证即可.答案: {(0,1) , (- 1,2)}8.设 U ={0,1,2,3} , A= { x∈ U |x2+ mx= 0} ,若 ?U A= {1,2} ,则实数 m=________.分析:∵ ?U A= {1,2} ,∴ A= {0,3} ,∴0,3 是方程 x2+ mx= 0 的两根,∴m=- 3.答案:-3三、解答题9.设全集U=R, A= { x|2x- 10≥ 0} ,B= { x|x2-5x≤ 0,且 x≠ 5} .求(1)?U (A∪B);(2)(?U A)∩ (?U B).解: A= { x|x≥ 5} ,B= { x|0≤ x< 5} .(1)A∪ B= { x|x≥ 0} ,于是 ?U(A∪B)= { x|x< 0} .(2)?U A= { x|x< 5} , ?U B= { x|x< 0 或 x≥5} ,于是 (?U A)∩ (?U B)= { x|x<0} .10.设 A= {2 ,- 1, x2- x+1} , B= {2 y,- 4, x+4} , C= { - 1,7} ,且 A∩ B= C,求x、 y 的值.解:∵A∩ B= C= { - 1,7} ,∴必有7∈A,7∈ B,- 1∈ B.2即有 x -x+ 1= 7? x=- 2 或 x= 3.①当 x=- 2 时, x+ 4= 2,又 2∈A,∴ 2∈ A∩B,但 2?C,∴不知足 A∩B= C,∴ x=- 2 不切合题意.②当 x= 3 时, x+ 4= 7,∴ 2y=- 1? y=-1 2.1所以, x= 3, y=-2.一、选择题1. (2012 ·考湖北卷高) 已知会合 A= { x|x2- 3x+ 2= 0, x∈R } , B={ x|0< x<5, x∈N} ,则知足条件 A? C? B 的会合 C 的个数为 ()A. 1 B . 2C. 3 D .4分析:选 D. 解出会合 A、B 后,再确立会合 C 的个数.由于会合 A={1,2} ,B= {1,2,3,4} ,所以当知足 A? C? B 时,会合 C 能够为 {1,2} 、 {1,2,3} 、{1,2,4} 、 {1,2,3,4} ,故会合 C 有 4 个.2.已知全集 U=Z,会合 A= { x|x2= x} ,B= { -1,0,1,2} ,则图中暗影部分所表示的会合为()A. { -1,2} C. {0,1}B.{- 1,0} D .{1,2}分析:选 A. 由题意得会合A= {0,1} ,图中暗影部分所表示的会合是不在会合 A 中,但在会合 B 中的元素的会合,即 (?U A)∩ B,易知 (?U A)∩ B= { - 1,2} ,故图中暗影部分所表示的会合为 { - 1,2} .正确选项为 A.二、填空题3.已知会合 A= { x|a- 3< x< a+3} ,B= { x|x<- 1 或 x>2} ,若 A∪ B=R,则 a 的取值范围为 ________.分析:由 a- 3<- 1 且 a+ 3> 2,解得- 1<a< 2.也可借助数轴来解.答案: (- 1,2)4.(2012 高·考天津卷 )已知会合A ={ x ∈ R ||x + 2|< 3} ,会合B ={ x ∈ R |(x - m)(x - 2)< 0} ,且 A ∩ B = (- 1, n) ,则 m = ________, n = ________.分析: A = { x ∈ R ||x + 2|<3} ={ x ∈ R |- 5<x<1} , 由 A ∩ B =(-1, n),可知 m<2 ,则 B = { x|m<x<2} ,画出数轴,可得 m =- 1, n =1.答案: -1 1三、解答题5.记函数 f( x)=2- x + 3的定义域为A , g(x)= lg[( x - a - 1)(2a - x)](a < 1)的定义域x + 1为 B.(1)求 A ;(2)若 B? A ,务实数 a 的取值范围.解: (1)由 2- x + 3≥ 0,得 x - 1≥ 0.x + 1 x + 1∴ x <- 1 或 x ≥1,即 A = (- ∞ ,- 1)∪ [1,+ ∞ ).(2)由 (x - a - 1)(2a - x)> 0,得 (x - a - 1)(x - 2a)<0.∵ a <1,∴ a +1> 2a.∴B = (2a ,a + 1).由 B? A ,得 2a ≥ 1 或 a + 1≤- 1,即 a ≥1或 a ≤ -2.而 a <1,2∴ 1≤a < 1 或 a ≤ - 2. 21故 a 的范围是 (-∞ ,- 2]∪ 2,1 .。
2020_2021学年高考数学一轮复习专题1.1集合知识点讲解理科版含解析

专题1.1 集合【核心素养分析】1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算。
4.培养学生数学抽象、逻辑推理、数学运算、直观想象能力。
【知识梳理】知识点1:元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性。
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉。
(3)集合的三种表示方法:列举法、描述法、图示法。
知识点2:集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A。
(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A。
(3)相等:若A⊆B,且B⊆A,则A=B。
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集。
知识点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}知识点4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A。
(2)A∪A=A,A∪∅=A,A∪B=B∪A。
(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A。
【特别提醒】1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个。
2.子集的传递性:A⊆B,B⊆C⇒A⊆C。
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B。
4. ∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B)。
【典例剖析】高频考点一集合的基本概念例1、(河南省平顶山一中2019-2020年模拟)已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为( )A.2 B.3C.4 D.5【答案】C【解析】因为32-x∈Z,所以2-x的取值有-3,-1,1,3,又因为x∈Z,所以x的值分别为5,3,1,-1,故集合A中的元素个数为4.【规律方法】与集合中的元素有关的问题的三种求解策略(1)研究一个用描述法表示的集合时,首先要看集合中的代表元素,然后再看元素的限制条件.(2)根据元素与集合的关系求参数时要注意检验集合中的元素是否满足互异性.(3)集合中的元素与方程有关时注意一次方程和一元二次方程的区别.【变式探究】(湖南省郴州二中2019-2020年模拟)设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为( )A.1 B.2C.3 D.4【答案】A【解析】若x∈B,则-x∈A,故x只可能是0,-1,-2,-3,当0∈B时,1-0=1∈A;当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.【举一反三】(山西省晋中一中2019-2020年模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b-a =( )A .1B .-1C .2D .-2【答案】C【解析】因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,则b a=-1,所以a =-1,b =1.所以b-a =2.【方法技巧】解决集合概念问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.本例(1)集合B 中的代表元素为实数p -q.(2)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.高频考点二:集合间的基本关系例2、(吉林长春市实验中学2019-2020年模拟)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______.【解析】(1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 【答案】(1)D (2)(-∞,1] 【方法技巧】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.【易错警示】空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.【变式探究】(安徽师大附中2019-2020年模拟)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B【解析】因为A ={x |x >2或x <0},因此A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R .故选B. 【举一反三】(福建莆田一中2019-2020年模拟)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A .7B .8C .15D .16【答案】A【解析】方法一:A ={x |-1≤x ≤3,x ∈N *}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.方法二:因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 高频考点三:集合的运算例3、(2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}【答案】C【解析】依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C。
2020学年高考数学理一轮复习精选新题和好题归纳总结讲义:第1章 集合与常用逻辑用语 第1讲 Word版含解析

第1讲集合的概念与运算[考纲解读] 1.了解集合的含义.体会元素与集合的关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述具体问题.2.理解集合间的相等与包含关系,会求集合的子集,了解全集与空集的含义.(重点)3.在理解集合间的交、并、补的含义的基础上,会求两个集合的并集与交集,会求给定子集的补集.(重点、难点)4.能使用Venn图表达集合间的基本关系及基本运算.[考向预测]从近三年高考情况来看,本讲一直是高考中的热点.预测2020年高考会以考查集合交、并、补的运算为主,结合不等式的解法,求函数的定义域、值域等简单综合命题,试题难度不大,以选择题形式呈现.1.集合与元素(1)集合中元素的三个特征:□01确定性、□02互异性、□03无序性.(2)元素与集合的关系有□04属于或□05不属于两种,用符号□06∈或□07∉表示.(3)□08列举法、□09描述法、□10图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系3.集合的基本运算4.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔□01B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔□02A⊆B.(3)补集的性质:A∪(∁U A)=□03U;A∩(∁U A)=□04∅;∁U(∁U A)=□05A;∁U(A ∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).(4)若有限集A中有n个元素,则A的子集个数为□062个,非空子集个数为□072-1个,真子集有□082-1个,非空真子集的个数为□092-2个.1.概念辨析(1)若1∈{x ,x 2},则x =±1.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3){x |x ≥2}={t |t ≥2}.( )(4)对于任意两个集合A ,B ,总有(A ∩B )⊆A ,A ⊆(A ∪B ).( ) 答案 (1)× (2)× (3)√ (4)√2.小题热身(1)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1} D .{x |1<x <3}答案 A解析 A ∩B ={x |-2<x <-1}.(2)设全集U ={x |x ∈N *,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4} 答案 D解析 ∵U ={1,2,3,4,5},A ∪B ={1,3,5},∴∁U (A ∪B )={2,4}.(3)已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________. 答案 0或3解析 ∵A ={1,3,m },B ={1,m },B ⊆A , ∴m =3或m =m ,∴m =3或0或1,经检验m =0或3.(4)已知集合A =⎩⎨⎧⎭⎬⎫8x ,y ,B ={0,x 2},且A =B ,则集合A 的子集为________.答案 ∅,{0},{4},{0,4}解析 由题意得8x =x 2,y =0,解得x =2, 所以A ={0,4},其子集为∅,{0},{4},{0,4}.题型 一 集合的基本概念1.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98 C .0 D .0或98 答案 D解析 当a =0时,A =⎩⎨⎧⎭⎬⎫23,符合题意;当a ≠0时,Δ=(-3)2-4×a ×2=0,解得a =98,此时A =⎩⎨⎧⎭⎬⎫43,符合题意.综上知a =0或98.2.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4 答案 A解析 ∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1,所以A 中元素共有9个,故选A.3.若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 因为-3∈A ,所以a -3=-3或2a -1=-3或a 2-4=-3, 解得a =0或a =-1或a =1.当a =0时,A ={-3,-1,-4},符合题意;当a =-1时,2a -1=a 2-4=-3,不满足集合中元素的互异性,故舍去; 当a =1时,A ={-2,1,-3},符合题意. 综上知a =0或1.1.用描述法表示集合的两个关键点(1)搞清楚集合中的代表元素是什么.如举例说明1,3是数,举例说明2是有序数对(或平面内的点).(2)看这些元素满足什么限制条件.如举例说明1,关于x 的方程只有一个实根.举例说明2,x ,y 是整数且满足x 2+y 2≤3.2.两个易错点(1)忽视集合中元素的互异性.如举例说明3,求出a 值后应注意检验.(2)忽视分类讨论.如举例说明1,要分a =0与a ≠0两种情况讨论.1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( )A .1B .2C .3D .4 答案 A解析 若x ∈B ,则-x ∈A ,所以x 只可能取0,-1,-2,-3.逐一检验可知B ={-3},只有1个元素.2.已知集合A ={x |x =3k -1,k ∈Z },则下列表示正确的是( ) A .-1∉A B .-11∈A C .3k 2-1∈A D .-34∉A答案 C解析 令k =0得x =-1,故-1∈A ;令-11=3k -1,解得k =-103∉Z ,故-11∉A ; 令-34=3k -1,解得k =-11∈Z ,故-34∈A ; 对于3k 2-1,因为k ∈Z 时,k 2∈Z , 所以3k 2-1∈A .所以C 项正确. 题型 二 集合间的基本关系1.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2018+b 2018为( )A .1B .0C .-1D .±1 答案 A 解析∵⎩⎨⎧⎭⎬⎫a ,ba ,1={a 2,a +b,0},∴a ≠0. ∴b =0,a 2=1,又∵a ≠1,∴a =-1,∴a 2018+b 2018=1. 2.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π4+π4,k ∈Z,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π8-π4,k ∈Z,则( )A .M NB .NMC .M =ND .以上都不对答案 A解析 ∵k π4+π4=2(k +1)8π,k ∈Z , k π8-π4=k -28π,k ∈Z ,∴任取x ∈M ,有x ∈N ,且π8∈N ,但π8∉M , ∴M N .3.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.答案 (-∞,3]解析 因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3.条件探究1 举例说明3中的集合B 改为“B ={x |m ≤x ≤m +1}”,其余不变,该如何求解?解 B ={x |m ≤x ≤m +1}≠∅,为使B ⊆A ,m 须满足⎩⎪⎨⎪⎧m ≥-2,m +1≤5,解得-2≤m ≤4.条件探究2 举例说明3中的集合A 改为“A ={x |x <-2或x >5}”,如何求解?解 因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎨⎧m ≥2,m >4或⎩⎨⎧m ≥2,m <-12,即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.判断集合间关系的三种方法 列举法 根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.如举例说明1结构法 从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.如举例说明2数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.如举例说明32.根据集合间的关系求参数的策略 (1)注意对集合是否为空集进行分类讨论因为∅⊆A 对任意集合A 都成立.如举例说明3中2m -1<m +1时,B =∅,B ⊆A 也成立.(2)借助Venn 图和数轴使抽象问题直观化.(3)注意检验区间端点值,如举例说明3,若将两个集合改为A ={x |-2<x ≤5},B ={x |m +1≤x <2m -1},若B ≠∅,为使B ⊆A ,m 须满足⎩⎪⎨⎪⎧2m -1>m +1,m +1>-2,2m -1≤5.1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( )A .B ⊆A B .A =BC .A BD .B A答案 C解析 由题意得A ={1,2},B ={1,2,3,4},∴A B .2.已知集合A ={x |x 2-2x ≤0},B ={x |x ≤a },若A ⊆B ,则实数a 的取值范围是( )A .a ≥2B .a >2C .a <0D .a ≤0 答案 A解析 ∵A ={x |0≤x ≤2},B ={x |x ≤a },∴为使A ⊆B ,a 须满足a ≥2. 3.满足{0,1,2}A ⊆{0,1,2,3,4,5}的集合A 的个数为________.答案 7解析 集合A 除含元素0,1,2外,还至少含有3,4,5中的一个元素,所以集合A 的个数等于{3,4,5}的非空子集的个数,即为23-1=7.题型 三 集合的基本运算角度1 集合的并、交、补运算1.(2018·天津高考)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4} 答案 C解析 因为集合A ={1,2,3,4},B ={-1,0,2,3},A ∪B ={-1,0,1,2,3,4},所以(A ∪B )∩C ={-1,0,1}.2.(2018·皖北协作区联考)已知集合A ={y |y =x 2-1},B ={x |y =lg (x -2x 2)},则∁R (A ∩B )=( )A.⎣⎢⎡⎭⎪⎫0,12 B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫0,12 D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ 答案 D解析 因为A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg (x -2x 2)}=⎝ ⎛⎭⎪⎫0,12,所以A ∩B =⎝ ⎛⎭⎪⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.角度2知集合的运算结果求参数3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁A)∩B=∅,则m=________.U答案1或2解析A={-2,-1},由(∁U A)∩B=∅,得B⊆A.x2+(m+1)x+m=0可化为(x+1)(x+m)=0,当m=1时,B={-1},符合题意;当m≠1时,B={-1,-m},为使B⊆A成立,须有-m=-2,即m=2.综上知m=1或2.1.求集合交集、并集或补集的步骤2.知集合的运算结果求参数问题的两个关键点(1)分析运算结果并进行恰当转换.如举例说明3中,由(∁U A)∩B=∅,知B⊆A.(2)化简集合为求参数创造有利条件.如举例说明3中,A={-2,-1}.当m=1时,B={-1};当m≠1时,B ={-1,-m}.1.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分(如图)表示的集合是()A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)答案 D解析 由题意可知,M =(-3,1),N =[-1,1],所以阴影部分表示的集合为M ∩(∁U N )=(-3,-1).2.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0得x <-1或x >2,所以A ={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2},故选B.3.(2019·辽宁五校模拟)已知集合P ={x |x 2-2x -8>0},Q ={x |x ≥a },P ∪Q =R ,则a 的取值范围是( )A .(-2,+∞)B .(4,+∞)C .(-∞,-2]D .(-∞,4] 答案 C解析 集合P ={x |x 2-2x -8>0}={x |x <-2或x >4},Q ={x |x ≥a },若P ∪Q =R ,则a ≤-2,即a 的取值范围是(-∞,-2].题型 四 集合的新定义问题已知集合M ={(x ,y )|y =f (x )},若对于任意实数对(x 1,y 1)∈M ,都存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y =1x ;②M={(x,y)|y=log2x};③M={(x,y)|y=e x-2};④M={(x,y)|y=sin x+1}.其中是“垂直对点集”的序号是()A.①④B.②③C.③④D.②④答案 C解析记A(x1,y1),B(x2,y2),则由x1x2+y1y2=0得OA⊥OB.对于①,对任意A∈M,不存在B∈M,使得OA⊥OB.对于②,当A为(1,0)时,不存在B∈M满足题意.对于③④,对任意A∈M,过原点O可作直线OB⊥OA,它们都与函数y=e x-2及y=sin x+1的图象相交,即③④满足题意.与集合相关的新定义问题的解题思路(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算.如果集合A满足:若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.答案{0,6}解析由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.。
2020版高考数学(理)新精准大一轮课标通用版刷好题练能力:第一章 1 第1讲 集合及其运算 含解析

[基础题组练]1.设集合A={x|x2-x-2<0},集合B={x|-1<x≤1},则A∩B=()A.[-1,1]B.(-1,1]C.(-1,2) D.[1,2)解析:选B.因为A={x|x2-x-2<0}={x|-1<x<2},B={x|-1<x≤1},所以A∩B={x|-1<x≤1}.故选B.2.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则()A.M=N B.M⊆NC.N⊆M D.M∩N=∅解析:选B.因为集合M={x|x=2k+1,k∈Z}={奇数},N={x|x=k+2,k∈Z}={整数},所以M⊆N.故选B.3.(2019·湖南湘东五校联考)已知集合A={x|x2-2x-3≤0},B={x|y=ln(2-x)},则A∩B=()A.(1,3) B.(1,3]C.[-1,2) D.(-1,2)解析:选C.A={x|x2-2x-3≤0}={x|(x+1)(x-3)≤0}={x|-1≤x≤3},B={x|y=ln(2-x)}={x|2-x>0}={x|x<2},则A∩B=[-1,2),故选C.4.(2019·山西八校第一次联考)设集合A={x∈Z|x2-3x-4<0},B={x|2x≥4},则A∩B=() A.[2,4) B.{2,4}C.{3} D.{2,3}解析:选D.法一:由x2-3x-4<0得,-1<x<4,因为x∈Z,所以A={0,1,2,3},由2x≥4得x≥2,即B={x|x≥2},所以A∩B={2,3},故选D.法二:通过验证易知3∈A,3∈B,故排除选项A,B.同理可知2∈A,2∈B,排除选项C.故选D.5.(2019·合肥调研性检测)已知集合A={y|y=e x,x∈R},B={x∈R|x2-x-6≤0},则A∩B=()A.(0,2) B.(0,3]C.[-2,3] D.[2,3]解析:选B.由已知得A=(0,+∞),B=[-2,3],所以A∩B=(0,3],故选B.6.已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A.因为3x<1=30,所以x<0,所以B={x|x<0},所以A∩B={x|x<0},A∪B={x|x <1}.故选A.7.已知全集为整数集Z .若集合A ={x |y =1-x ,x ∈Z },B ={x |x 2+2x >0,x ∈Z },则A ∩(∁Z B )=( )A .{-2}B .{-1}C .[-2,0]D .{-2,-1,0}解析:选D.由题可知,集合A ={x |x ≤1,x ∈Z },B ={x |x >0或x <-2,x ∈Z },故A ∩(∁Z B )={-2,-1,0},故选D.8.(2019·太原模拟)已知全集U =R ,集合A ={x |x (x +2)<0},B ={x ||x |≤1},则如图所示的阴影部分表示的集合是( )A .(-2,1)B .[-1,0]∪[1,2)C .(-2,-1)∪[0,1]D .[0,1]解析:选 C.因为集合A ={x |x (x +2)<0},B ={x ||x |≤1},所以A ={x |-2<x <0},B ={x |-1≤x ≤1},所以A ∪B =(-2,1],A ∩B =[-1,0),所以阴影部分表示的集合为∁A ∪B (A ∩B )=(-2,-1)∪[0,1],故选C.9.(2019·辽宁五校联合体模拟)已知集合P ={x |x 2-2x -8>0},Q ={x |x ≥a },P ∪Q =R ,则a 的取值范围是( )A .(-2,+∞)B .(4,+∞)C .(-∞,-2]D .(-∞,4]解析:选C.集合P ={x |x 2-2x -8>0}={x |x <-2或x >4},Q ={x |x ≥a },若P ∪Q =R ,则a ≤-2,即a 的取值范围是(-∞,-2],故选C.10.(2019·安徽安庆模拟)已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a =( ) A .-1 B .2C .-1或2D .1或-1或2解析:选C.因为B ⊆A ,所以必有a 2-a +1=3或a 2-a +1=a . ①若a 2-a +1=3,则a 2-a -2=0,解得a =-1或a =2. 当a =-1时,A ={1,3,-1},B ={1,3},满足条件; 当a =2时,A ={1,3,2},B ={1,3},满足条件.②若a 2-a +1=a ,则a 2-2a +1=0,解得a =1,此时集合A ={1,3,1},不满足集合中元素的互异性,所以a =1应舍去.综上,a =-1或2.故选C.11.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =________.解析:由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.答案:{-1,2,3,5}12.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,则A ∩B =________.解析:不等式18<2x <8的解为-3<x <3,所以B =(-3,3).若x ∈A ∩B ,则⎩⎪⎨⎪⎧x 2-2[x ]=3-3<x <3,所以[x ]只可能取值-3,-2,-1,0,1,2.若[x ]≤-2,则x 2=3+2[x ]<0,没有实数解;若[x ]=-1,则x 2=1,得x =-1; 若[x ]=0,则x 2=3,没有符合条件的解; 若[x ]=1,则x 2=5,没有符合条件的解; 若[x ]=2,则x 2=7,有一个符合条件的解,x =7. 因此,A ∩B ={}-1,7. 答案:{}-1,7[综合题组练]1.(应用型)(2019·山东日照3月联考)已知集合M =⎩⎨⎧⎭⎬⎫x |x 216+y 29=1,N =⎩⎨⎧⎭⎬⎫y |x 4+y 3=1,则M ∩N=( )A .∅B .{(4,0),(3,0)}C .[-3,3]D .[-4,4]解析:选D.由题意可得M ={x |-4≤x ≤4},N ={y |y ∈R },所以M ∩N =[-4,4].故选D. 2.已知集合P ={y |y 2-y -2>0},Q ={x |x 2+ax +b ≤0}.若P ∪Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1解析:选A.P ={y |y 2-y -2>0}={y |y >2或y <-1}.由P ∪Q =R 及P ∩Q =(2,3],得Q =[-1,3],所以-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.3.(创新型)(2019·河南八市质检)在实数集R 上定义运算*:x *y =x ·(1-y ).若关于x 的不等式x *(x -a )>0的解集是集合{x |-1≤x ≤1}的子集,则实数a 的取值范围是( )A .[0,2]B .[-2,-1)∪(-1,0]C .[0,1)∪(1,2]D .[-2,0]解析:选D.依题意可得x (1-x +a )>0.因为其解集为{x |-1≤x ≤1}的子集,所以当a ≠-1时,0<1+a ≤1或-1≤1+a <0,即-1<a ≤0或-2≤a <-1.当a =-1时,x (1-x +a )>0的解集为空集,符合题意.所以-2≤a ≤0.故选D.4.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是________.解析:因为A ∩B =∅,①若当2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若当2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围是[0,+∞). 答案:[0,+∞)。
2020届高考理科数学一轮复习讲义:第一章§1.1 集合的概念及运算_PDF压缩

合 B. 解析 (1) 解法一:由题意知,2∈U,2∉N,2∉M,
所以 2∈∁U M,2∈∁U N,所以 2∈( ∁U M) ∩( ∁U N) . 而 7∈U,7∉M,7∉N, 所以 7∈∁U M,7∈∁U N,所以 7∈( ∁U M) ∩( ∁U N) . 综上,易知{2,7} = ( ∁U M) ∩( ∁U N) .故选 B. 解法二:根据集合 U,M,N 的关系画出 Venn 图,如图所示, 所以{2,7} = ( ∁U M) ∩( ∁U N) .故选 B.
值范围为 .
答案 ( -∞ ,9]
解析 由 A⊆( A∩B) ,得 A⊆B,则
(1) 当 A = ⌀时,2a+1>3a-5,解得 a<6;
{2a+1≤3a-5,
(2) 当 A≠⌀时, 2a+1≥3, 解得 6≤a≤9. 3a - 5≤22,
综上可知,使 A⊆(A∩B)成立的实数 a 的取值范围为(-∞ ,9].
4x+m = 0} .若 A∩B = {1} ,则 B =
( )
A.{1,-3} B.{1,0}
C. { 1,3}
D. { 1,5}
解题导引
(1)思路一: 对集合 { 2,7} 中 的 元 素 逐 一 分 析, 从 而 确 定
结论. 思路二:根据集合 U,M,N 的关系画出 Venn 图,从而确定
{ x | 0<x<1} ,B = { x | x2 -cx<0,c>0} = { x | 0<x<c} .由 A⊆B,画出数
轴,如图所示,得 c≥1,故选 B.
解法二:A = { x | y = lg( x-x2 ) } = { x | x-x2 >0} = { x | 0<x<1} ,取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一集合与常用逻辑用语【真题典例】1.1 集合的概念及运算挖命题【考情探究】分析解读 1.理解、掌握集合的表示方法,能够判断元素与集合、集合与集合之间的关系.2.能够正确处理含有字母的讨论问题,掌握集合的交、并、补运算和性质.3.要求具备数形结合的思想意识,会借助Venn图、数轴等工具解决集合运算问题.4.命题以集合的运算为主,其中基本知识和基本技能是高考的热点.5.本节内容的考题在高考中分值为5分左右,属于中低档题.破考点【考点集训】考点一集合的含义与表示1.(2018广东佛山顺德学情调研,1)若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为( )A.1B.2C.3D.4答案D2.(2017河北冀州第二次阶段考试,1)若集合A={x|x2-7x<0,x∈N*},则集合B=∈∈中元素的个数为( )A.1B.2C.3D.4答案D3.(2018上海黄浦4月模拟(二模),1)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案2考点二集合间的基本关系1.(2018湖北四地七校2月联考,1)若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A.M=NB.M⊆NC.M∩N=ØD.N⊆M答案D2.(2018福建漳州5月质量检查测试,1)满足{2018}⊆A⫋{2018,2019,2020}的集合A的个数为( )A.1B.2C.3D.4答案C3.(2018河北衡水中学模拟,13)已知含有三个实数的集合既可表示成,又可表示成{a2,a+b,0},则a2017+b2017等于.答案-1考点三集合的基本运算1.(2018河北邯郸第一次模拟,2)设全集U=(-,+∞),集合A={x|1<4-x2≤2},∁U A=( )A.(-,)∪[,+∞)B.(-,)∪[,+∞)C.(-,]∪(,+∞)D.[-,]∪(,+∞)答案B2.(2016课标Ⅲ,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D3.(2018福建福州3月质量检测,13)已知集合A={1,3,4,7},B={x|x=2k+1,k∈A},则集合A∪B中元素的个数为.答案6炼技法【方法集训】方法1 根据集合间的关系求参数的方法1.(2018安徽安庆二模,1)已知集合A={1,3,a},B={1,a2-a+1},若B⊆A,则实数a=( )A.-1B.2C.-1或2D.1或-1或2答案C2.已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,则实数a的取值范围为.答案(-∞,-4)∪(2,+∞)方法2 用图示法解决集合运算问题1.(2018陕西延安高考模拟,2)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案D2.(2017河北衡水中学三调,2)已知集合A={x|log3(2x-1)≤0},B={x|y=-},全集U=R,则A∩(∁U B)等于( )A. B. C. D.答案D过专题【五年高考】A组统一命题·课标卷题组1.(2018课标Ⅱ,2,5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4答案A2.(2018课标Ⅰ,2,5分)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案B3.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3B.2C.1D.0答案B4.(2017课标Ⅰ,1,5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B= Ø答案A5.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C6.(2016课标Ⅰ,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )A.--B.-C.D.答案D7.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案AB组自主命题·省(区、市)卷题组1.(2018浙江,1,4分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A. ØB.{1,3}C.{2,4,5}D.{1,2,3,4,5}答案C2.(2017天津,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B3.(2017山东,1,5分)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)答案D4.(2016天津,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=( )A.{1}B.{4}C.{1,3}D.{1,4}答案D5.(2015重庆,1,5分)已知集合A={1,2,3},B={2,3},则( )A. A=BB.A∩B= ØC.A⫋BD.B⫋A答案DC组教师专用题组1.(2018课标Ⅲ,1,5分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}答案C2.(2018北京,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案A3.(2016课标Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C4.(2014课标Ⅰ,1,5分,0.842)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A5.(2014课标Ⅱ,1,5分,0.945)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )A.{1}B.{2}C.{0,1}D.{1,2}答案D6.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q=( )A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案A7.(2017北京,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( )A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A8.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B9.(2016山东,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C10.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是( )A.3B.4C.5D.6答案C11.(2015福建,1,5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于( )A.{-1}B.{1}C.{1,-1}D.⌀答案C12.(2015广东,1,5分)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=( )A.{1,4}B.{-1,-4}C.{0}D.⌀答案D13.(2015湖北,9,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )A.77B.49C.45D.30答案C14.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B= .答案{1,8}15.(2017江苏,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.答案 1【三年模拟】一、选择题(每小题5分,共45分)1.(2019届吉林长春实验中学期中,1)已知集合A={y|y=x2}和集合B={x|y=},则A∩B等于( )A.(0,1)B.[0,1]C.[0,+∞)D.[-1,1]答案B2.(2019届辽宁部分重点高中9月联考,2)已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是( )A.{a|3<a≤4}B.{a|3<a<4}C.{a|3≤a≤4}D.Ø答案C3.(2019届吉林长春质量监测(一),1)已知集合M={0,1},则满足条件M∪N=M的集合N的个数为( )A.1B.2C.3D.4答案D4.(2019届广东深圳实验、珠海一中等六校第一次联考,1)已知集合A=,B={x|2x<1},则(∁R A)∩B=( )A.[-1,0)B.(-1,0)C.(-∞,0)D.(-∞,-1)答案A5.(2018百校联盟TOP20三月联考,1)已知集合A={x∈N|x2-2x-8≤0},B={x|2x≥8},则集合A∩B的子集个数为( )A.1B.2C.3D.4答案D6.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是( )A.( ∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B7.(2018湖北七州市3月联考,1)已知N是自然数集,设集合A=,B={0,1,2,3,4},则A∩B=( )A.{0,2}B.{0,1,2}C.{2,3}D.{0,2,4}答案B8.(2018中原名校联考,2)已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围为( )A.(0,1]B.[1,+∞)C.(0,1)D.(1,+∞)答案B9.(2017安徽淮北二模,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为( )A.a=B.a≤C.a=-D.a≥答案C二、填空题(每小题5分,共10分)10.(2019届山西太原上学期期中,13)已知集合A={-1,0,1},B={x|x2-3x+m=0},若A∩B={0},则B= .答案{0,3}11.(2017江西九江地区七校联考,14)设A,B是非空集合,定义A B={x|x∈A∪B且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N= .答案∪(1,+∞)。