八年级数学竞赛讲座:第十一讲 勾股定理与应用
勾股定理在数学竞赛中的常见题型

勾股定理在数学竞赛中的常见题型勾股定理作为数学中的一条重要定理,经常在数学竞赛中出现。
它被广泛应用于解决各种与直角三角形相关的问题。
在这篇文章中,我们将介绍勾股定理在数学竞赛中的常见题型,并给出一些解题思路。
一、勾股定理的基本定义勾股定理,又称毕达哥拉斯定理,是描述直角三角形三边关系的定理。
它的基本定义如下:在一个直角三角形中,直角的边称为斜边,另外两条边称为直角边。
若直角边的长度分别为a和b,斜边的长度为c,那么勾股定理可以表示为:a² + b² = c²。
二、题型一:已知两边求第三边这是勾股定理中最基本的应用题型之一。
题目给出两条边的长度,要求求解第三条边的长度。
解题思路如下:1. 首先,根据勾股定理可以列出方程:a² + b² = c²。
2. 然后,将已知的两条边的长度代入方程,解出未知的边的长度。
3. 最后,根据题目要求确定解的范围并进行答案验证。
例如,题目给出一个直角三角形的直角边长度分别为3和4,要求求解斜边的长度。
根据勾股定理,可得方程3² + 4² = c²,解得c = 5。
所以答案是5。
三、题型二:已知斜边和一直角边,求另一直角边这个题型要求根据给定的斜边和一直角边的长度,求解另一直角边的长度。
解题思路如下:1. 首先,根据勾股定理可以列出方程:a² + b² = c²。
2. 其次,将已知的直角边和斜边的长度代入方程,并整理得到关于未知边的方程。
3. 最后,解方程得到未知边的长度。
例如,题目给出一个直角三角形的斜边长度为5,一直角边长度为3,要求求解另一直角边的长度。
根据勾股定理,可以得到方程3² + b²= 5²,整理得b² = 25 - 9,解得b = √16 = 4。
所以答案是4。
四、题型三:求直角三角形的面积这个题型要求根据给定的直角三角形两个直角边的长度,求解其面积。
八年级数学勾股定理的应用

甲、乙两位探险者到沙漠进行探险.某日早晨8:00 甲先出发,他以6千米/小时的速度向东行走,1小时 后乙出发,他以5千米/小时的速度向北行进,上午 10:00,甲、乙二人相距多远?
北
乙 甲
东
有一个水池,水面是一个边长为10尺的正方形, 在水池正中央有一根新生的芦苇,它高出水面 1尺.如果把这根芦苇拉向岸边,它的顶端恰好 到达岸边的水面,请问这个水池的深度和这根 芦苇的长度各是多少?
如图所示,为了测得湖两岸点A和点C间的距 离,一个观测者在点B设立了一根标杆,使 ∠ACB=90°.测得AB=200m,BC=160m.根 据测量结果,求点A,C间的距离.
C A
根据勾股定理,可得
AC2=AB2-BC2 =2002-1602 =14400.
B 所以AC=120(m)
登山队员在山顶一平坦处树立起一面会旗,
1尺 水池
5尺
x2 + 52 = (x+1)2
x尺
x = 12
课本第87页练习、习题
旗杆被系在A处的三条等长的铁索拉紧,并分 别固定在地面的C,D,E处,如图所示,如 果∠ABC=∠ABD=∠ABE=90°,那么 BC,BD,BE这三条线段的长度有怎样的关系?
A E
B
D
C
工人在制作铝合金窗框时,为保证窗框的四
个角都是直角,有时采用如下的方法:
如图,先量出框AB,BC的长,再量出两点A,C 的距离,由此推断B是否直角. 1.推断∠B是否直角的依据是什么? 2.如果AB=1.2m,BC=0.9m,那么,只有当点 A,C的距离是多少时?∠B才是直角呢?
A
B
C
一样念动咒语:“一掌咒 喽,枪托咒 喽,一掌枪托咒 喽……『彩风霜怪铅球宝典』!大师!大师!大师!”只见R.拉基希门童的身影射出一片紫红色金 辉,这时从天而降变态地出现了三飘厉声尖叫的紫宝石色光鲨,似怪影一样直奔暗紫色银辉而来……,朝着壮扭公主有着各种古怪想法的圆脑袋怪跃过来!紧跟着R. 拉基希门童也横耍着咒符像谷穗般的怪影一样向壮扭公主怪跃过来壮扭公主忽然弄了一个,爬熊袋鼠滚两千一百六十度外加鲨叫原木转十三周半的招数!接着又使了一 套,变体猴晕凌霄翻三百六十度外加疯转七百周的华丽招式……接着像暗紫色的双舌沙漠熊一样爆呼了一声,突然秀了一个俯卧疯耍的特技神功,身上猛然生出了七只 如同水牛一样的纯红色下巴……紧接着把结实丰满、有着无穷青春热情的胸部颤了颤,只见八道跃动的犹如菊花般的浓云,突然从憨直贪玩的圆脑袋中飞出,随着一声 低沉古怪的轰响,深黑色的大地开始抖动摇晃起来,一种怪怪的死人雀睡魔动味在奇特的空气中摇晃!最后耍起神盔模样的棕褐色短发一嗥,轻飘地从里面流出一道怪 影,她抓住怪影潇洒地一甩,一件怪兮兮、红晶晶的咒符¤雨光牧童谣→便显露出来,只见这个这件神器儿,一边蜕变,一边发出“哧哧”的仙音。……飘然间壮扭公 主发疯般地念起晕头晕脑的宇宙语,只见她饱满亮润如同红苹果样的脸中,狂傲地流出六组颤舞着¤飞轮切月斧→的光泡状的冰块,随着壮扭公主的摆动,光泡状的冰 块像野猪一样在食指出色地击打出阵阵光塔……紧接着壮扭公主又连续使出四百五十五道赤虎香蕉砸,只见她圆圆的极像紫金色铜墩般的脖子中,变态地跳出五片摇舞 着¤飞轮切月斧→的蝙蝠状的脚趾,随着壮扭公主的摇动,蝙蝠状的脚趾像地痞一样念动咒语:“原野咕唉嗟,肥妹咕唉嗟,原野肥妹咕唉嗟……¤雨光牧童谣→!! !!”只见壮扭公主的身影射出一片暗灰色流光,这时西北方向萧洒地出现了八道厉声尖叫的深灰色光鼠,似灵光一样直奔白象牙色妖影而去!,朝着R.拉基希门童 破烂的脑袋怪跃过去!紧跟着壮扭公主也横耍着咒符像谷穗般的怪影一样向R.拉基希门童怪跃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道紫玫瑰色的闪光 ,地面变成了鲜红色、景物变成了灰蓝色、天空变成了紫宝石色、四周发出了病态的巨响……壮扭公主有着各种古怪想法的圆脑袋受到震颤,但精神感觉很爽!再看R .拉基希门童淡红色奶糖一般的脖子,此时正惨碎成穿山甲样的浓绿色飞丝,急速射向远方,R.拉基希门童飞喊着疾速地跳出界外,高速将淡红色奶糖一般的脖子复 原,但元气
初中八年级下册数学 勾股定理的实际应用 课件

糟糕,太 长了,放 不进去。
如果电梯的长、宽、高分别是4尺、3尺、12尺,那么,你能 帮小明估计一下买的竹竿至多是多少尺吗?(结果取整数)
A
A
C
12
3
12 C
D 4
BD 4
B3
C
B
勾股定理的实际应用
学生活动一 学校有一块长方形的花圃,经常有同学 为了少走几步而走捷径,于是在草坪上 开辟了一条“新路”,他们这样走少走 了几步?(每两步约为1米)
4m
3m
学生活动(二)
飞机在天空中水平飞行,某一时刻刚好飞到一 个男孩头顶正上方4000米处,过了20秒,飞机距离 这个男孩头顶5000米,飞机每时飞行多少千米?
学生活动(四)
算趣题:“执竿进屋” 笨人执竿要进屋,无奈门框拦住竹, 横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角, 笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。
学生活动(五)
小明家住在18层的高楼,一天,他与妈妈去买
竹竿。 买最 长的 吧!
快点回家, 好用它凉衣
20秒
4000米
5000米
▪ 学生活动(三) ▪ 印度数学家什迦逻(1141年-1225年)曾提
出过“荷花问题”:
▪ “平平湖水清可鉴,面上一尺生红莲; ▪ 出泥不染亭亭立,忽被强风吹一边, ▪ 渔人观看忙向前,花离原位二尺远; ▪ 能算诸君请解题,湖水如何知深浅?” ▪ 请用学过的数学知识回答这个问题.
(完整版)初中数学竞赛——勾股定理及其应用

(完整版)初中数学竞赛——勾股定理及其应用初中数学竞赛勾股定理与应用勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.勾股定理逆定理如果三角形三边长a,b,c有下面关系:a2+b2=c2那么这个三角形是直角三角形.早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.证法1 如图2—16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2.①同理可证 S BLMD=a2.②①+②得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.证法2 如图2—17所示.将Rt△ABC的两条直角边CA,CB 分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知△ADG≌△GEH≌△HFB≌△ABC,所以AG=GH=HB=AB=c,∠BAG=∠AGH=∠GHB=∠HBA=90°,因此,AGHB为边长是c的正方形.显然,正方形CDEF 的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即化简得 a2+b2=c2.证法3 如图2—18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D 作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,①另一方面S=S ACGF+S HGKD+2S△ABC.②由①,②所以 c2=a2+b2.关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.利用勾股定理,在一般三角形中,可以得到一个更一般的结论.定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.(完整版)初中数学竞赛——勾股定理及其应用因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,(1)若c2=a2+b2,则∠C=90°;(2)若c2<a2+b2,则∠C<90°;(3)若c2>a2+b2,则∠C>90°.勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.例1 如图2-21所示.已知:在正方形ABCD中,∠BAC 的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.说明事实上,在审题中,条件“AE平分∠BAC”及“EF ⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡"到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).推论△ABC的中线长公式:说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的m a,m b,m c分别表示a,b,c边上的中线长.例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.分析如图2-23所示.对角线中点连线PQ,可看作△BDQ 的中线,利用例2的结论,不难证明本题.说明本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法.下面,我们再看两个例题,说明这种转化方法的应用.例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.(完整版)初中数学竞赛——勾股定理及其应用例5 如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:4(AM2+BN2)=5AB2.分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.练习十一1.用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27);(2)项名达图(2—28);(3)杨作枚图(图2-29).2.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.)3.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.4.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.5.如图2—31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:BC2=AB·BF+AC·CE.。
初二数学竞赛讲座——勾股定理

勾股定理例1 (1)直角ABC ∆的三边的长分别是,1x x +和5,则ABC ∆的周长=_________,ABC ∆的面积=_____________.(2)如图,已知RT ABC ∆的两直角边5,12,AC BC D ==是BC 上一点,当AD 是A ∠的平分线时,则CD =______________.(第2题) (例2) 例2 四边形ABCD 中∠DAB =60 ,∠B =∠D =90°,BC =1,CD =2 求对角线AC 的长.练习:如图,四边形ABCD 中,//,1,2DC AB BC AB AC AD ====,则BD 的长为___________________.例3 如图,P 为ABC ∆边BC 上的一点,且2PC PB =,已知45,60ABC APC ∠=∠=,求ACB ∠的度数.练习 已知△ABC 中,AB =AC ,∠B =2∠A 求证:AB 2-BC 2=AB ×BC例4 已知RT ABC ∆中,90,,45.ACB AC BC MCN ∠==∠=(1)如图①,当M 、N 在AB 上时,求证:222MN AM BN =+;(2)如图②,将MCN ∠绕C 点旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.例5 如图已知△ABC 中,AD ⊥BC ,AB +CD =AC +BD 求证:AB =AC例6 已知:正方形ABCD 的边长为1,正方形EFGH 内接于ABCD ,AE =a ,AF =b ,且S EFGH =32,求:a b -的值二、课后练习1. 以下列数字为一边,写出一组勾股数:① 7,_____,_____ ②8,_____,_____ ③9,_____,_____ ④ 10,_____,_____ ⑤11,_____,_____ ⑥12,_____,_____ 2. 根据勾股数的规律直接写出下列各式的值:① 252-242=_____, ②52+122=_____,③22158+=_____, ④2215-25=_____3. △ABC 中,AB =25,BC =20,CA =15,CM 和CH 分别是中线和高。
初中数学重点梳理:勾股定理与应用

勾股定理与应用知识定位三解形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础,而其中的勾股定理在初中竞赛三角形中占据非常大的地位。
必须熟练掌握勾股定理及逆定理的应用、勾股数的推算公式和判定直角三角形。
本节我们通过一些实例的求解,旨在介绍数学竞赛中勾股定理中相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠⇔a 2+b 2=c 22、勾股定理及逆定理的应用① 作已知线段a 的2,3, 5……倍② 计算图形的长度,面积,并用计算方法解几何题③ 证明线段的平方关系等。
3、勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做一组勾股数.4、勾股数的推算公式④ 罗士琳法则任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
⑤ 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。
⑥ 如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫ ⎝⎛K 是一组勾股数。
⑦ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
5、 熟悉勾股数可提高计算速度,顺利地判定直角三角形简单的勾股数有:3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41。
常见勾股数3,4,5 : 勾三股四弦五5,12,13 : 5·12记一生6,8,10: 连续的偶数7,24,25 : 企鹅是二百五8,15,17 : 八月十五在一起特殊勾股数连续的勾股数只有3,4,5连续的偶数勾股数只有6,8,102.100以内的勾股数开头数字为20以内3 4 5;5 12 13; 6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;16 30 34;16 63 65;18 24 30;18 80 82例题精讲【试题来源】【题目】△ABC 周长是24,M 是AB 的中点MC=MA=5,则△ABC 的面积是多少【答案】24【解析】 解:∵MA=MB=MC=5,∴∠ACB=90°知周长是24,则AC+BC=14,AC 2+BC 2=102,∴2AC ·BC=(AC+BC)2-(AC 2+BC 2)= 142-102=4×24∴2421=⋅=∆BC AC S ABC 【知识点】勾股定理与应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】如图1,在正方形ABCD 中,N 是CD 的中点,M 是AD 上异于D 的点,且∠NMB=∠MBC ,则AM :AB=( )A .31;B .33;C .21;D .63【答案】A【解析】 解: 如图,延长MN 交BC 的延长线于T ,设MB 的中点为O ,连TO ,则△BAM ∽△TOB∴AM :MB=OB :BT∴MB 2=2AM ·BT (1)令DN=1,CT=MD=k ,则AM=2 – k所以BM=222)2(4k AM AB -+=+BT= 2 + k 代入(1),得4 + (2 – k )2= 2 (2 – k ) (2 + k )所以 k =34 所以AM :AB=32:2 = 31 【知识点】勾股定理与应用【适用场合】当堂练习【难度系数】4【试题来源】【题目】如图,P 为正方形ABCD 内一点,PA=PB=10,并且P 点到CD 边的距离也等于10,那么,正方形ABCD 的面积是( )【答案】256【解析】 解:如图,过P 作EF ⊥AB 于E ,交CD 于F ,则PF ⊥CD所以PF=PA=PB=10,E 为AB 中点设PE = x ,则AB=AD=10 + x所以AE=21AB=21(10 + x) 在Rt △PAE 中,PA 2=PE 2+AE 2所以102= x 2+ [21(10 + x )]2 所以x = 6所以正方形ABCD 面积=AB 2=(10 + 6)2 = 256【知识点】勾股定理与应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,矩形ABCD 中,AB=20,BC=10,若在AB 、AC 上各取一点N 、M ,使得BM+MN 的值最小,这个最小值为( )A .12;B .102;C .16;D .20【答案】C【解析】 解:如图,作B 关于AC 的对称点B ',连A B ',则N 点关于AC 的对称点N '在A B '上,这时,B 到M 到N 的最小值等于B →M →N '的最小值,等于B 到A B '的距离BH ',连B 与A B '和DC 的交点P ,则ABP S ∆=21×20×10=100, 由对称知识,∠PAC=∠BAC=∠PCA所以PA=PC ,令PA=x ,则PC=x ,PD=20 – x ,在Rt △ADP 中,PA 2=PD 2+AD 2所以 x 2 = (20 – x )2 + 102所以 x = 12.5因为ABP S ∆=21PA ·BH ' 所以BH '=165.1221002=⨯=∆PA S ABP【知识点】勾股定理与应用【适用场合】当堂练习题【难度系数】5【试题来源】【题目】如图,△ABC 中,AB=AC=2,BC 边上有10个不同的点1021,,P P P ,记C P B P AP M i i i i ⋅+=2(i = 1,2,……,10), 那么1021M M M +++ =_________。
勾股定理的应用PPT课件

2
0.3
0.2
A
B
A
B
C
2m
(0.2×3+0.3×3)m
选作: 1. 如图,长方形中AC=3,CD=5,DF=6,求蚂蚁沿表面从A爬到F的最短距离.
3
5
6
A
C
D
E
B
F
已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
已知:如图,在 中, ,是 边上的中线, 于, 求证:.
如图,将长为10米的梯子AC斜靠 在墙上,BC长为6米。
A
B
C
10
6
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
A1
C1
2
一位工人叔叔要装修家,需要一块长3m、宽2.1m的薄木板,已知他家门框的尺寸如图所示,那么这块薄木板能否从门框内通过?为什么?
B
C
A
3
2
1
B
C
A
(1)当蚂蚁经过前面和上底面时,如图,最短路程为
解:
A
B
2
3
A
B
1பைடு நூலகம்
C
AB=
=
=
(2)当蚂蚁经过前面和右面时,如图,最短路程为
A
B
3
2
1
B
C
A
AB=
=
=
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
A
B
AB=
=
=
3
2
1
B
C
A
2.如图,是一个三级台阶,它的每一级的长、宽、高分别为2m、0.3m、0.2m,A和B是台阶上两个相对的顶点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶爬行到B点的最短路程是多少?
勾股定理的应用北师大版八年级数学上册PPT精品课件

1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
小忽略不计)范围是( A )
A.12≤a≤13
B. B.12≤a≤15
C. 5≤a≤12
D.
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
5≤a≤13
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
3、一个无盖的长方体形盒子的长、宽、高分别是 8cm,8cm,12cm,一只蚂蚁想从盒底的A点爬到盒顶的B 点,你能帮蚂蚁设计一条最短的线路吗?蚂蚁要爬 行的最短行程是多少?(课本P15 T4)
B
B
(1)方法A 总结:侧(面2)展A开图 中两点B之间所连的线段 B
最短。
(3) A
A
(4)
接下来,求最短距离:
B h=12cm
径为AB,由 勾股定理得
AB²=9²+12² =225
所以AB=15
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
自学检测1(5分钟)
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
自学指导2(1分钟)
结合下图,思考: 1、蚂蚁怎样沿正方体表面从A点爬行到G点? 2、有最短路径吗?若有,哪条最短?你是怎么确定呢?
H
G
E D
F C
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
A
B
学生自学、教师巡视(3分钟)
1.3.1勾股定理的应用-北师大版八年 级数学 上册课 件
最大棱长
当堂训练(15分钟) 1.3.1勾股定理的应用-北师大版八年级数学上册课件
1.如左下图,一只蚂蚁从A点沿圆柱侧面爬到顶面相对
的B点处,如果圆柱的高为8 cm,圆柱的半径为6 cm,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲勾股定理与应用
在课内我们学过了勾股定理及它的逆定理.
勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即
a2+b2=c2.
勾股定理逆定理如果三角形三边长a,b,c有下面关系:
a2+b2=c2
那么这个三角形是直角三角形.
早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.
关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.
证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.
过C引CM∥BD,交AB于L,连接BG,CE.因为
AB=AE,AC=AG,∠CAE=∠BAG,
所以△ACE≌△AGB(SAS).而
所以S AEML=b2.①
同理可证S BLMD=a2.②
①+②得
S ABDE=S AEML+S BLMD=b2+a2,
即c2=a2+b2.
证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知
△ADG≌△GEH≌△HFB≌△ABC,
所以
AG=GH=HB=AB=c,
∠BAG=∠AGH=∠GHB=∠HBA=90°,
因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即
化简得a2+b2=c2.
证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E 作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF,DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:
△AFE≌△EHD≌△BKD≌△ACB.
设五边形ACKDE的面积为S,一方面
S=S ABDE+2S△ABC,①
另一方面
S=S ACGF+S HGKD+2S△ABC.②
由①,②
所以c2=a2+b2.
关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.
利用勾股定理,在一般三角形中,可以得到一个更一般的结论.
定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.
证 (1)设角C为锐角,如图2-19所示.作AD⊥BC于D,则CD就是AC在BC上的射影.在直角三角形ABD中,
AB2=AD2+BD2,①
在直角三角形ACD中,
AD2=AC2-CD2,②
又
BD2=(BC-CD)2,③
②,③代入①得
AB2=(AC2-CD2)+(BC-CD)2
=AC2-CD2+BC2+CD2-2BC·CD
=AC2+BC2-2BC·CD,
即
c2=a2+b2-2a·CD.④
(2)设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC 在BC(延长线)上的射影.在直角三角形ABD中,
AB2=AD2+BD2,⑤
在直角三角形ACD中,
AD2=AC2-CD2,⑥
又
BD2=(BC+CD)2,⑦
将⑥,⑦代入⑤得
AB2=(AC2-CD2)+(BC+CD)2
=AC2-CD2+BC2+CD2+2BC·CD
=AC2+BC2+2BC·CD,
即
c2=a2+b2+2a·cd.⑧
综合④,⑧就是我们所需要的结论
特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:
c2=a2+b2.
因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,
(1)若c2=a2+b2,则∠C=90°;
(2)若c2<a2+b2,则∠C<90°;
(3)若c2>a2+b2,则∠C>90°.
勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.
例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC 于F,作FG⊥AB于G.求证:AB2=2FG2.
分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.
证因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以
Rt△AFE≌Rt△ABE(AAS),
所以AF=AB.①
在Rt△AGF中,因为∠FAG=45°,所以
AG=FG,
AF2=AG2+FG2=2FG2.②
由①,②得
AB2=2FG2.
说明事实上,在审题中,条件“AE平分∠BAC”及“EF⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡”到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.
例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).
证过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中,
AB2=AM2+BM2+2BM·MD.①
在△ACM中,
AC2=AM2+MC2-2MC·MD.②
①+②,并注意到MB=MC,所以
AB2+AC2=2(AM2+BM2).③
如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为m a,m b,m c,由上述结论不难推出关于三角形三条中线长的公式.
推论△ABC的中线长公式:
说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的m a,m b,m c分别表示a,b,c边上的中线长.
例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.
分析如图2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论,不难证明本题.
证设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ中,
即
2BQ2+2DQ2=4PQ2+BD2.①
在△ABC中,BQ是AC边上的中线,所以
在△ACD中,QD是AC边上的中线,所以
将②,③代入①得
=4PQ2+BD2,
即
AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.
说明本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法.下面,我们再看两个例题,说明这种转化方法的应用.
例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.
分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.证AD2=AC2+CD2,BE2=BC2+CE2,所以
AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2
例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:
4(AM2+BN2)=5AB2.
分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.
证连接MN,利用例4的结论,我们有
AM2+BN2=AB2+MN2,
所以 4(AM2+BN2)=4AB2+4MN2.①
由于M,N是BC,AC的中点,所以
所以 4MN2=AB2.②
由①,②
4(AM2+BN2)=5AB2.
说明在证明中,线段MN称为△ABC的中位线,以后会知道中位线的基本性质:“MN∥AB
且MN=
图2-26所示.MN是△ABC的一条中位线,设△ABC的面积为S.由于M,N分别是所在边的中点,所以S△ACM=S△BCN,两边减去公共部分△CMN后得S△AMN=S△BMN,从而AB必与MN平行.又
S△ABM=高相同,而S△ABM=2S△BMN,所以AB=2MN.
练习十一
1.用下面各图验证勾股定理(虚线代表辅助线):
(1)赵君卿图(图2-27);
(2)项名达图(2-28);
(3)杨作枚图(图2-29).
2.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.
(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.) 3.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:
AF2+BD2+CE2=FB2+DC2+EA2.
4.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.
5.如图2-31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:
BC2=AB·BF+AC·CE.。