模拟电路典型例题讲解

合集下载

模拟电子技术基础第三章例题习题

模拟电子技术基础第三章例题习题

rbe
若旁路电容同时使 Re/ =0、 Re =0,则电压放大倍数为
& = A u
Uo Ui
. .
=−
′ β ⋅ RL
rbe
=−
50 × (6 // 6) × 103 1.85 × 103
≈ −81
由此可见 Re 的存在使放大倍数下降很多。 放大电路的输入电阻为 Ri = Rb1 // Rb 2 //[ rbe + (1 + β ) Re ] = 60 // 20 //[1.85 + (1 + 50) × 0.3] ≈ 8 kΩ 若无 Re,放大电路的输入电阻 Ri = Rb1 // Rb 2 // rbe = 1.65 kΩ,故 Re 的存在提 高了放大电路的输入电阻。放大电路的输出电阻为
& & & 0.66 × 103 & = U o = Uo ⋅ Ui = A & ⋅ Ri = −120 × A ≈ −111.5 us u • 3 & • U Rs + Ri ( 0 . 05 + 0 . 66 ) × 10 i Us Us
若 Rs=500 Ω,RL=8.2 kΩ,则该放大器源电压增益为
IC =
U CC U CE 12 U CE − = − 3 3 Rc Rc
iC / mA
4 3 2 1 0
2 4 6 8
100 75
当 UCE=0 时,IC=4mA;当 IC=0 时,UCE=12V,在如例 3-1 图所示的输 出特性上作出这条直线。 再由直流通路得 U − U BE 12 − 0.7 I B = CC = ≈ 51μA Rb 220 × 103 故直流负载线与 IB=51μA 相对应的输出特性 的交点即为静态工作点 Q,由图得 IC=2mA, UCE=6V。 (2) 当 UCE=3V 时, 则由直流通路可得集电极 电流为 U − U CE 12 − 3 = I C = CC = 3 mA Rc 3 × 103 U CC − U BE I C 3 I = = = = 75 μA 于是,基极电流为 B Rb β 40 U − U BE 12 − 0.7 Rb = CC = = 150.1 kΩ 故 IB 75 × 10 − 6 可采用 150 kΩ 标称电阻。 (3)若使 IC=1.5mA,则

模拟电路典型例题讲解

模拟电路典型例题讲解
86
态范围,所以,不会出现非线性失真。 (5)输入信号的两个频率分量为 f1=1kHz,f2=10MHz,fL<f1<fH ,f2>fH,所以,放
大后会出现高频频率失真。又由于输入信号幅度较小(0.01V),叠加后也未超出线性 动态范围,所以,不会出现非线性失真。
【3-7】分相器电路如题图 3.5 所示。该电路的特点是 RC=RE,在集电极和发射极可输 出一对等值反相的信号。现如今有一容性负载 CL,若将 CL 分别接到集电极和发射极, 则由 CL 引入的上限频率各为多少?不考虑晶体管内部电容的影响。
相应的上限频率为
ωH
fH =
=
106
≈159.2kHz
2π 2×3.14
由增益带宽积的定义可求得:GBW=│A(0)·fH│≈31.84MHz 思考:此题是否可用波特图求解? 【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图 3.2(a)所示,试写出 β的频率特性表达式,分别指出该管的 ωβ、ωT 各为多少?并画出其相频特性的渐近 波特图。
1
1
C2≈
=
≈2.12μF
2π(RC+RL) fL 2 2×3.14×(3+10)×103×5.77
1
C3≈ 2π RE∥
Rs+rbe 1+β
1
fL 3
= 2×3.14× 2∥1+2.6 1+100
≈766μF ×5.77
取 C1=10μF,C2=10μF,C3=1000μF。 【3-10】在题图 3.7 中,若下列参数变化,对放大器性能有何影响(指 ICQ、Avm、Ri、
真问题。但由于输入信号幅度较大(0.1V),经 100 倍的放大后峰峰值为 0.1×2× 100=20V,已大大超出输出不失真的动态范围为 Vopp=10V,故输出信号将产生严重的 非线性失真(波形出现限幅状态)。 (2)输入信号为一单一频率正弦波,f=1MHz,由于 fL<f<fH,所以,不存在频率失 真问题。又由于输入信号幅度较小(0.01V),经 100 倍的放大后峰峰值为 0.01×2× 100=2V<Vopp(10V),所以,也不会出现非线性失真。 (3)输入信号的两个频率分量为 f1=400Hz,f2=1MHz,均处在放大器的中频区,所以, 不存在频率失真问题。又由于输入信号幅度较小(0.01V),所以,也不会出现非线性 失真。 (4)输入信号的两个频率分量为 f1=10Hz,f2=50kHz,f1<fL,fL<f2<fH,所以,放大 后会出现低频频率失真。又由于输入信号幅度较小(0.01V),叠加后也未超出线性动

模电经典例题解析

模电经典例题解析

I EQ I BQ U CEQ
1 VCC I EQ ( Rc Rf Re ) 5.7V
10μ A
动态分析:
26mV rbe rbb' (1 ) 2.73k I EQ
( Rc ∥ R L ) Au 7.7 rbe (1 ) Rf
-
稳压管稳压电路
6 ( 2 ~ 3) A 1000 (12 ~ 18) m A
查手册,选择DZ 为2CW13, VZ =(5~6.5V) , IZmax=38mA, IZmin=5mA
(2)选择限流电阻R:
VI VO (12 ~ 18)V , 取VI 15V Rmin Rmax VI max VO 15(1 10%) 6 241 () 3 I Z max I O 38 10 6 / 1000 VI min VO 15(1 10%) 6 682() 3 I Z min I O 5 10 6 / 1000
ex1已知图 (a)所示电路中场效应管的转移特性和输出特性分别 如图(b)、(c)所示。(1)利用图解法求解Q点; 、Ri和Ro 。 (2)利用等效电路法求解 A
u
解:(1)在转移特性中作直线uGS=-iDRS,与转移特性的交 点即为Q点;读出坐标值,得出IDQ=1mA,UGSQ=-2V。如 解图(a)所示。
显然小于uGS =10V时的预夹断电压,故假设不成立 ,管子
工作于可变电阻区。此时,RdsuDS/iD=3V/1mA=3k,故
Rds 3 uO VDD 18 4.9V Rd Rds 83
21
例1.4.3 电路如图1.4.12 所示,场效应管的夹断电压
VGS(off)=-4V,饱和漏极电流IDSS=4mA。为使场效应管工作

模拟电路考试题及答案解析

模拟电路考试题及答案解析

模拟电路考试题及答案解析一、选择题(每题2分,共20分)1. 在理想运算放大器中,输入电阻是:A. 有限的B. 无穷大C. 零D. 1Ω答案:B解析:理想运算放大器的输入电阻是无穷大,意味着它不会从信号源吸取电流。

2. 一个基本的共射放大电路中,如果基极电流增加,集电极电流将:A. 增加B. 减少C. 不变D. 先增加后减少答案:A解析:在共射放大电路中,集电极电流与基极电流成正比,这是通过晶体管的电流放大作用实现的。

3. 以下哪个不是模拟信号的特点?A. 连续性B. 可量化C. 可模拟D. 可测量答案:B解析:模拟信号是连续的,可以模拟现实世界中的变化,并且可以测量,但不是可量化的,因为它们不是离散的数字值。

4. 一个理想的二极管在正向偏置时:A. 导通B. 截止C. 振荡D. 短路答案:A解析:理想二极管在正向偏置时导通,允许电流通过。

5. 一个RC低通滤波器的截止频率是:A. \( f_c = \frac{1}{2\pi RC} \)B. \( f_c = \frac{1}{RC} \)C. \( f_c = \frac{2\pi}{RC} \)D. \( f_c = \frac{RC}{2\pi} \)答案:A解析:RC低通滤波器的截止频率是信号频率下降到最大值的\( \frac{1}{\sqrt{2}} \)时的频率,公式为\( f_c =\frac{1}{2\pi RC} \)。

...(此处省略其他选择题)二、简答题(每题10分,共20分)1. 解释什么是负反馈,并说明其在放大电路中的作用。

答案:负反馈是指将放大电路的输出信号的一部分以相反相位反馈到输入端。

负反馈可以提高放大电路的稳定性,减少非线性失真,增加带宽,并提高输入和输出阻抗。

2. 描述运算放大器的基本组成及其工作原理。

答案:运算放大器由两个输入端(一个反相输入端和一个非反相输入端)、一个输出端以及内部的差分放大器、电压放大器和输出级组成。

模拟电子技术三极管典型例题

模拟电子技术三极管典型例题

【例4-1】电路如图所示,晶体管的β=100,U BE=0.7 V,饱和管压降U CES=0.4 V;稳压管的稳定电压U Z =4V,正向导通电压U D=0.7 V,稳定电流I Z=5 mA,最大稳定电流I ZM=25 mA。

试问:(1)当u I为0 V、1.5 V、25 V时u O各为多少?(2)若R c短路,将产生什么现象?【相关知识】晶体管工作状态的判断,稳压管是否工作在稳压状态的判断以及限流电阻的作用。

【解题思路】(1)根据u I的值判断晶体管的工作状态。

(2)根据稳压管的工作状态判断u O的值。

【解题过程】(1)当u I=0时,晶体管截止;稳压管的电流在I Z和I ZM之间,故u O=U Z=4 V。

当u I=15V时,晶体管导通,基极电流假设晶体管工作在放大状态,则集电极电流由于u O>U CES=0.4 V,说明假设成立,即晶体管工作在放大状态。

值得指出的是,虽然当u I为0 V和1.5 V时u O均为4 V,但是原因不同;前者因晶体管截止、稳压管工作在稳压区,且稳定电压为4 V,使u O=4 V;后者因晶体管工作在放大区使u O=4 V,此时稳压管因电流为零而截止。

当u I=2.5 V时,晶体管导通,基极电流假设晶体管工作在放大状态,则集电极电流在正电源供电的情况下,u O不可能小于零,故假设不成立,说明晶体管工作在饱和状态。

实际上,也可以假设晶体管工作在饱和状态,求出临界饱和时的基极电流为I B=0.18 mA>I BS,说明假设成立,即晶体管工作在饱和状态。

(2)若R c短路,电源电压将加在稳压管两端,使稳压管损坏。

若稳压管烧断,则u O=V CC=12 V。

若稳压管烧成短路,则将电源短路;如果电源没有短路保护措施,则也将因输出电流过大而损坏【方法总结】(1)晶体管工作状态的判断:对于NPN型管,若u BE>U on(开启电压),则处于导通状态;若同时满足U C≥U B>U E,则处于放大状态,I C=βI B;若此时基极电流则处于饱和状态,式中I CS为集电极饱和电流,I BS是使管子临界饱和时的基极电流。

模拟电路典型习题解答

模拟电路典型习题解答

Ri Rb ∥ rbe rbe 1.3k Ro Rc 5k
例题4
图4所示电路参数理想对称,β1=β2=β,rbe1= rbe2=rbe。 (1)写出RW的滑动端在中点时Ad的表达式; (2)写出RW的滑动端在最右端时 Ad的表达式, 比较两个结果有什么不同。 解:(1)RW的滑动端在 A u O d u I 中点时Ad的表达式为: ( 2 ) RW 的滑动端在 最右端时:
u C1
( Rc
rbe
RW ) 2
u C2 RW ) 2 u
( Rc R W )
2rbe
u I
Rc
2rbe
图4
u I
u O u C1 u C2
( Rc
rbe
I
所以Ad的表达式为:
Ad
u O u I
( Rc
(d) uO
20uI1 20uI2 40u13 u14
例题9
图9所示为恒流源电路,已知稳压管工作在稳压状态,试求负载电 阻中的电流。
解:
uP U Z IL 0.6 R2 R2
mA
图9
例题10
在图10(a)所示电路中,已知输入电压uI的波形如图(b)所示, 当t=0时uO=0。试画出输出电压uO的波形。 解:输出电压的表达式为: t 1 uO u I dt u O (t1 ) t RC 1 当uI为常量时 uO uI (t2 t1 ) uO (t1 ) RC 1 5 u (t t1 ) uO (t1 ) 7 I 2 10 10 -100uI (t2 t1 ) uO (t1 )
例题6
在图6所示电路中,若要求C1与C2所在回路的时间常数相等 ,且已知 rbe=1kΩ,则C1:C2=? 若C1与C2所在回路的时间常数均为25ms,则 C1、C2各为多少?下限频率fL≈? 解:(1)求解C1:C2 因为 C1(Rs+Ri)=C2(Rc+RL) 将电阻值代入上式,求出 C1 : C2=5 : 1。 2)求解C1、C2的容量和下限频率 C1 12.5μF Rs Ri C2 2.5μ F Rc RL 1 f L1 f L2 6.4Hz 2 π f L 1.1 2 f L1 10Hz

模拟电路第五版 习题解答 第6章

模拟电路第五版 习题解答 第6章

第六章6.1图P6-1所示,RC 桥式振荡电路中,已知频率为500Hz ,C=0.047μF ,R F 为负温度系数、20k Ω的热敏电阻,试求R 和R1的大小。

解:由于工作频率为500Hz ,所以可选用集成运放LM741。

因提供的热敏电阻为负温度系数,故该电阻应接于R F 的位置。

为了保证起振,要求Ω=<k R R F1021,现取Ω=k .R 861。

根据已知f o 及C ,可求得Ω=⨯⨯⨯π=π=-677610047050021216.C f R o 可取Ω=k .R 86金属膜电阻。

6.2已知RC 振荡电路如图P6.2所示,试求:(1)振荡频率f o =?(2)热敏电阻R t 的冷态阻值,R t 应具有怎样的温度特性?(3)若Rt 分别采用10K Ω和1K Ω固定电阻,试说明输出电压波形的变化。

解:(1)Hz Hz RC f o 9711002.0102.822163=⨯⨯⨯⨯==-ππ(2)R t 应具有正温度系数,R t 冷态电阻Ω=<k R F 521(3)输出波形变化<3210101110=+=+Ω=Rt R K Rt F 停振 u o=0>311110111=+=+Ω=Rt R K Rt F u o 为方波6.3 分析图P6.3所示电路,标明二次线圈的同名端,使之满足相位平衡条件,并求出振荡频率。

解:(a)同名端标于二次侧线圈的下端MHz Hz Hz LCf o 877.010877.0103301010021216126=⨯=⨯⨯⨯==--ππ(b)同名端标于二次侧线圈的下端MHz Hz Hz f o 52.11052.11010036010036010140216126=⨯=⨯+⨯⨯⨯=--π(c)同名端标于二次侧线圈的下端MHz Hz Hz f o 476.010476.01020010560216126=⨯=⨯⨯⨯=--π6.4 根据自激振荡的相位条件,判断图P6.4所示电路能否产生振荡,在能振荡的电路中求出振荡频率的大小。

《模拟电路》练习册及答案

《模拟电路》练习册及答案

《模拟电子电路》练习册(答案)第一讲练习题填空1.半导体中的载流子有两种导电运动,一种称为(扩散)运动,另一种称为(漂移)运动。

2.半导体中有两种载流子:一种是(自由电子)、另一种是(空穴)。

3.半导体中的扩散运动是由于载流子(浓度的不均匀)而引起的。

4.半导体中的漂移运动是由于载流子(在电场的作用下)而引起的。

5.本征半导体中载流子的数目比杂质半导体中载流子的数目(少)。

6.在本征半导体中加入五价元素后,将形成(N )型半导体。

7.在本征半导体中加入三价元素后, 将形成(P )型半导体。

8.N型半导体中空穴是(少数)载流子。

9.P型半导体中空穴是(多数)载流子。

10.P型半导体中自由电子是(少数)载流子。

11.N型半导体中自由电子是( 多数)载流子。

12.PN结中的电流当温度升高时将会(增加)。

13.二极管的主要特性是它的(单向导电性)。

14.二极管的正向电阻比反向电阻(小)得多。

15.二极管的伏安特性是I = Is(e x p V / Vt —1 )。

16.硅管的门限电压约为( 0.6 ) V 。

17.锗管的门限电压约为( 0.2 ) V 。

18.稳压二极管稳压时应工作于( 反向击穿区) 。

选择 ( 黑体字为答案 )21. N型半导体或P型半导体都属于(杂质半导体)。

22.半导体中的扩散运动是由于(载流子浓度的不均匀)而形成。

23.二极管的反向电阻比正向电阻( 大) 得多。

24. PN结中载流子的漂移运动是由于(电场的作用)而产生的。

25. MOS场效应管的输入电阻比三极管的输入电阻( 大得多)。

26. PN结在外加反方向电压的作用下,耗尽层(变宽),流过PN结的电流(很小)。

27. P型半导体中空穴是(多数载流子)。

28. N型半导体中自由电子是(多数载流子)。

29.在本征半导体中掺入少量三价铟元素,将产生(空穴),形成(P ) 型半导体。

30.P型半导体中空穴是(多数载流子)。

31.PN结中载流电子的扩散运动和漂移运动( 相同) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若将开关S接b点,则负载电容CL接至发射极,由此引入的上限频率fHb为
可见,fHb>>fHa,这是因为射极输出时的输出电阻Rob很小,带负载能力强的缘故。
【3-8】放大电路如题图3.6(a)所示。已知晶体管参数β=100,rbb′=100Ω,rbe′=2.6kΩ,Cbe′=60pF,Cbc′=4pF,电路参数如图所示,要求的频率特性如题图3.6(b)所示。试回答:(1)RC=?(首先满足中频增益的要求)(2)C1=?(3)fH=?
由此可画出其波特图如题图3.3所示。
(2)由题图3.3可知,该放大器的中频增益AVM=120dB,上限频率fH=107/2π≈1.6MHz。
【3-5】已知某放大器的频率特性函数为
试问:(1)其中、低频放大倍数AvI=?(2)Av(ω)及φ(ω)的表达式如何?(3)画出其幅频特性波特图;(4)上限频率fH=?
当ω=ωH时, 求得:ωH=106rad/s
相应的上限频率为
由增益带宽积的定义可求得:GBW=│A(0)·fH│≈31.84MHz
思考:此题是否可用波特图求解?
【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图3.2(a)所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT各为多少?并画出其相频特性的渐近波特图。
(2)输入信号为一单一频率正弦波,f=1MHz,由于fL<f<fH,所以,不存在频率失真问题。又由于输入信号幅度较小(0.01V),经100倍的放大后峰峰值为0.01×2×100=2V<Vopp(10V),所以,也不会出现非线性失真。
(3)输入信号的两个频率分量为f1=400Hz,f2=1MHz,均处在放大器的中频区,所以,不存在频率失真问题。又由于输入信号幅度较小(0.01V),所以,也不会出现非线性失真。
(4)输入信号的两个频率分量为f1=10Hz,f2=50kHz,f1<fL,fL<f2<fH,所以,放大后会出现低频频率失真。又由于输入信号幅度较小(0.01V),叠加后也未超出线性动态范围,所以,不会出现非线性失真。
(5)输入信号的两个频率分量为f1=1kHz,f2=10MHz,fL<f1<fH,f2>fH,所以,放大后会出现高频频率失真。又由于输入信号幅度较小(0.01V),叠加后也未超出线性动态范围,所以,不会出现非线性失真。
【解】本题用来熟悉:放大器的频率失真问题。
(1)输入信号为一单一频率正弦波,f=10kHz,由于fL<f<fH,所以,不存在频率失真问题。但由于输入信号幅度较大(0.1V),经100倍的放大后峰峰值为0.1×2×100=20V,已大大超出输出不失真的动态范围为Vopp=10V,故输出信号将产生严重的非线性失真(波形出现限幅状态)。
【解】本题用来熟悉:晶体三极管的频率特性及其频率参数的确定方法。
由β(ω)的渐近波特图可知:β0=100,ωβ=4Mrad/s,ωT=400Mrad/s。它是一个单极点系统,故相应的频率特性表达式为:
ωT也可按ωT≈β0ωβ=100×4=400Mrad/s求得。
因此,可画出相频特性的渐近波特图如题图3.2(b)所示。
【3-7】分相器电路如题图3.5所示。该电路的特点是RC=RE,在集电极和发射极可输出一对等值反相的信号。现如今有一容性负载CL,若将CL分别接到集电极和发射极,则由CL引入的上限频率各为多少?不考虑晶体管内部电容的影响。
【解】本题用来熟悉:负载电容对放大器高频响应的影响。
(1)若将开关S接a点,则负载电容CL接至集电极,由此引入的上限频率fHa为
【3-4】已知某放大器的频率特性表达式为
(1)试画出该放大器的幅频特性和相频特性波特图;(2)确定其中频增益及上限频率的大小。
【解】本题用来熟悉:(1)由放大器的频率特性表达式画波特图的方法;(2)由波特图确定放大器频响参数的方法。
(1)将给定的频率特性表达式变换成标准形式
相应的幅频特性及相频特性表达式为
下限频率fL=102/2π≈15.9Hz。
【3-2】已知某放大器的频率特性表达式为
试问该放大器的中频增益、上限频率及增益带宽积各为多少?
【解】本题用来熟悉:由放大器的频率特性表达式确定其频率参数的方法。
将给出的频率特性表达试变换成标准形式:

当ω= 0时,A(0)=200,即为放大器的直流增益(或低频增益)。
(1)将A(s)变换成以下标准形式:
(2)将s=jω代入上式得放大器的频率特性:
写出其幅频特性及相频特性表达式如下:
对A(ω)取对数得对数幅频特性:
(3)在半对数坐标系中按20lgA(ω)及φ(ω)的关系作波特图,如题图3.1所示。
由题图3.1(a)可得,放大器的中频增益AI=60dB,上限频率fH=105/2π≈15.9kHz,
(1)vi(t) = 0.1sin(2π×104t)(V)
(2)vi(t) = 10sin(2π×3×106t)(mV)
(3)vi(t) = 10sin(2π×400t)+10sin(2π×106t)(mV)
(4)vi(t) = 10sin(2π×10t)+10sin(2π×5×104t)(mV)
(5)vi(t) = 10sin(2π×103t)+10sin(2π×107t)(mV)
3.3频率响应典型习题详解
【3-1】已知某放大器的传递函数为
试画出相应的幅频特性与相频特性渐近波特图,并指出放大器的上限频率fH,下限频率fL及中频增益AI各为多少?
【解】本题用来熟悉:(1)由传递函数画波特图的方法;(2)由波特图确定放大器频响参数的方法。
由传递函数可知,该放大器有两个极点:p1=-102rad/s,p2=-105rad/s和一个零点z=0。
【解】本题用来熟悉:由放大器的频率特性函数确定放大器的频响参数及画波特图的方法。
(1)该放大器是一个三阶重极点、无零点系统,中、低频放大倍数AvI所示。
当ω=ωH时, 求得:ωH≈0.51×107rad/s
相应的上限频率为
【3-6】一放大器的中频增益为AvI=40dB,上限频率fH=2MHz,下限频率fL=100Hz,输出不失真的动态范围为Vopp=10V,在下列各种输入信号情况下会产生什么失真?
相关文档
最新文档