正数与负数+有理数的定义+数轴 周测1

合集下载

【初中数学各章节提高卷】第一章有理数1.1正数和负数(含解析)

【初中数学各章节提高卷】第一章有理数1.1正数和负数(含解析)

第一章有理数1.1 正数和负数一、选择题1. 检测以下4个排球的质量, 其中超过标准质量的量记为正数, 不足标准质量的量记为负数, 从质量大小的角度看, 以下四个排球最接近标准的是( ).. -2. 3. -1. 2++A gB gC gD g解析本题考查的是对正负数意义的理解, 将标准质量记为0g, 则排球质量越接近0g, 该排球便越接近标准.答案C+,向后移动3米记为-3m,那么请问一个物2. 如果将一个物体向前移动3米记为3m+, 此时的物体与最开始的位置距离( ).体先运动了-5m, 后运动了3m++A mB mC mD m. -2. 2. -8. 8解析本题考查的是对正负数实际含义的理解, 本题中的物体运动轨迹应理解为先向后+这两个数据进行简运动5m,再向前运动3m,此时距离最开始的位置2m,并非对-5和3单地求和运算, 从而得出-2的结果, 也并不是对5和3这两个数据进行简单地求和运算, 从+的结果, 或者在此基础上想当然地对其进行总体方向的判断, 从而得出-8的结果.而得出8答案B3. 超市新上架了三种不同品牌的袋装饼干, 包装袋上分别标注了饼干的质量范围为g g g±±±,现从三种饼干中任取两袋饼干, 请问它们的质量最多(5003), (5006), (5009)相差( ).A gB gCD g. 6. 9. 12g . 18解析本题考查的是对正负数差值的运算, 超市上架的是三种品牌的袋装饼干, 并非三袋, 所以任取两袋质量相差最大的情况是(5009)(5009)和, 此时两袋饼干相差18g.g g+-答案D4. 下列结论中正确的是( ).A B即是正数也是负数是最小的正数. 0. 0是最大的负数既不是正数也不是负数C D. 0. 0解析本题考查的是对零、正数和负数分类的理解, 正数是大于零的数, 负数是小于零的数, 零既不大于零也不小于零, 因此, 是不同于正负数的数, 即零既不是正数也不是负数.答案 D5. 近日, 开展了一次数学章节达标检测, 满分100分, 以80分为标准成绩, 记某小组4名成员的成绩如下:-4 -6 +3 +9分、分、分、分, 他们的平均成绩为( ). . 79 . 79.5 . 80 . 80.5A B C D解析 本题考查的是正负数直接求和的运算, 将-4 -6 +3 +9、、、四个数直接求和, 得到+2的结果, 从而得到-4 -6 +3 +9、、、四个数的平均数为+0.5 , 结合+0.5的实际意义, 算出平均成绩为80.5.答案 D6. 某地一天的13: 00时, 测得温度为9 ,, 两小时过后温度降低3 ,, 五小时后温度升高1,, 六小时后温度再次降低8,, 请问第二天的2: 00时, 温度为( ).. -2 . -1 . 0 . 1A B C D ℃℃℃℃解析 本题考查的是正负数实际意义的理解, 原温度为9 ,, 后温度依次变化为-3 +1 -8、、, 所以温度整体变化为-10,, 则表示在原温度的基础上降低10,, 即为-1,.答案 B7. 某次体能测验中, 操场上正进行百米测验, 达标成绩记为18秒, 以下是某组8名同学的测验记录, 其中, 用“+ 表示用时超过18秒, 用“- 表示用时不足18秒, “0 表示用时刚好18秒, 该小组的达标率为( ).. . . . 37.5%25%62.5%50%A B C D解析 本题考查的是正负数实际意义的理解, =达标率达标人数(18秒的人数)总人数, 则表中表示为0或者负数的即为达标, 则达标共有5人, =5=62.5%达标率8.答案 C8. 下列说法错误的是( ).. 0. 0A B 是正数与负数的分界 是自然数. 0. C D 是一个确定的温度 0既不是正数也不是负数℃解析 本题考查的是零与正负数分类的理解, 正数是大于零的数, 负数是小于零的数, 故A 选项正确, 自然数是指大于或者等于零的整数, 故B 选项正确,记273.15k 为0℃ , 所以C 选项错误, D 选项显然正确.答案 C9. 某项科学研究以45分钟为1个时间单位, 并记每天上午10时为0, 10时以前记为负,10时以后记为正. 例如:9: 15记为-1 , 10: 45记为+1等等, 依此类推, 上午5: 30记为( ).. . . . +-5-6-4.30 5.30A B C D解析 本题考查的是正负数记数的运用, 5: 30离10时差4小时30分钟, 即是270分钟, 共有6个45分钟, 且5: 30在10时以前, 所以记为-6.答案 B10. 212路公交车从起点经过 A B C D 、、、四站到达终点. 现起点站有15人, 各站上、下车人数如下:(5, -9)(8, -5) (8, -3) (1, -7)A B C D 、、、 (上车为正, 下车为负, 例如(3, -2)表示上车3人, 下车2人). 车上乘客最多时有( )人.. . . . 16171819A B C D解析 本题考查的是正负数计算的理解, 根据每个站上下车的人数, 可分别计算各站人数变化为(-4)(+3) (+5) (-6)A B C D 、、、 , 当公交车到达C 站时, 其人数变化达到最大, 即为+4, 所以车上乘客最多即是到达C 站时车上乘客的人数, 此时车上有19人.答案 D 二、填空题1. 如果海平面的高度记为0米, 一潜水艇在海水下30米处航行, 则用正负数表示潜水艇的高度为 , 一条鲨鱼在潜水艇上方20米处游动, 用正负数表示鲨鱼的高度为 .解析 本题考查的是正负数记数的应用, 将海平面记为0m , 则海平面以下的高度均为负数, 根据潜水艇与海平面的距离, 可记潜水艇为-30m , 鲨鱼位于潜水艇上方20m 处, 显然仍然在海平面以下, 距离海平面10m 处, 所以用-10m 表示鲨鱼的高度.答案 -30m ; -10m2. 若把93分的成绩记为+24分, 这样记分, 当甲学生的成绩记为+9分时, 乙同学的成绩刚好比甲同学的少三分之一, 则乙同学的成绩可记为 .解析 本题考查的是正负数记数的理解, 当93分被记为+24分时, 那么69分便被记为0分, 甲同学的成绩记为+9分, 则甲同学的实际成绩为78分, 那么乙同学的成绩即是278=523分, 所以被记为-17分.答案 -17分3. 观察下面一列数: 1, -2, 3, 4, 5, -6, 7, 8, 9, -10, …根据你发现的规律, 第3032个数是 .解析 本题考查的是寻找涉及正负数和奇偶数的规律, 通过观察知道, 负数都是偶数, 但偶数并非均为负数, 并且第n 个数的数字就是n , 同时又发现将偶数的值除以2时, 若表现为奇数, 则其原来的偶数便表现为负数, 否则表现为正数, 3032除以2可得到1516, 表现为偶数, 因此第3032个数为正数, 即表现为3032.答案 30324. 下图1.1为某地的等高线示意图, 图中a , b , c 为三条等高线, 其中海拔居中的一条为50米, 等高距离为30米, 请结合相关地理知识, A 处的海拔为 米, B 处的海拔为 , C 处的海拔为 .图1.1解析 本题考查的是结合地理知识运用正负数的含义表示海拔高度, 因为海拔居中的为50米, 因此即是等高线b 上的海拔为50米, 点B 在等高线b 上, 因此B 点的海拔为50米, 根据等高线之间的距离为30米, 从而计算出海拔最低的等高线a 的海拔为20米, 同理, 海拔最高的等高线c 的海拔为80米, 其中A 点和C 点分别在a , c 两条等高线上, 因此海拔分别为20米和80米.答案 20; 50; 805. 姐姐送了小明一只智能青蛙, 将青蛙面朝南方向放在地上, 它先向前跳一下, 再向后跳两下, 又向前跳三下, 以此规律不停地跳动, 小青蛙没跳一次移动30厘米, 请问当小青蛙跳完第100次时, 此时小青蛙位于起点的 (填“正南 或“正北 )方向, 距离起点ABCc ba河流米.解析本题考查的是灵活运用正负数对题目进行简化处理, 不妨将题中小青蛙向前(南)跳动记为正, 向后(北)跳动记为负, 小青蛙跳动规律依次表现为: 1, -2, 3, -4, 5, -6, …再根据1+2+3+…+13=91<100, 1+2+3+…+14=105>100, 因此小青蛙总跳动应表现为1-2+3-4+5-…+13-9=-6+4=-2, 因此小青蛙应位于起点的正北方向60厘米处, 即是0.6米.答案正北; 0.6三、解答题1. 已知山脚的温度时26,, 每升高50米, 气温降低0.4,, 山顶的温度是-4,, 那么山的高度是多少?解析本题考查的是对正负数的运算, 山脚温度为26,, 山顶温度为-4,, 变化的温度为30,, 用30,除以0.4,, 计算出温度降低的次数为75次, 从而得到上升高度的次数也为75次, 所以总的上升高度为3750米.答案3750米±.2. 一种商品的标准价格是300元, 但随着季节的变化, 商品的价格可浮动20%(1)请你计算出该商品的最高价格和最低价格;(2)如果超过标准价格记“+ , 低于标准价格记“- , 该商品价格的浮动范围又可以怎样表示?解析本题考查的是对正负数表示浮动的计算及其实际意义的理解, 商品价格浮动的是⨯元, 因此(1)问中最高价格为360元, 最低价格为240元, 因此在第20%, 即是30020%=60±元.(2)问中考虑最高价格, 即是+60元, 最低价格即是-60元, 即表示为60±元答案(1) 360元, 240元; (2) 603. 东京、巴黎与北京的时差如下表(正数表示同一时刻比北京时间早的时数, 负数表示同一时刻比北京时间晚的时数):当北京8月13日19时, 东京和巴黎的时间分别是什么时间?解析本题考查的是对正负数实际意义的运用, 从表中可知东京时间比北京时间早4个小时, 而巴黎时间比北京时间晚10个小时, 因此东京时间为8月13日15时, 而巴黎时间为8月14日5时.答案8月13日15时; 8月14日5时4. 某螺丝工厂的车间本周计划每天生产1000套螺丝, 由于工人实行轮休, 每日上班人数不一定相等, 实际每日产量与计划产量相比情况如下表(达到计划产量记为正数, 未达到记为负数):(1)本周内每天分别生产了多少套螺丝?(2)本周是否完成周计划?解析本题考查的是对正负数实际意义的运用, 在(1)问中, 根据每天的增减数据, 依次得到下表的实际生产量:在(2)问中, 直接将每天的增减量进行求和, 即, 60+30-40+70-90+50-80=0, 因此本周实际产量的增减为0, 即是说明刚好完成周计划.答案(1)(2)本周能完成周计划.5.这一年这六国中哪些国家的服务出口额增长了, 哪些国家的服务进口额减少了, 哪国增长率最高? 哪国变化率最低?解析本题考查的是对正负数实际意义的理解, 根据表中信息, 服务进口额减少的国家有美国、英国、西班牙; 因为增长率需要考虑正负, 所以中国的增长率最高; 然而变化率仅考虑数值大小, 所以德国的变化率最低.答案美国、英国、西班牙; 中国; 德国.。

【推荐精选】2018-2019学年度七年级数学上册 第一章 有理数 1.1 正数和负数同步检测试卷(含解析)(新版)

【推荐精选】2018-2019学年度七年级数学上册 第一章 有理数 1.1 正数和负数同步检测试卷(含解析)(新版)

1.1正数和负数一、选择题(每小题3分,总计30分。

请将唯一正确答案的字母填写在表格内)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在实数﹣1,﹣2,0,﹣π中,其中负数共有( ) A .1个 B .2个 C .3个 D .4个2.在﹣4、﹣2、0、1、3、4这六个数中,正数有()A .1个B .2个C .3个D .4个3.如果向东走2m 记为+2m ,则向西走3m 可记为( ) A .+3m B .+2m C .﹣3m D .﹣2m4.某大米包装袋上标注着“净含量10kg ±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A .100gB .150gC .300gD .400g5.某种药品说明书上标明保存温度是(20±3)℃,则该药品在( )范围内保存最合适. A .17℃~20℃ B .20℃~23℃ C .17℃~23℃ D .17℃~24℃6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( ) A .+0.8B .﹣3.5C .﹣0.7D .+2.17.如果+20%表示增加20%,那么﹣8%表示( ) A .增加12% B .增加8% C .减少28% D .减少8%8.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2) 9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃ B .零下3℃ C .零上7℃ D .零下7℃ 二、 填空题(每空2分,总计20分)11.若向北走5km 记作﹣5km ,则+10km 的含义是 .12.南京市1月份的平均气温是零下5℃,用负数表示这个温度是 .13.如果水位升高2m 时,水位的变化记为+2m ,那么水位下降3m 时,水位的变化情况是 . 14.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为 千克.15.一种零件的直径尺寸在图纸上是30±(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过 mm .16.如果把“收入500元”记作+500元,那么“支出100元”记作 .17.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为 分.18.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如表:若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为 ℃.19.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是 kg .20.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书 本. 三.解答题(每题10分,总计50分)21.某地区图书馆平均每天借出图书50册,超出50册的用正数表示,不足50册的用负数表示,以下是上一周该图书馆借出图书的记录.(1)上周星期二比星期四多借出多少册?(2)上周平均每天借出图书多少册?22.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.23.已知买入股票与卖出股票均需支付成交金额的0.5%的交易费,张先生上周星期五在股市收盘价每股20元买进某公司的股票1000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:注:①涨记作“+”,跌记作“﹣”;②表中记录的数据每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.24.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?25.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中A→C(,),B→C(,),D→A(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在实数﹣1,﹣2,0,﹣π中,其中负数有﹣1,﹣2,﹣π,共有3个.故选:C.2.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.3.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.4.【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g;故选:D.5.【解答】解:20℃﹣3℃=17℃20℃+3℃=23℃所以该药品在17℃~23℃范围内保存才合适.故选:C.6.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【解答】解:如果+20%表示增加20%,那么﹣8%表示减少8%,故选:D.8.【解答】解:根据题意得:2天前的水位用算式表示为(+3)×(﹣2),故选:B.9.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.10.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.二.填空题(共10小题)11.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km12.【解答】解:若规定零上用正数表示,零下用负数表示.零下5℃可表示为:﹣5℃故答案为:﹣5℃13.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.14.【解答】解:4筐白菜的总质量为25×4+(0.25﹣1+0.5﹣0.75)=99,故答案为:9915.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0316.【解答】解:规定收入为正,支出为负.收入500元记作+500元,那么支出100元应记作﹣100元,故答案为:﹣100元.17.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.18.【解答】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为﹣10℃,故答案为:﹣10.19.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.20.【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19三.解答题(共5小题)21.【解答】解:(1)2﹣(﹣4)=6(册)答:上周星期二比星期四多借出6册;(2)50+(3+2+3﹣4+1)÷5=50+1=51(册)答:上周平均每天借出图书51册.22.【解答】解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣2+6=48,答:检修小组在A地东边,距A地48千米;(2)(15+|﹣2|+5+|﹣1|+10+|3|+|﹣2|+12+4+|﹣2|+6)×0.4=62×0.4=24.8(升),答:出发到收工检修小组耗油24.8升.23.【解答】解:(1)价格最高的是星期四;(2)该股票每股为:20+2+3﹣2.5+3﹣2=23.5元/股;(3)卖出股票应支付的交易费为:23.5×1000×0.5%=117.5元24.【解答】解:(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.25.【解答】解:(1)A→C向右3个单位,向上4个单位,所以A→C(+3,+4),同理:B→C(+2,0),D→A(﹣4,﹣2).故答案是:A→C(+3,+4),B→C(+2,0),D→A(﹣4,﹣2)(2)如图2所示.(3)甲虫走过的总路程:|+1|+|+4|+|+2|+|+1|+|﹣2|+|﹣4|+|﹣2|=16.。

『最新』人教版七年级数学上册 1.1 正数和负数 同步测试题部分含答案5份汇总

『最新』人教版七年级数学上册  1.1 正数和负数  同步测试题部分含答案5份汇总

第一章:有理数(1.1正数和负数)(无答案)一、知识点梳理1.正数和负数的定义(1)正数:大于0的数叫正数。

(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数. 注意:比0大的数是正数。

正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。

3)“0”既不是正数,也不是负数。

( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量扩充:(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。

为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。

二、强化训练(一)选择题(3*11=33)1.在0,-1,3,-0.1,0.08中,负数的个数是 ( )A.1B.2C.3D.42.如果零上3℃记作+3℃,那么零下3℃记作( )A.3 B.-6 C.-3℃ D.-6℃3. 下列关于“0”的叙述,不正确的是 ( )A.0是正数与负数的分界B.0比任何负数都大C.0只表示没有D.0常用来表示某种量的基准4.如果“盈利5%”记作+5%,那么-3%表示()A.亏损3%B.少赚3%C. 盈利7%D.亏损5%5.在下列各组量中,具有相反意义的是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米6.在跳远测试中及格的标准是4.00米,王菲跳了4.12米,记作+0.12米,何叶跳了3.95米,记作()米.A.+0.05米B.-0.05C.+3.95 D-3.957、向东行进-30米表示的意义是()A、向东行进30米B、向东行进-30米C、向西行进30米D、向西行进-30米8、先向东走3m,然后又向东走-3m,结果是()A.向东走6m B. 向西走3m C. 向西走6m D. 回到原地9、如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A. Φ45.02B. Φ44.9C. Φ44.98D. Φ45.0110、大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9-10.1)kgB.10.1kgC.9.9kgD.10kg11.下列语句中正确的有( )个.①不带“一”号的数都是正数; ②如果a是正数,那么-a一定是负数; ③不存在既不是正数,也不是负数的数; ④0℃表示没有温度.A.0B.1C.2D. 31.在同一个问题中,分别用正数与负数表示的量具有的意义。

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。

分 数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大 。

(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。

七年级上册数学要点

七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。

0既不是正数也不是负数。

2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。

整数包括正整数、0和负整数,分数包括正分数和负分数。

3. 数轴:数轴是一条直线,可以用来表示所有的有理数。

数轴上的每一个点都对应一个有理数,反之亦然。

数轴上的点有原点(表示0的点)、正方向和单位长度。

在数轴上,右边的数总比左边的数大。

4. 相反数和绝对值:只有符号不同的两个数互为相反数。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5. 倒数:乘积为1的两个数互为倒数。

0没有倒数。

6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。

射线有一个端点,可以向一侧无限延伸。

线段有两个端点,长度有限。

7. 角:角是由有公共端点的两条射线组成的图形。

这个公共端点是角的顶点,两条射线是角的两边。

角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。

有理数 超全整理

有理数  超全整理

第一章 有理数知识网络 有理数:一、概念:1.有理数的分类 2.相反数 3.有理数大小比较 4.绝对值 5.倒数二、运算:1.加减法 2.乘除法 3.乘方4.混合运算(法则) 学法导航1.有理数的概念是在是在自然数的基础上建立的,所以有理数的运算 依赖于算数的计算但是要认清有理数与算术数在特征上的不同。

有理数由两部分组成:一是数字(绝对值)部分,二是符号部分。

2.弄清绝对值、相反数、数轴这三个概念的本质和相互之间的联系,是学习有理数运算的必备条件。

分清有理数运算中的作用,不仅可以使运算简化,还可以使学生发现规律找到窍门,从而获得研究数学的乐趣。

知识技能一、有理数的相关概念有理数 正数与负数数轴 相关概念 计算科学记数法与近似数1.正数和负数的定义2.有理数的定义3.有理数的分类:(1)按整数和分数的关系分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 (2)按整数、负数、0的关系分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04.数轴的概念1) 数轴的概念:规个定了原点、正方向和单位长度的直线叫做数轴。

2) 用数轴表示数: 任意一个有理数,都可以用数轴上的一个点表示, 但数轴上的任意一点却不一定表示一个有理数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.3) 利用数轴比较有理数的大小:数轴上右边的点表示的数总大于左边的点表示的数. 5.相反数1)概念:只有符号不同的两个数叫做互为相反数.0的相反数仍是0. 2)性质:①在数轴上,表示一对相反数的点分别位于原点两侧,并且到原点的距离相等,它们关于原点对称.②互为相反数的两个数的和为0;即:若a 与b 互为相反数,则0=+b a .反之,若两数的和为0,则它们互为相反数。

0000<=>⎪⎩⎪⎨⎧-=a a a a a a 6.绝对值1)概念:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a .2)性质:①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值具有非负性,即a ≥0. 3)“两个负数,绝对值大的反而小” 类型1. 正数和负数考点分析:用正负数表示具有相反意义的量 典型例题:例1.下面各数哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?7,-9,109-,-301,274+,31.25,-3.5, +2004,211例2.(1)若将低于海平面392米的死海记作-392米,则高于海平面8848米的世界最高峰——珠穆朗玛峰应记作________米;(2)一根铁丝受热后伸长2mm ,记作+2mm ,把受热的铁丝放入冷水中收缩4mm 应记作_______mm ;(3)存入银行2000元记作+2000元,-500元表示______________;(4)图纸上一个零件的直径是03.002.030+-Φ(单位:mm).这样标注表示零件的标准尺寸是___________,实际产品的直径最大可以是___________,最小可以是___________.例3. 某粮库10日存粮食3000t ,下表是该粮库一周内进出粮食的记录(运进为正) 日期 11121314151617进出(t)+80 -22 -27 +62 -25 +50 -55(1) 根据记录,这周内该粮库哪一天运进的粮食最多?哪一天运出的粮食最多?(2)一周后(17日)该粮库共有粮食多少吨? (3) 哪一天粮库里粮食最多?例4. 观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第101个数、第2004 个数是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,______,______,______,….(2)-1,21,-3,41,-5,61,-7,81,______,______,______,…. 类型2. 有理数 考点分析: 1.有理数的分类: 2.分数与小数的互换 典型例题:例1.下列说法正确的是( ) A .一个有理数不是整数就是分数 B .正整数和负整数统称整数C .正整数、负整数、正分数、负分数统称有理数D .0不是有理数例2.把21-,+5,-6.3,0,6.9,1312-,542,-7,210,0.031,-43,-10%,填入它所属于集合的圈内:例3.试一试:比较a 与-a 的大小。

第一章 有理数 考点1 正数和负数(原卷板)

第一章 有理数   考点1 正数和负数(原卷板)

第一章有理数(原卷板)1、正数和负数知识点梳理正数和负数1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量同步练习一.选择题(共9小题)1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1B.2C.3D.42.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3%3.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时4.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kgC.9.9kg D.10kg5.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃6.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元7.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克8.如果向北走6步记作+6步,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步9.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.5二.填空题(共17小题)10.数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,﹣8,+18,则这4名同学实际成绩最高的是分.11.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.12.如果向东走3米记为+3米,那么向西走6米记作.13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.16.若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作克.17.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.18.如果收入10元记作+10元,那么﹣4元表示.19.如果风车顺时针旋转60°记作+60°,那么逆时针旋转25°记作.20.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.21.若气温为零上10℃记作+10℃,则﹣5℃表示气温为.22.如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作m.23.小明和小新在同一街道,如果小明家在学校的东面600米处记作+600米,那么小新家在学校的西面200米处,记作米.24.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为分.25.某班5名学生在一次数学测试中的成绩以120为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,﹣1,0,+6,则他们的平均成绩是分.26.如果+5℃表示比零度高5℃,那么比零度低7℃记作℃.三.解答题(共7小题)27.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?28.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车依先后次序记录如下:(单位:km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?29.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1+3﹣2+4+7﹣5﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?30.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):星期一二三四五六日增减+6﹣3﹣7+14﹣10+16﹣4(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?31.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?32.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?33.现有五袋大米,以每袋60千克为标准,超过的记为正,不足记为负,称重记录如下(单位:千克):+5.5,﹣3.5,+2.3,﹣2.5,+2.7.(1)这五袋大米最重为多少千克?(2)总重量为多少千克?。

2021年七年级数学1-1 正数和负数-检测试题一(人教版,含答案及解析)

2021年七年级数学1-1 正数和负数-检测试题一(人教版,含答案及解析)

人教版七年级数学1.1 正数和负数-检测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.在一次知识竞赛中,若用-10分表示扣10分,则加20分记为()A.+20 B.-20 C.+10 D.-102.如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是()排球甲乙丙丁球重﹣1.5﹣0.5﹣0.60.8A.甲B.乙C.丙D.丁3.如图所示为某市2020年1月7日的天气预报图,则这天的温差是()-︒D.12C︒A.12C-︒B.8C︒C.8C4.如果收入25元记作+25元,那么支出20元记作()元A.+5 B.+20 C.-5 D.-205.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.-3 B.-1 C.2 D.46.如果收入100元记作+100元,那么60-元表示()A.收入60元B.支出60元C.收入40元D.支出40元7.下列是具有相反意义的量的是()A.向东走5米和向北走5米B.身高增加2厘米和体重减少2千克C.胜1局和亏本70元D.收入50元和支出40元8.如果水位升高2 m时水位变化记作+2 m,那么水位下降2m时水位变化记作()A.-2m B.0 m C.-4 m D.+2m9.如果向东走20米记+20米,那么向西走10米记为()米.A.20 B.﹣20 C.10 D.﹣1010.《九章算术》是我国古代数学专著,里面明确给出了负数的概念和加减法的运算法则,这在世界数学-元应表示为()史上是最早的.若将卖出20元,记作+20元,则 6.8A.买入6.8元B.卖出6.8元C.买入13.2元D.卖出13.2元11.在数﹣0.35,5,0,﹣2,﹣37 中,正数的个数是( ) A .1 个 B .2 个 C .3 个 D .4 个 12.下列四个数中,属于负数的是( )A .1-B .0C .(1)--D .|2019|- 13.如果向西走3米,记作-3m ,那么向东走5米,记作( ). A .3m B .5m C .-3m D .-5m 14.四个数﹣2,2,﹣1,0中,负数的个数是( ) A .0B .1C .2D .3 15.下列各数中是负数的是( ) A .|3|-B .﹣3C .(3)--D .13二、填空题1.如果收入增加10元,记作10+,那么3-元表示______. 2.如果向东走2米记为+2米,则向西走3米可记为__________米.3.某食品厂生产的袋装食品每袋的质量标准为500g ,市质量技术监督局从中随机抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:若该种食品的合格标准为5003g g ±,则该食品抽样检测的合格率为____________.4.某药品说明书上标明药品保存的温度是(10±4)∘C ,设该药品合适的保存温度为t ∘C ,则t 的取值范围是______.5.如果把公元2019年记为+2019元,那么﹣2020年表示_____. 6.如果收入50元,记作+50元,那么支出30元记作______元.三、解答题1.某工厂一个车间工人计划一周平均每天生产零件300个,实际每天生产量与计划每天生产量相比有误差.如表是这个车间工人在某一周每天的零件生产情况,超计划生产量为正、不足计划生产量为负.(单位:个) 时间 周一 周二 周三 周四 周五 周六 周日 误差+10-15-6+12-10+18-11(1)生产零件数量最少的一天比最多的一天少生产______个零件;(2)若生产一个零件可得利润5元,则这个车间的工人在这一周为工厂一共带来了多少利润?2.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米? (2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?3.在今年的“十一”黄金周的7天长假中,某风景区每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前一天少)(1)若9月30日的游客人数为4.2万人,则10月4日的游客人数是多少万人?(2)7天中游客人数最多的一天比最少的一天多几万人?(3)如果每万人带来的经济收入约为100万元,则该风景区黄金周七天的旅游总收入约为多少元?(结果用科学记数法来表示)参考答案一、单选题1.A解析:根据正负数的意义即可得出结论.详解:解:若用-10分表示扣10分,则加20分记为+20故选A.点睛:此题考查的是正负数意义的应用,掌握正负数表示具有相反意义的量是解决此题的关键.2.B解析:由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.详解:解:通过求4个排球的绝对值得:|﹣1.5|=1.5,|﹣0.5|=0.5,|﹣0.6|=0.6,|0.8|=0.8,∵﹣0.5的绝对值最小.∴乙球是最接近标准的球.故选:B.点睛:此题考查学生对正负数及绝对值的意义掌握,解答此题首先要求出四个球标准的克数和低于标准的克数的绝对值进行比较.3.D解析:利用最高气温−减去最低气温即可.详解:解:5−(−7)=12(℃)故选D.点睛:本题主要考查的是有理数的减法,掌握有理数的减法运算法则是解题的关键.4.D解析:根据正数和负数表示相反意义的量,收入25元记作+25元,可得支出的表示方法.详解:收入25元记作+25元,那么支出20元记作-20元,故选D.点睛:本题考查了正数和负数,收入记为正,支出记为负.5.B解析:∵|-3|=3,|-1|=1,|2|=2,|4|=4,1<2<3<4,∴-1的一袋方便面最接近标准质量,故选B.点睛:本题考查了正负数大小的比较,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.6.B解析:根据正负数的意义即可求解.详解:解:如果收入100元记作+100元,那么60元表示支出60元.故选:B点睛:本题考查了正负数的意义,理解正负数是表示相反意义的量是解题关键.7.D解析:根据具在相反意义的量的概念逐一进行判断即可.详解:A.向东走5米和向北走5米,不是具有相反意义的量,故错误;B.身高增加2厘米和体重减少2千克,不是具有相反意义的量,故错误;C.胜1局和亏本70元,不是具有相反意义的量,故错误;D.收入50元和支出40元,是具有相反意义的量,故正确,故选D.点睛:本题考查了具有相反意义的量,解题的关键是明确确定一对具有相反意义的量时要注意不是同一类别的量不能看成是具有相反意义的量.8.A解析:根据题意可知正数表示升高,则负数表示下降,即可得出答案.详解:∵水位升高2m时水位变化记作+2 m,∴水位下降2m时水位变化记作-2m,故选:A.点睛:本题考查了正数和负数,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.9.D解析:试题分析:根据正数和负数表示相反意义的量,向东走记为正,可得答案.解:向东走20米记+20米,那么向西走10米记为﹣10米,故选D.考点:正数和负数.10.A解析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此解答即可. 详解:解:根据题意,卖出20元,记作+20元, 则 6.8-元应表示为买入6.8元. 故选:A . 点睛:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量 11.A解析:根据大于零的数是正数,可得答案. 详解: 正数有5; 故选A . 点睛:本题考查了正数和负数,大于零的数是正数,注意零既不是正数也不是负数. 12.A解析:根据负的概念即可判断. 详解:解:根据负数的定义-1是负数,(1)1--=是正数,|2019|=2019-是正数. 故选:A. 点睛:本题主要考查了大于0的数是正数,小于0的数是负数,本题熟记负数的概念是解题的关键. 13.B解析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 详解:∵向西走3米记作-3米, ∴向东走5米记作+5米. 故选:B . 点睛:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 14.C解析:根据负数的意义判断即可解决. 详解: ﹣2和﹣1是负数 故选:C . 点睛:本题考查了负数的概念,解决本题的关键是熟练掌握负数的意义和表现形式. 15.B解析:根据负数的定义可得B 为答案.详解:解:因为﹣3的绝对值30=>,所以A错误;因为30-<,所以B正确;因为(3)30--=>,所以C错误;因为13>,所以D错误.故选B.点睛:本题运用了负数的定义来解决问题,关键是掌握负数的定义.二、填空题1.收入减少3元解析:根据题意可以得到,收入用正,支出用负.详解:解:如果收入10元记作+10元,那么3-元表示收入减少3元,故答案为:收入减少3元.点睛:本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际含义.2.-3解析:根据正数和负数表示相反意义的量,向东走记为正,可得答案.详解:解:向东走2米可记作+2,那么向西走3米可记作-3米,故答案为-3米.点睛:本题考查了正数和负数,相反意义的量用正数和负数表示.3.80﹪解析:根据正负数的实际意义,计算出合格标准的范围,然后对比每一项判断是否合格,然后计算合格率即可.详解:解:由题意知,497≤合格标准≤503,所以标准袋数有4+3+4+5=16(袋),所以其合格率为16100%80% 20⨯=故答案为80﹪点睛:本题考查了正负数的意义,解决本题的关键是正确理解题意,确定合格标准的范围.4.6≤t≤14解析:根据正数和负数的定义即可得出答案.详解:某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.点睛:此题考查了正负数在实际生活中的应用,解题关键是理解(10±4)℃的意义. 5.公元前2020年解析:由题意公元记为正数,与之相反的公元前记为负数. 详解:解:∵公元2019年记为+2019元, ∴﹣2020年表示公元前2020年, 故答案为公元前2020年. 点睛:本题考查正负数的定义,能够根据题意,写出正负数的正确表示意义是解决本题的关键. 6.-30解析:解:如果收入50元,记作+50元,那么支出30元记作﹣30元,故答案为﹣30. 三、解答题1.(1)33;(2)一共带来了10490元的利润.解析:(1)根据正负数的意义确定星期六产量最多,星期五产量最少,然后用记录相减计算即可得解; (2)求出一周记录的和,然后根据利润总额的计算方法列式计算即可得解. 详解:(1) 生产零件数量最多的一天是周六,记录是+18,最少的一天是周二,记录是-15,则生产零件数量最少的一天比最多的一天少生产18-(-15)=33个零件,故答案为33; (2)()()()()10156121018112+-+-++-++-=-,()300722098⨯+-=(个),2098510490⨯=(元)答:一共带来了10490元的利润. 点睛:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.(1)10千米处;(2)4.8升;(3)68元解析:(1)根据有理数加法和正负数的意义即可得到答案. (2)根据绝对值的意义以及有理数的运算即可求出答案. (3)分别计算每位客人的费用再求和即可. 详解:解:(1)5+2+(﹣4)+(﹣3)+10=10(km )答:接送完第五批客人后,该驾驶员在公司的东边10千米处. (2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0. 2=4.8(升) 答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元) 答:在这个过程中该驾驶员共收到车费68元. 点睛:本题考查了正负数的意义,熟练运用正负数的意义是解题的关键.3.(1)4.9万人;(2)7天中游客人数最多的一天比最少的一天多4.3万人;(3)3.1×107元.解析:(1)根据题意和表格中的数据可以计算出10月4日的游客人数;(2)根据表格中的数据可以计算出每天的游客人数,从而可以解答本题;(3)根据题意和表格中的数据,可以解答本题.详解:(1)4.2+1.8﹣0.6+0.2﹣0.7=4.9(万人),答:10月4日的游客人数是4.9万人;(2)由表格可得,10月1日的游客人数是4.2+1.8=6(万人),10月2日的游客人数是6﹣0.6=5.4(万人),10月3日的游客人数是5.4+0.2=5.6(万人),10月4日的游客人数是5.6﹣0.7=4.9(万人),10月5日的游客人数是4.9﹣1.3=3.6(万人),10月6日的游客人数是3.6+0.5=4.1(万人),10月7日的游客人数是4.1﹣2.4=1.7(万人),则7天中游客人数最多的一天比最少的一天多:6﹣1.7=4.3(万人),答:7天中游客人数最多的一天比最少的一天多4.3万人;(3)1000000×(6+5.4+5.6+4.9+3.6+4.1+1.7)=31000000=3.1×107(元),答:该风景区黄金周七天的旅游总收入约为3.1×107元.点睛:本题考查了正数和负数、科学记数法,解题的关键是正负数在题目中的实际意义和科学记数法的表示方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周测(一)
测试内容:正数与负数、有理数的定义及分类、数轴;满分100分一、填空题(16分,每空1分)
1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.如果温度上升3℃记作+3℃,那么下降5℃记作____________.3.在下列横线上填上适当的词,使前后构成意义相反的量:
(1)收入1300元, ______ 800元; (2) ______ 80米,下降64米;
(3)向北前进30米, ______ 50米.
4.画一条水平直线,在直线上取一点表示0,叫做_________;选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.
5.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.
6.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.
二、选择题(21分,每题3分)
7.下面关于有理数的说法正确的是()
A.整数集合和分数集合合在一起就是有理数集合
B.正整数集合与负整数集合合在一起就构成整数集合
C.正数和负数统称为有理数
D.正数、负数和零统称为有理数
8.下列说法中正确的是()
A.一个有理数不是正数就是负数
B.一个有理数不是整数就是分数
C.有理数是指整数、分数、正数、负数和0
D.有理数是指正数和负数
9.下列说法正确的有()
(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数.
A.1个 B.2个 C.3个 D.4个
10.下列说法中,正确的是()
A.存在最小的有理数 B.存在最大的负有理数
C.存在最小的正有理数 D.存在最大的负整数
11.下列说法中,正确的是()
A.有最大的负数,也没有最小的正数
B.没有最大的有理数,也没有最小的有理数
C.有最大的非负数,没有最小的非负数
D.有最小的负数,没有最大正数
12.在有理数中,不存在这样的一个数a,它()
A.既是自然数又是整数 B.既是分数又是负数
C.既是非正的数又是非负的数 D.既是正数又是负数
13.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()
A.+6 B.-3 C.+3 D.-9
三、简答题(共63分)
14.(8分)甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为什么?这时甲、乙两人相距多少米?
15.(8分)测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.
(1)求这五次测量的平均值;(2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值.
16.(8分)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
17.(8分)在数轴上画出表示下列各数的点,并回答下列问题.
-3,2,-1.5,-2,0,1.5,3
(1)哪两个数的点与原点的距离相等?
(2)表示-2的点与表示3的点相差几个单位长度?
18.(10分)画出数轴并标出表示下列各数的点,用“〈”把下列各数连接起来.
-3 ,4,2.5,0,1,7,-5
19.(10分)初一(4)班在一次联欢活动中,把全班分成5个队参加游戏,最后五个队的得分如下:A 队:-50分;B 队:150分;C 队:-300分;D 队:0分;E 队:100分.
(1)把每个队的得分标在数轴上,并将代表该队的字母标上;
(2)将5个队按由低分到高分的顺序排序.
20.(11分)观察下面依次排列的一列数, 探求规律.
,,,,,,766554433221---……
(1) 写出第7个,第8个,第9个数; (2) 第2008个数是什么?。

相关文档
最新文档