高三上学期第四次月考(文)数学试题
2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题

2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足2(13)(1)i z i +=+,则||z =( ) ABCD2.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( )A.y = B.y =±C.y x = D.2y x =± 3.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x=- 4.一个正四棱锥形骨架的底边边长为2,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )A. B .4π C. D .3π5.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .36. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A.75 B.65 C.55 D.457.函数cos()cosx xf xx x+=-在[2,2]ππ-的图象大致为A.B.C.D.8.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月份C.1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元9.已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >> 10.已知集合{}10,1,0,12x A xB x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( ) A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,1 11.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .112.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥二、填空题:本题共4小题,每小题5分,共20分。
湖南师范大学附属中学2022-2023学年高三上学期月考(四)数学试题(解析版)

则由1,2,3,4,5,6组成没有重复数字的六位数种,奇数不相邻,4位于第四位共有 个,
所以由1,2,3,4,5,6组成没有重复数字的六位数中,要求奇数不相邻,且4不在第四位的个数共有 个.
故答案为:120
14.已知函数 的定义域是 ,则函数 的单调增区间为______.
【详解】对于A,连接 、 .
∵ 、 分别为 、 的中点,∴ ∥EF,
易知AB∥ ,且AB= ,∴四边形 是平行四边形,
∴ ∥ ,∴ ∥EF.
∵ ⊥ ,∴ ⊥EF,故A正确;
对于B,设点 与点 到平面 的距离分别为 、 ,
∵ ,
又 ,
∴ ,故B错误;
对于C,取 的中点 ,连接 、 、EQ、 ,
易知EF∥ ∥GQ,GQ 平面AEF,EF 平面AEF,∴GQ∥平面AEF;
A.72B.74C.76D.78
【答案】B
【解析】
【分析】根据已知条件列方程,可得 ,再由 ,结合指对数关系和对数函数的性质求解即可.
【详解】由于 ,所以 ,
依题意 ,则 ,
则 ,
由 ,
所以,即 ,
所以所需的训练迭代轮数至少为74次.
故选:B
5.已知 ,则 ()
A. B.2C.4D.12
【答案】C
【解析】
【答案】①. ②.
【解析】
【分析】求出 所过 定点,结合 始终垂直,从而得到点 的轨迹为以 为直径的圆 ,数形结合求出最值,求出 的取值范围,由双曲线的离心率为 ,当 取得最大值时,离心率最大,由点到直线距离公式得到 ,求出 ,得到离心率.
【详解】 变形为 ,故经过定点 ,
变形为 ,过经过定点 ,
湖南省长沙市雅礼中学2023届高三上学期月考数学试卷(四)参考答案

雅礼中学2023届高三月考试卷(四)一、单项选择题:1.答案C 解析A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.2.答案B 解析由等差中项的性质可得,a 3+a 6+a 8+a 11=4a 7=12,解得a 7=3,∵a 7+a 11=2a 9,∴2a 9-a 11=a 7=3.3.答案C 解析因为a >0,b >0,且a +b =2,所以a +b 2=1,所以2a +12b =12(a +b+a 2b +≥12×=94,4.答案C 解析如图,由题意,圆柱的侧面展开图是矩形,一条直角边(即圆木的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长的最小值为242+102=26(尺),即为2丈6尺.5.答案B 解析直线x +ay -a -1=0可化为(x -1)+a (y -1)=0,则当x -1=0且y -1=0,即x =1且y =1时,等式恒成立,所以直线恒过定点M (1,1),设圆的圆心为C (2,0),半径r =2,当MC ⊥AB 时,|AB |取得最小值,且最小值为2r 2-|MC |2=24-2=22,此时弦长AB 对的圆心角为π2,所以劣弧AB 的长为π2×2=π.6.答案D 解析由题意,得x =15×(20+30+40+50+60)=40,y =15×(25+27.5+29+32.5+36)=30,则k =y -0.25x =30-0.25×40=20,故A 正确;由经验回归方程可知,b ^=0.25>0,变量x ,y 呈正相关关系,故B 正确;若x 的值增加1,则y 的值约增加0.25,故C 正确;当x =52时,y ^=0.25×52+20=33,故D 不正确.7.答案A 解析设事件A 表示“有一名主任医师被选派”,事件B 表示“两名主任医师都被选派”,则“在有一名主任医师被选派的条件下,两名主任医师都被选派”的概率为P (B |A )=n (AB )n (A )=C 24C 13C 35C 24-C 34C 23=1848=38.8.答案B 解析∵c cos A +a cos C =2,由余弦定理可得c ·b 2+c 2-a 22bc +a ·a 2+b 2-c 22ab =2,整理可得b =2,又AC 边上的高为3,∴12×2×3=12ac sin B ,即ac =23sin B,∵cos B =a 2+c 2-b 22ac ≥2ac -b 22ac=1-2ac ,当且仅当a =c 时取等号,∴cos B ≥1-33sin B ,即3sin B +3cos B ≥3,即≥32,∵B ∈(0,π),∴B +π3∈B +π3∈,2π3,∴B ,π3,故∠ABC 的最大值为π3.二、多项选择题:9.答案AD 解析f (x )=2cos 2x -x 1=sin 2x +cos 2x =2sin x对于A ,由y =2sin 2x 的图象向左平移π8个单位长度,得到y =2sin 2=2sin x 故选项A 正确;对于B ,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为k π-3π8,k π+π8,k ∈Z ,所以f (x )B 不正确;对于C ,令f (x )=0,得2x +π4=k π,k ∈Z ,解得x =k π2-π8,k ∈Z ,因为x ∈[0,π],所以k =1,x =38π;k =2,x =78π,所以f (x )在[0,π]上有2个零点,故选项C 不正确;对于D ,因为x ∈-π2,0,所以2x +π4∈-3π4,π4,所以x ∈-1,22,所以f (x )∈[-2,1],所以f (x )在-π2,0上的最小值为-2,故选项D 正确.10.答案BCD 解析A 项,当M ,B 重合时,FM (即BF )与BD 是相交直线,故A 错误;B 项,由已知可得B 1F ⊥A 1C 1,又平面ABC ⊥平面CAA 1C 1,所以B 1F ⊥平面CAA 1C 1.在矩形AEFA 1中,△DEF 的面积S =12×EF ×A 1F =12×2×1=1.又B 1F =12A 1C 1=1,所以三棱锥D -MEF 的体积V M -DEF =13S ×B 1F =13×1×1=13,所以B 正确;C 项,由AA 1⊥平面A 1B 1C 1,得AA 1⊥B 1C 1,又B 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,A 1B 1,AA 1⊂平面A 1B 1BA ,所以B 1C 1⊥平面A 1B 1BA ,因为BD ⊂平面A 1B 1BA ,所以B 1C 1⊥BD ,所以C 正确;D 项,由题意可得四边形BB 1FE 为矩形,连接BF (图略),则矩形BB 1FE 外接圆的圆心为BF 的中点O 1,且O 1F =O 1B =52.过O 1作O 1N ⊥EF ,垂足为N ,连接DN ,O 1D ,则O 1N =12,DN =1,O 1N ⊥DN ,故O 1D =52,所以O 1是四棱锥D -BB 1FE 的外接球的球心,外接球的半径为R =52,则外接球的表面积为S =4π=5π,所以D 正确.11.答案AD 解析设A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +p 2,=my +p 2,2=2px ,得y 2-2pmy -p 2=0,则y 1+y 2=2pm ,y 1y 2=-p 2.对于A ,OA →·OB →=x 1x 2+y 1y 2=y 212p ·y 222p +y 1y 2=p 24-p 2=-34p 2,故A 正确;对于B ,根据抛物线的定义可知|AF |=x 1+p 2,|BF |=x 2+p 2,故|AF |·|BF |12(my 1+p )(my 2+p )=m 2y 1y 2+pm (y 1+y 2)+p 2=-m 2p 2+2p 2m 2+p 2=p 2(m 2+1)=4p 2,所以m 2+1=4,解得m =±3,所以直线l 的斜率k =1m =±33,故B 不正确;对于C ,由题意可知2+p 2=3,解得p =2,则抛物线的方程为y 2=4x ,故C 不正确;对于D ,由题意可知p =2,所以y 1+y 2=4m .易得sin ∠PMN =d r,其中d 是点P 到y 轴的距离,r 为以AB 为直径的圆的半径,且d =x 1+x 22,r =|PM |=|AB |2=x 1+x 2+22.又x 1=my 1+1,x 2=my 2+1,且y 1+y 2=4m ,所以d =2m 2+1,r =2m 2+2,所以sin ∠PMN =d r =2m 2+12m 2+2=1-12(m 2+1),当m =0时,sin ∠PMN 取得最小值12,故D 正确.12.答案ABC 解析由题意,原不等式可变形为1e x -1x ≤x a -a ln x ,即1e x -1ln e x ≤x a -ln x a ,设f (x )=x -ln x ,则当x ≥e 时,1e x f ⎛⎫ ⎪⎝⎭≤f (x a )恒成立,因为f ′(x )=1-1x =x -1x,所以函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,因为x ≥e ,a >0,所以1e x>1,x a >1,因为f (x )在(1,+∞)上单调递增,所以要使1e x f ⎛⎫ ⎪⎝⎭≤f (x a ),只需1e x ≤x a ,两边取对数,得1x ≤a ln x ,因为x ≥e ,所以a ≥1x ln x.令h (x )=x ln x (x ∈[e ,+∞)),因为h ′(x )=ln x +1>0,所以h (x )在[e ,+∞)上单调递增,所以h (x )min =h (e)=e ,所以0<1x ln x ≤1e ,则a ≥1e ,故正实数a 的最小值为1e .三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.答案23解析方法一设z 1-z 2=a +b i ,a ,b ∈R ,因为z 1+z 2=3+i ,所以2z 1=(3+a )+(1+b )i ,2z 2=(3-a )+(1-b )i.因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4,所以(3+a )2+(1+b )2=4,①(3-a )2+(1-b )2=4,②①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=2 3.方法二设复数z 1,z 2在复平面内分别对应向量OA →,OB →,则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →,且|OA →|=|AC →|=|OC →|=2,可得|BA →|=2|OA →|sin 60°=23.故|z 1-z 2|=|BA →|=23.14.答案-2解析如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形,∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=AD →+14AB →·34AB →-AD →=12AB →·AD →-AD →2+316AB →2=12×8-9+316×42=-2.15.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x-x 1),即y =1e x ·x -x 11e x +1e x,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④把③代入④有111e e x x x -+=-x 1+1,即(1-x 1)(1e x-1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.16.答案如图,设|MF 1|=m ,|MF 2|=n ,焦距为2c ,由椭圆定义可得m +n =2a ,由双曲线定义可得m -n =2a 1,解得m =a +a 1,n =a -a 1,当|F 1F 2|=4|MF 2|时,可得n =12c ,即a -a 1=12c ,可得1e 1-1e 2=12,由0<e 1<1,可得1e 1>1,可得1e 2>12,即1<e 2<2,则e 1e 2=2e 222+e 2,可设2+e 2=t (3<t <4),则2e 222+e 2=2(t -2)2t=+4t -f (t )=t +4t -4在(3,4)上单调递增,可得f (t )e 1e 2四、解答题:17.解(1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,1+2d =5,1·(a 1+d )=2(a 1+3d ),整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n ,根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2=(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.18.解(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C c ABC b =∠,∴ac BD b=,又2b ac =,∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===,∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅,∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =,∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=.19.(1)证明因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2,所以CF =1,BF =5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF 2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC ,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),E (1,1,0),F (0,2,1),BF →=(0,2,1).设B 1D =m (0≤m ≤2),则D (m ,0,2),于是DE →=(1-m ,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0).设平面DFE 的一个法向量为n 2=(x ,y ,z )·n 2=0,·n 2=0,又DE →=(1-m ,1,-2),EF →=(-1,1,1)1-m )x +y -2z =0,x +y +z =0,令x =3,得y =m +1,z =2-m ,于是平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2设平面BB 1C 1C 与平面DFE 的夹角为θ,则sin θ=1-cos 2〈n 1,n 2〉,故当m =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小,为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小.20.解(1)进行一次试验,获得0分的概率为12×13+12×23=12,获得1分的概率为12×23=13,获得2分的概率为12×13=16,进行两次试验,X 的所有可能取值为0,1,2,3,4,P (X =4)=16×16=136,P (X =3)=13×16×2=19,P (X =2)=12×16×2+13×13=518,P (X =1)=13×12×2=13,P (X =0)=12×12=14.所以分数X 的分布列为X01234P 141351819136E (X )=0×14+1×13+2×518+3×19+4×136=43.(2)①G (2)=16+13×13=518,②据题意有,G (n )=16G (n -2)+13G (n -1),其中n ≥3,设G (n )-λG (n -1)=16G (n -2)+13G (n -1)-λG (n -1)=16G (n -2)(n -1)G (n -1)-λG (n -2)]=16,解得λ=1±76,所以{G (n )-λG (n -1)}是公比为13-λ的等比数列,其中n ∈N *,n ≥2,λ=1±76.21.解(1)设y 由P (4,0),可得|AP |2+y 20=y 4016-y 20+16=116(y 20-8)2+12≥12,当y 0=±22时,|AP |取得最小值23.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),=my +t ,2=4x ,可得y 2-4my -4t =0,即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.22.解(1)f ′(x )=2x sin x -(x 2-a )cos x sin 2x,f π,所以f (x )f y =πx ,所以f =π22,即π24-a -2=π22,a =-π24-2.(2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x-2=0可转化为x 2-a -2sin x =0,设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈π2,g ′(x )>0,所以g (x )在区间π2,x h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x又g ′(0)=-2<0,g π>0,所以存在x 0g ′(x )=0且x ∈(0,x 0)时g (x )单调递减,x ∈x 0g (x )单调递增.综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减,当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点,综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点;当a ≥π2时,函数f (x )在(0,π)上没有零点.。
山东省威海市重点中学2024学年高三第四次月考(4月)数学试题数学试题

山东省威海市重点中学2024学年高三第四次月考(4月)数学试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1B .2C .3D .62.已知i 为虚数单位,则()2312ii i +=-( ) A .7455i + B .7455i - C .4755i + D .4755i - 3.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π4.已知函数()1ln11xf x x x+=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭5.已知复数,z a i a R =+∈,若||2z =,则a 的值为( ) A .1B 3C .±1D .36.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A .72种B .36种C .24种D .18种7.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( ) A .41n n S a =- B .21n n S a =+ C .21n n S a =- D .43n n S a =-8.已知复数21iz i =-,则z 的虚部为( ) A .-1 B .i -C .1D .i9.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .610.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥11.函数()2cos2cos221x xf x x =+-的图象大致是( )A .B .C .D .12.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( ) A .112V B .18VC .16VD .19V二、填空题:本题共4小题,每小题5分,共20分。
【恒心】【好卷速递】甘肃省张掖中学2012届高三上学期第四次月考 数学文

张掖中学2011-2012学年高三第四次月考数学试题(文科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合∈=y A {Z ∈=x x y ,sin R },则集合A 的子集的个数为( )A .4个B .6个C .7个D .8个 2.在等差数列{}n a 中,若74a =,则此数列的前13项之和为( )(A)104(B)52(C) 39(D)243.3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的( ) (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分又不必要条件4. 设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )(A)若m ∥α,n ∥α,则m ∥n (B)若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β (C)若α⊥β,m ⊂α,则m ⊥β (D)若α⊥β,m ⊥β,m ⊄α,则m ∥α 5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=6.函数()||2(0)f x x x x x =+<的反函数为( )(A) 1(0)y x =-< (B) 1(0)y x =+≥(C) 1(0)y x =+< (D) 1(0)y x =-≥ 7.把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( ) (A) 8π=x (B) 2π-=x (C) 4π-=x (D) 4π=x8.设→→a ,b 都是非零向量,若函数()()()f x x a b a x b →→→→=+- (x ∈R )是偶函数,则必有( ) (A) →→a ⊥b (B)a b →→(C) ||||a b →→= (D) ||||a b →→≠9.若1ln ln 1(,1),ln ,(),2x x x e a x b c e -∈===,则( )(A) a b c >> (B) b c a >>(C) b a c >> (D) c b a >>10.已知点(0,1)A 和圆224x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是( )(A) 22(3)16x y -+= (B) 22(3)16x y ++= (C) 22(3)16x y ++= (D) 22(3)16x y +-=11.在三棱锥A B C D -中,侧棱A B 、A C 、A D 两两垂直,A B C ∆、A C D ∆、AD B ∆ 的面积分别为2、22( )A .2πB.C .6πD .24π12.已知椭圆C :22221x y ab+=(a>b>02,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师大附中2019届高三月考试卷(四)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
时量120分钟。
满分150分。
第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合M ={} |x 2x <1,集合N ={} |x log 2x >1,则下列结论中成立的是(C) A .M ∩N =M B .M ∪N =N C .M ∩()∁U N =M D.()∁U M ∩N =【解析】由2x <1=20,得x <0,由log 2x >1=log 22,∴x >2,∴M ∩()∁U N ={}x |x <0∩{}x |x ≤2=M ,故答案为C.2.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,下列四个命题中正确的是(A) A .若l ⊥α,m ⊥β,且l ∥m ,则α∥β B .若m ∥n ,n α,则m ∥αC .若m α,n α,m ∥β,n ∥β,则α∥βD .若α⊥β,α∩β=m ,n β,则n ⊥α【解析】∵m 与α的位置关系不确定,∴m ∥α不一定成立,B 不成立;由于m 与n 几何位置关系不确定,∴α∥β的条件不具备,C 不成立;D 也不成立,∴选A.3.已知P (1,3)在双曲线x 2a 2-y 2b 2=1()a >0,b >0的渐近线上,则该双曲线的离心率为(A)A.10 B .2 C. 5 D. 3【解析】根据点P (1,3)在双曲线的渐近线上,所以双曲线的一条渐近线方程为y =3x ,所以有ba =3,即b =3a ,根据双曲线中a ,b ,c 的关系,可以得c =10a ,所以有e =10,故选A.4.已知f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是(B)A .f (x )=sin ⎝⎛⎭⎫2x -π6B .f (x )=sin ⎝⎛⎭⎫2x +π3C .f (x )=sin ⎝⎛⎭⎫2x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3【解析】由函数f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象可得:A =1,14T =14·2πω=π12+π6,解得ω=2,再把点⎝⎛⎭⎫π12,1代入函数的解析式可得:1=sin ⎝⎛⎭⎫2×π12+φ,即sin ⎝⎛⎭⎫π6+φ=1.再由||φ<π2可得:φ=π3,所以函数f (x )=sin ⎝⎛⎭⎫2x +π3.故应选B.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为(参考数据:sin 15°=0.258 8,sin 7.5°=0.130 5)(C)A .12B .16C .24D .48【解析】由程序框图可列表如下:n 6 12 24 S332336-32因为36-32≈3.106>3.10,所以输出n 的值为24,故选C.6.已知数列{}a n 的前n 项和为S n ,通项公式a n =log 2n +1n +2(n ∈N *),则满足不等式S n <-6的n的最小值是(D)A .62B .63C .126D .127【解析】因为S n =log 2⎝ ⎛⎭⎪⎫23×34×…×n +1n +2=log 2⎝⎛⎭⎫2n +2<-6,所以2n +2<2-6,n >126,故应选D. 7.设A 、B 、C 为圆O 上三点,且AB =3,AC =5,则AO →·BC →=(D) A .-8 B .-1 C .1 D .8【解析】取BC 的中点D ,连接AD ,OD ,因为O 为三角形ABC 外接圆的圆心,则AD →=12(AB →+AC →),OD →·BC →=0.所以AO →·BC →=(AD →+DO →)·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=8,选D.8.已知定义在R 上的奇函数f (x )满足f (x )=f (x +2),数列{}a n 的前n 项和为S n ,且S n =2a n +2,则f (a n )=(A)A .0B .0或1C .-1或0D .1或-1【解析】∵f (x )=f (x +2),所以f (x )函数周期为2,∵数列{}a n 满足S n =2a n +2,∴a 1=-2,S n -1=2a n -1+2,∴a n =2a n -2a n -1,即a n =2a n -1,∴{a n }以-2为首项,2为公比的等比数列,∴a n =-2n ,∴f (a n )=f (-2n )=f ()0=0,故选A.9.设定义域为R 的函数f (x )=⎩⎨⎧||lg ||x -2,x ≠2,0,x =2,若b <0,则关于x 的方程[f (x )]2+bf (x )=0的不同实数根共有(C)A .4个B .5个C .7个D .8个【解析】由[f (x )]2+bf (x )=0,得f (x )=0或f (x )=-b .所以方程[f (x )]2+bf (x )=0的根的个数转化为函数y =f (x )与函数y =0,y =-b (b <0)的图象的交点个数.因为函数f (x )的图象大致如图所示,数形结合可知,f (x )=0有3个实数根,f (x )=-b (b <0)有4个实数根,所以[f (x )]2+bf (x )=0共有7个不同的实数根,故答案选C.10.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分的几何体的体积为(D)A.8π3+15B.16π3+ 3C.8π3+233D.16π9+233【解析】由已知中的三视图,圆锥母线为l =(5)2+⎝⎛⎭⎫2322=22,圆锥的高h =(5)2-12=2,圆锥底面半径为r =l 2-h 2=2,截去的底面弧的圆心角为120°,故底面剩余部分为S =23πr 2+12r 2sin 120°=83π+3,故几何体的体积为:V =13Sh =13×⎝⎛⎭⎫83π+3×2=169π+233,故选D. 11.本周星期日下午1点至6点学校图书馆照常开放,甲、乙两人计划前去自习,其中甲连续自习2小时,乙连续自习3小时.假设这两人各自随机到达图书馆,则下午5点钟时甲、乙两人都在图书馆自习的概率是(B)A.19B.16C.13D.12【解析】据题意,甲、乙应分别在下午4点、3点之前到达图书馆,设甲、乙到达图书馆的时间分别为x ,y ,则⎩⎨⎧1≤x ≤4,1≤y ≤3,所对应的矩形区域的面积为6.若下午5钟点时甲、乙两人都在自习,则⎩⎨⎧3≤x ≤4,2≤y ≤3,所对应的正方形区域的面积为1,所以P =16,选B.12.设函数d (x )与函数y =log 2x 关于直线y =x 对称.已知f (x )=⎩⎨⎧d (x )-a ,x <1,4(x 2-3ax +2a 2),x ≥1,若函数f (x )恰有2个不同的零点,则实数a 的取值范围是(A)A.⎣⎡⎭⎫12,1∪[2,+∞)B.⎣⎡⎭⎫14,1∪⎣⎡⎭⎫32,+∞ C.⎣⎡⎭⎫14,+∞ D.⎝⎛⎦⎤-∞,32 【解析】因为函数d (x )与函数y =log 2x 关于直线y =x 对称,所以d (x )=2x ;设g (x )=4(x -a )(x -2a ),x ≥1,h (x )=2x -a ,x <1,因为f (x )恰有2个不同的零点,又因为h (x )至多有一个零点,故:①若g (x )有两个零点,h (x )没有零点,则⎩⎨⎧a ≥1,h (1)=2-a ≤0,得a ≥2②若g (x )和h (x )各有1个零点,则⎩⎪⎨⎪⎧a <1,2a ≥1且⎩⎨⎧-a <0,h (1)=2-a >0,得12≤a <1.综上,a ∈⎣⎡⎭⎫12,1∪[2,+∞).故答案选A.选择题答题卡题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CAABCDDACDBA本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.已知圆C 1:(x -a )2+y 2=1与圆C 2:x 2+y 2-6x +5=0外切,则a 的值为__0或6__. 【解析】圆C 1:(x -a )2+y 2=1的圆心为()a ,0,半径为1,圆C 2:x 2+y 2-6x +5=0的圆心为()3,0,半径为2,两圆外切,所以||a -3=3,∴a =0,6,故a 的值为0或6.14.如果复数z 满足关系式z +||z -=2+i ,那么z 等于__34+i__. 【解析】设z =a +b i(a ,b ∈R ),则z -=a -b i ,||z -=a 2+b 2,所以a +b i +a 2+b 2=2+i , 所以得:⎩⎨⎧a +a 2+b 2=2,b =1,解得:⎩⎪⎨⎪⎧a =34,b =1所以z =34+i.15.已知2a =5b =10,则a +bab=__1__.【解析】由已知,a =log 210=1lg 2,b =log 510=1lg 5.所以a +b ab =1a +1b =lg 2+lg 5=lg 10=1.16.已知定义在R 上的函数f (x )满足:对任意实数a 、b 都有f (a +b )=f (a )+f (b )-1,且当x >0时f (x )>1.若f (4)=5,则不等式f (3x 2-x -2)<3的解集为__⎝⎛⎭⎫-1,43__. 【解析】设x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>1.所以f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)-1>0,即f (x 1)>f (x 2),所以f (x )是增函数.因为f (4)=5,即f (2)+f (2)-1=5,所以f (2)=3.所以原不等式化为f (3x 2-x -2)<f (2)3x 2-x -2<23x 2-x -4<0-1<x <43.故不等式的解集是⎝⎛⎭⎫-1,43. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知函数f (x )=a sin x +b cos x ,a ≠0,x ∈R ,f (x )的最大值是2,且在x =π6处的切线与直线x -y=0平行.(1)求a 、b 的值;(2)先将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,已知g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2,求cos 2α的值.【解析】(1)f ′(x )=a cos x -b sin x ,1分由已知有:⎩⎪⎨⎪⎧a 2+b 2=2a cos π6-b sin π6=1,解之得:⎩⎨⎧a =3,b =1.4分 (2)由(1)有f (x )=3sin x +cos x =2sin ⎝⎛⎭⎫x +π6,6分因为将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,则g (x )=2sin ⎝⎛⎭⎫2x -π6,8分由g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2得sin ⎝⎛⎭⎫2α+π3=513,且2α+π3∈⎝⎛⎭⎫2π3,π,则cos ⎝⎛⎭⎫2α+π3=-1213,10分cos 2α=cos ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=cos ⎝⎛⎭⎫2α+π3cos π3+sin ⎝⎛⎭⎫2α+π3sin π3=-1213·12+513·32=53-1226.12分18.(本题满分12分)如图,已知三棱柱ABC -A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别是A ′B 和B ′C ′的中点。
2024-2025学年上海杨浦高级高三上学期数学月考试卷及答案(2024.09)

1杨浦高中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.不等式211x −>的解集是________.2.已知集合102x P x x ⎧⎫+=≤⎨⎬−⎩⎭,(,)Q a =+∞,若P Q ⊂,则实数a 的取值范围是________.3.若平面向量(3,4)a =,2b =,6a b ⋅=−,则向量a b 、的夹角为________.4.在(2)n x +的展开式中(其中n 是正整数),各项的系数和为729,则4x 项的系数 为________.5.已知函数()y f x =是奇函数,当0x >时,()32x f x e x =+−,当0x <时,()f x =________.6.已知2z i =+(i 是虚数单位)是实系数一元二次方程240x x m −+=的一个根,Im()m z ⋅=________.7.等差数列{}n a 的首项13a =,公差为d ,若34a =,则111n n d a +∞−=⎛⎫= ⎪⎝⎭∑________.8.已知a βγ、、是不同的平面,l m n 、、是不同的直线,下列命题中:(1)若,,,l m l α⊥βαβ=⊥则m ⊥β;(2)若//,,,m n αβ⊂α⊂β则//m n ;(3)若,,//,l m l m ⊥αβγ=则β⊥α且γ⊥α;(4)若,,,l α⊥βγ⊥βαγ=则l ⊥β,所有真命题的序号是________.9.已知(,6)P m 是第二象限角α终边上的一个点,且24tan 27α=−,将OP 绕原点O 顺时针旋转4π至OP ',则点P '的坐标为________.210.如图,沿东西方向相距4海里的两个小岛A 、B ,岛上安装了信号接收塔.舰艇P 沿着某种确定的圆锥曲线轨迹航行,A 、B 是曲线的焦点.当P 在小岛B 正北方向1P 处时,测得距小岛B 3海里.当舰艇航行至小岛B 西偏南60︒的2P 处时,测得距小岛B 1.5海里.在以线段AB 中点为圆心、1海里为半径的圆形海域内布满暗礁(不包含边界),舰艇P 在航行的过程中,会放下巡逻船Q ,巡逻船在以PB 为直径的圆域内全面巡逻,舰长认为不会有触礁的风险,理由是________.11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个.二、选择题(本题共有4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.函数()sin cos 33x xf x =+的最小正周期是( ) A .6πB .3πC .32πD .32π 14.下列函数在区间(0,)+∞上为严格减函数的是( ) A .cos y x =B .2x y =C .2y x −=D .21y x =−15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2B.C .3D.316.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F ,则2PQ QF +的最小值为( ) A .6B.2+C.D.4+三、解答题(本大题满分78分)本大题共5题.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知等差数列{}n a 的公差0d >,前n 项和为n S ,且365a a =−,816S =−. (1)求数列{}n a 的通项公式;(2)若(),21,12,2n n na n kb k N k n k =−⎧=∈≥⎨=⎩,求数列{}n b 的前2n 项和2n T .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 对于函数()y f x =,若其定义域内存在实数x 满足()()f x f x −=−,则称()y f x =为“准奇函数”. (1)已知函数()31x f x x −=+,试问()y f x =是否为“准奇函数”?说明理由; (2)若()3x g x m =+为定义在[]1,1−上的“准奇函数”,试求实数m 的取值范围.419.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,在圆锥PO 中,AC 为圆锥底面的直径,B 为底面圆周上一点,点D 在线段BC 上,26AC AB ==,2CD DB =. (1)证明:AD ⊥平面BOP ;(2)若圆锥PO 的侧面积为18π,求二面角 O BP A −−的余弦值.20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知函数()22x x af x =+,其中a 为实常数. (1)若()07f =,解关于x 的方程()5f x =; (2)讨论函数()y f x =的奇偶性;(3)当1a =时,用定义证明函数()y f x =在[0,)+∞上是严格增函数,并解不等式()(2)1f x f x >+.521.(本题满分18分)本题共有2个小题,第1小题满分4分,第2小题(i )问满分6分,(ii )问满分8分.中国古典园林洞门、洞窗具有增添园林意境,丰富园林文化内涵的作用.门、窗装饰图案成为园林建筑中最有文化价值以及文化内涵的装饰.如图1所示的一种椭圆洞窗,由椭圆1C 和圆2C 组成,1F 、2F 是椭圆的两个焦点,圆2C 以线段12F F 为直径. (1)设计如图所示的洞窗,椭圆1C 的离心率应满足怎样的范围? (2)经测量椭圆的长轴为4分米,焦距为2分米.(i )从1F 射出的任意一束光线1F A 照在左侧距椭圆中心4分米的竖直墙壁上,如图2所示.建模小组的同学用长绳拉出椭圆洞窗的切线AB ,B 为切点,然后用量角器探究猜测1AF B 是定值,请帮他们证明上述猜想;(ii )建模小组的同学想设计一个如图3的四边形装饰,满足:点P 是1C 上的一个动点,P 、Q 关于原点对称,过P 和Q 分别做圆的切线,交于R 、S ,求四边形装饰PRQS 面积S 的取值范围.图1 图2 图36参考答案一.填空题 1.(,0)(1,)−∞+∞ 2.1a <− 3.3arccos 5π− 4.60 5.32x e x −−++ 6.5−7.348.(3)、(4)9.( 10.无论P 在何处,以PB 为直径的圆均与布满暗礁的圆外切 11.2 12.69 11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 【答案】2【详解】由题意知()211124c c c c +−⎛⎫−≤= ⎪⎝⎭,当12c =时取等号, 故()()2124419119119122228a b a b ab bc c ab b ab b a b a b a b +⎛⎫⎛⎫+≥+=+=+=+=++ ⎪ ⎪−⎝⎭⎝⎭1911010288b a a b ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当33b a ==时取等号, 综上,当11,3,2a b c ===时,()211ab bc c +−的最小值为2. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个. 【答案】69【详解】设x 是数列{}n a 中的任意一项,则x d +,2x d +均是数列{}n a 中的项, 由已知m n k a a a =,设12(),(2)k k a x x d a x x d =+=+,则由等差数列定义得()2121k k a a xd k k d −==−⋅.因为0d ≠,所以21x k k Z =−∈, 即数列{}n a 的每一项均是整数,所以数列{}n a 的每一项均是自然数,且d 是正整数.7由题意,设38k a =,则138k a d +=+是数列{}n a 中的项, 所以38(38)d ⋅+是数列{}n a 中的项.设38(38)m a d =⋅+,则38(38)38383738()m k a a d d m k d −=⋅+−=⨯+=−⋅, 即(38)3837m k d −−⋅=⨯.因为*38,m k Z d N −−∈∈,故d 是3837⨯的约数. 所以1,2,19,37,219,237,1937,3837d =⨯⨯⨯⨯,.当1d =时,138(1)0a k =−−≥,得1,2,,38,39k =⋯,故138,37,,2,1,0a =⋯,共39种可能;当2d =时,1382(1)0a k =−−≥,得1,2,,18,19,20k =⋯,故138,36,34,,4,2,0a =⋯,共20种可能;当19d =时,13819(1)0a k =−⨯−≥,得1,2,3k =,故138,19,0a =,共3种可能; 当37d =时,13837(1)0a k =−−≥,得1,2k =,故138,1a =,共2种可能; 当38d =时,13838(1)0a k =−⨯−≥,得1,2k =,故138,0a =,共2种可能; 当237d =⨯时,138237(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当1937d =⨯时,1381937(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当3837d =⨯时,1383837(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能. 综上,满足题意的数列{}n a 共有392032211169+++++++=(种). 经检验,这些数列均符合题意. 二、选择题13.A 14.C 15.C 16.C15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在8三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2 B.C .3D.【答案】C【详解】以D 为坐标原点,1,,DA DC DD 为,,x y z 轴,可建立如图所示的空间直角坐标系,则()13,0,3A ,()3,3,0B ,()0,0,0D ,()3,0,0A ,()3,1,0E , ()3,3,0DB ∴=,()13,0,3DA =,()10,0,3AA =,设A 关于平面1A BD 的对称点为(),,A x y z ',则()13,,3A A x y z '=−−−,()3,,AA x y z '=−,设平面1A BD 的法向量(),,n a b c =,则1330330DB n a b DA n a c ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1a =,解得:1b =−,1c =−,()1,1,1n ∴=−−,A ∴与A '到平面1A BD 的距离1133AA n A A n x y d nn'⋅⋅−++====,又AA //n ',3x y z ∴−=−=−,1x ∴=,2y =,2z =,()1,2,2A '∴,3PA PE PA PE A E ''∴+=+≥==(当且仅当,,A P E '三点共线时取等号),即PA PE +的最小值为3.16.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F,则2PQ QF +的最小值为( ) A.6 B .2+C .D .4+【答案】C9【详解】由抛物线2:4C y x =,可得焦点坐标为(1,0)F ,又由圆2210210x y x +−+=, 可化为22(5)4x y −+=,可得圆心坐标为(5,0)E ,半径2r =, 设定点(,0)M t ,满足12QF QM =成立,且00(,)Q x y即=2200(5)4x y −+=,代入两边平方可得: 20(4)16t x t −=−,解得4,(4,0)t M =,所以定点M 满足12QF QM =恒成立, 可得22(|)PQ QF PQ QM +=+,如图所示, 当且仅当1,,M P Q 在一条直线上时, 此时PQ QM +取得最小值||PM , 即22(|)2PQ QF PQ QM PM +=+≥,设(,)P x y ,满足24y x =,所以22PQ QF PM +≥=,2PQ QF +≥2x =时,等号成立。
云南省玉溪第一中学2022届高三数学上学期第四次月考试题 文(含解析)

云南省玉溪第一中学2022届高三数学上学期第四次月考试题文(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合A={x |≤0},B={x|0<x<4},则A∪B=()A.{x|﹣1≤x<4} B.{x|0<x≤3} C.{x|0<x<3} D.{x|﹣1<x<4}2.设z =+i,则|z|=()A .B .C .D.23.已知命题p:对任意x∈R,总有2x>x2;q:“ab>1“是“a>1,b>1”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q4.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72 C.80 D.112 5.如果执行如图所示的框图,输入N=5,则输出的S等于()A .B .C .D .6.△ABC中,∠BAC=135°,,AC=1,D是BC边上的一点(包括端点),则的取值范围是()A.[﹣3,0] B .C.[0,2] D.[﹣3,2]7.定义在R上的偶函数f(x)满足f(x)=f(x+2),且在[﹣1,0]上单调递减,设a=f (),b=f (2),c=f(3),则a,b,c的大小关系是()A.b<c<a B.a<b<c C.b<a<c D.a<c<b8.已知正方形ABCD的对角线AC与BD相交于E点,将△ACD沿对角线折起,使得平面ABC⊥平面ADC(如图),则下列命题中正确的是()A.直线AB⊥直线CD,且直线AC⊥直线BDB.直线AB⊥平面BCD,且直线AC⊥平面BDEC.平面ABC⊥平面BDE,且平面ACD⊥BDED.平面ABD⊥平面BCD,且平面ACD⊥平面BDE9.如图,用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为()A .B .C .D .10.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件11.已知函数f(x)=a sin x ﹣cos x的一条对称轴为x =﹣,且f(x1)•f(x2)=﹣4,则|x1+x2|的最小值为()A .B .C .D .12.设等差数列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最大值是()A.310 B.212 C.180 D.121二、填空题:本题共4小题,每题5分,共20分.13.若直线ax﹣by﹣3=0(a>0,b>0)过点(1,﹣1),则+的最小值为.14.向量=(﹣1,1),=(1,0),若(﹣)⊥(2+λ),则λ=.15.在等差数列{a n}中,若a10=0,则有等式:a1+a2+…+a n=a1+a2+…+a19﹣n(n<19)成立,类比上述性质,相应地,在等比数列{b n}中,若b9=1,则有等式成立.16.已知在△ABC中,D为边AC上一点,AB=AD=4,AC=6,若△ABC的外心恰在线段BD上,则BC=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.第17-21题为必考题,每个试题考生都必须作答.17.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.18.在等差数列{a n}中,a1=1,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,且b2+S3=11,S6=9b3.(1)求数列{a n}和{b n}的通项公式;(2)设c n=,求数列{c n}的前n项和T n.19.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC =6,AD=8,BC=10,PD=9,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B﹣PCF的体积;若不存在,请说明理由.20.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,则求出定值;若不是,请说明理由.21.已知函数f(x)=lnx﹣x+1.(1)证明f(x)≤0恒成立;(3)证明:(二)选考题:共10分.请考生在第22、23题中任选一题作答.作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),圆C的参数方程为(α为参数).(Ⅰ)若直线l与圆C的相交弦长不小于,求实数m的取值范围;(Ⅱ)若点A的坐标为(2,0),动点P在圆C上,试求线段PA的中点Q的轨迹方程..[选修4-5:不等式选讲]23.(1)求f(x)=+的最大值;(2)设a,b,c>0,且ab+bc+ca=1,求证:.2022云南省玉溪一中高三(上)第四次月考数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合A={x |≤0},B={x|0<x<4},则A∪B=()A.{x|﹣1≤x<4} B.{x|0<x≤3} C.{x|0<x<3} D.{x|﹣1<x<4}【解答】解:A={x|﹣1≤x<3},B={x|0<x<4},∴A∪B={x|﹣1≤x<4}.故选:A.2.设z =+i,则|z|=()A .B .C .D.2【解答】解:z =+i =+i =.故|z|==.故选:B.3.已知命题p:对任意x∈R,总有2x>x2;q:“ab>1“是“a>1,b>1”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【解答】解:命题p:对任意x∈R,总有2x>x2;是假命题,例如取x=2时,2x与x2相等.q:由“a>1,b>1”⇒:“ab>1”;反之不成立,例如取a=10,b =.∴“ab>1“是“a>1,b>1”的必要不充分条件,是假命题.∴下列命题为真命题的是¬p∧(¬q),故选:D.4.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72 C.80 D.112【解答】解:由三视图可知该几何体为上部是一四棱锥,下部为正方体的组合体.四棱锥的高h1=3,正方体棱长为4V正方体=Sh2=42×4=64,V四棱锥=Sh1==16,所以V=64+16=80.故选:C.5.如果执行如图所示的框图,输入N=5,则输出的S等于()A .B .C .D .【解答】解:n=5时,k=1,S=0,第一次运行:S=0+=,k=1<5,第二次运行:k=1+1=2,S ==,k=2<5,第三次运行:k=2+1=3,=,k=3<5,第四次运行:k=3+1=4,S ==,k=4<5,第五次运行:k=4+1=5,S ==,k=5,结束运行,输出S =.故选:D.6.△ABC中,∠BAC=135°,,AC=1,D是BC边上的一点(包括端点),则的取值范围是()A.[﹣3,0] B .C.[0,2] D.[﹣3,2]【解答】解:∵D是BC上的一点,(包括端点),∴设=,(0≤λ≤1),∵∠BAC=135°,,AC=1,D是BC边上的一点(包括端点),∴==﹣1,∴=[]•()=(2λ﹣1)﹣+(1﹣λ)=(2λ﹣1)﹣+(1﹣λ)=﹣(2λ﹣1)﹣2λ+(1﹣λ)=﹣5λ+2,∵0≤λ≤1,∴﹣5λ+2∈[﹣3,2],∴的取值范围是[﹣3,2].故选:D.7.定义在R上的偶函数f(x)满足f(x)=f(x+2),且在[﹣1,0]上单调递减,设a=f (),b=f (2),c=f(3),则a,b,c的大小关系是()A.b<c<a B.a<b<c C.b<a<c D.a<c<b【解答】解:∵偶函数f(x)满足f(x)=f(x+2),故周期T=2,∵在[﹣1,0]上单调递减,根据偶函数的对称性可知在[0,1]上单调递增,距对称轴越远,函数值越大,∵a=f ()=f (),=f(2﹣),b=f(2)=f(0),c=f(3)=f(1),则b<a<c.故选:C.8.已知正方形ABCD的对角线AC与BD相交于E点,将△ACD沿对角线折起,使得平面ABC⊥平面ADC(如图),则下列命题中正确的是()A.直线AB⊥直线CD,且直线AC⊥直线BDB.直线AB⊥平面BCD,且直线AC⊥平面BDEC.平面ABC⊥平面BDE,且平面ACD⊥BDED.平面ABD⊥平面BCD,且平面ACD⊥平面BDE【解答】解:由题意知DC⊥BE,AB∩BE=E,∴直线AB⊥直线CD不成立,故A错误;∵AC⊥AB,∴AB与BC不垂直,∴直线AB⊥平面BCD不成立,故B错误;∵BE⊥DE,BE⊥AC,∴AC⊥平面BDE,∴平面ABC⊥平面BDE,且平面ACD⊥平面BDE,故C正确;∵平面ABD⊥平面BCD不成立,故D错误.故选:C.9.如图,用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为()A .B .C .D .【解答】解:设圆柱底面圆的方程为x2+y2=R2,∵与底面成45°角的平面截圆柱,∴椭圆的半长轴长是R,半短轴长是R,∴c=R,∴e ===.故选:A.10.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【解答】解:根据题意,该生产x 件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.11.已知函数f(x)=a sin x ﹣cos x的一条对称轴为x =﹣,且f(x1)•f(x2)=﹣4,则|x1+x2|的最小值为()A .B .C .D .【解答】解:f(x)=a sin x ﹣cos x=,由于函数的对称轴为:x =﹣,所以,则:,解得:a=1.所以:f(x)=2sin(x ﹣),由于:f(x1)•f(x2)=﹣4,所以函数必须取得最大值和最小值,所以:或所以:|x1+x2|=4k,当k=0时,最小值为.故选:C.12.设等差数列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最大值是()A.310 B.212 C.180 D.121【解答】解:设等差数列{a n}的公差为d,a1=1,a n>0(n∈N*),∴a n=1+(n﹣1)d,S n =.∴=1,=,=,∵数列{}也为等差数列,∴2=+,∴=1+,化为(d﹣2)2=0,解得d=2.∴a n=2n﹣1,S n=n2.∴==,∵数列单调递减,∴的最大值是=121.故选:D.二、填空题:本题共4小题,每题5分,共20分.13.若直线ax﹣by﹣3=0(a>0,b>0)过点(1,﹣1),则+的最小值为.【解答】解:∵ax﹣by﹣3=0(a>0,b>0)过点(1,﹣1),∴a+b=3,则+=(+)(a+b)==.故答案为:14.向量=(﹣1,1),=(1,0),若(﹣)⊥(2+λ),则λ= 3 .【解答】解:向量=(﹣1,1),=(1,0),∴=2,=1,=﹣1;又(﹣)⊥(2+λ),∴(﹣)•(2+λ)=2+(λ﹣2)•﹣λ=0,即2×2+(λ﹣2)•(﹣1)﹣λ•1=0,解得λ=3.故答案为:3.15.在等差数列{a n}中,若a 10=0,则有等式:a1+a2+…+a n=a1+a2+…+a19﹣n(n<19)成立,类比上述性质,相应地,在等比数列{b n}中,若b9=1,则有等式b1•b2•…•b n=b1•b2•…•b17﹣n(n<17)成立.【解答】解:在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19﹣n(n<19,n∈N+)成立,故相应的在等比数列{b n}中,若b9=1,则有等式b1•b2•…•b n=b1•b2•…•b17﹣n(n<17)故答案为b1•b2•…•b n=b1•b2•…•b17﹣n(n<17)16.已知在△ABC中,D为边AC上一点,AB=AD=4,AC=6,若△ABC的外心恰在线段BD上,则BC=2.【解答】解:∵外心为三角形三边垂直平分线的交点,△ABC的外心恰在线段BD上,∴作线段AC的垂直平分线,交BD于点O,即为△ABC外心,∴OA=OB=OC,取AB的中点E,连接OE,则有OE⊥AB,可得∠BEO=∠OFD=90°,∵AB=AD,∴∠ABD=∠ADB,∴△BEO∽△DFO,∵AC=6,∴AF=3,∴DF=AD﹣AF=1,∵BE=2,∴==2,设OD=a,则有OB=OA=2a,OF2=OD2﹣FD2=a2﹣1,由AO2=AF2+OF2,得到4a2=9+a2﹣1,即a2=,由余弦定理得:cos A====,∴BC2=AB2+AC2﹣2AB•AC cos A=16+36﹣2×4×6×=40,则BC=2.故答案为:2三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.第17-21题为必考题,每个试题考生都必须作答.17.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.18.在等差数列{a n}中,a1=1,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,且b2+S3=11,S6=9b3.(1)求数列{a n}和{b n}的通项公式;(2)设c n =,求数列{c n}的前n项和T n.【解答】解:(1)设等差数列{a n}公差为d,等比数列{b n}的公比为q,则,解得d=2,q=2,所以a n=2n﹣1,b n=2n﹣1;(2)c n=(2n﹣1)()n﹣1.∴数列{c n}的前n项和T n=1×()0+3×()1+5×()2+…+(2n﹣1)•()n﹣1,T n=1×()1+3×()2+5×()3+…+(2n﹣1)•()n,∴T n =+2×()1+2×()2+2×()3+…+2×()n﹣1﹣(2n﹣1)•()n=1+2(1﹣()n﹣1)﹣(2n﹣1)•()n=3﹣(2n+3)×()n∴T n=6﹣(2n+3)•()n+119.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B﹣PCF的体积;若不存在,请说明理由.【解答】(1)证明:取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN ==,∴AB=12,而E,M分别为PA,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,则四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC;(2)解:由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系D﹣xyz,则D(0,0,0),B(8,12,0),C(0,6,0),假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则=(8,t﹣6,0),=(8,12,0),由,得64+12(t﹣6)=12t﹣8=0,得t =,即AF =,则BF=12﹣=,又PD=9,∴=136.20.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,则求出定值;若不是,请说明理由.【解答】解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.②若直线l1斜率存在,设直线l1为y=k(x﹣1),即kx﹣y﹣k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即解之得.所求直线方程是x=1,3x﹣4y﹣3=0.(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx﹣y﹣k=0由得;又直线CM与l1垂直,得.∴AM•AN =为定值.21.已知函数f(x)=lnx﹣x+1.(1)证明f(x)≤0恒成立;(3)证明:【解答】解:(1)f(x)=lnx﹣x+1,f'(x )=,(x>0),当x∈(0,1),f'(x)>0,f(x)递增;当x∈(1,+∞),f'(x)<0,f(x)递减,故f(x)min=f(1)=0,所以f(x)≤0恒成立;(2)由(1)知,lnx≤x﹣1,x=1时取等号,n>1,则lnn<n﹣1=,故=,所以<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知直线l 的参数方程为(t为参数),圆C 的参数方程为(α为参数).(Ⅰ)若直线l与圆C 的相交弦长不小于,求实数m的取值范围;(Ⅱ)若点A的坐标为(2,0),动点P在圆C上,试求线段PA的中点Q的轨迹方程..【解答】解:(Ⅰ)直线l 的参数方程为(t为参数),普通方程为y=mx,圆C 的参数方程为(a为参数),普通方程为x2+(y﹣1)2=1.圆心到直线l的距离d =,相交弦长=2,∴2≥,∴m≤﹣1或m≥1;(Ⅱ)设P(cosα,1+sinα),Q(x,y),则x =(cosα+2),y =(1+sinα),消去α,整理可得线段PA的中点Q的轨迹方程(x﹣1)2+(y ﹣)2=.[选修4-5:不等式选讲]23.(1)求f(x )=+的最大值;(2)设a,b,c>0,且ab+bc+ca=1,求证:.【解答】解:(1)由题意知:定义域为[0,4],由基本不等式,得=,当且仅当,即x=2,取等号;(2)因为ab+bc+ca=1,a,b,c>0,2(a+b+c)2=a2+b2+b2+c2+a2+4ab+4ac+4bc≥6(ab+bc+ac)=6,当且仅当a=b=c,取等号,故.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三年级第四次月考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集{}{}{}1,2,3,4,5,6,7,8,3,4,5,1,3,6U A B ===,则集合{}1,2,4,5,6,7,8是( )A .AB B .A BC .C A C B ⋃⋃D .C A C B ⋃⋃2.若直线l 沿x 轴向左平移3个单位,再沿y 轴向上平移1个单位后,回到原来位置,则直线l 的斜率为( )A .13B .13- C .3- D .33. A B C 、、表示不同的点,a l 、表示不同的直线,αβ、表示不同的平面,下列推理不正确的是( )D .,,,,,,,A B C A B C A B C αβαβ∈∈⇒且不共线与重合4.一个水平放置的三角形的斜二侧直观图是等腰直角三角形A B O ''',若1O B ''=,那么原ABO ∆的面积是( )A .12 B .22 C .2 D .225.设,(,0)a b ∈-∞,则“a b >”是“11a b a b ->-”成立的( )A .充要条件B .必要非充分条件C .充分非必要条件D .既不充分也不必要条件6.直线sin 20x y α++=的倾斜角的取值范围是( )A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ B .0,(,)42πππ⎡⎤⋃⎢⎥⎣⎦ C .[)0,π D .0,4π⎡⎤⎢⎥⎣⎦7.已知圆22:1C x y +=,点(2,0)A -和点(2,)B a ,从A 点观察B 点,要使视线不被圆C 挡住,则实数a 的取值范围是( )A .(,4)(4,)-∞-+∞B .2323(,+33-∞-∞)(,)C .(,1)(1,)-∞-+∞D .4343(,)(,)33-∞-+∞8.某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x 的值是( )A .2B .92 C .32 D .39.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支10.( )A .B .C .D .11.设m R ∈,过定点A 的动直线0x my m ++=和过定点B 的动直线20mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A .5,25⎡⎤⎣⎦B .10,25⎡⎤⎣⎦C .10,45⎡⎤⎣⎦D .25,45⎡⎤⎣⎦12.已知A B C 、、是球O 的球面上三个动点,球的半径为6,O 为球心,若A B C 、、、O 不共面,则三棱锥O ABC -的体积取值范围为( )A .(]0,12B .(]0,24C .(]0,36D .(]0,48二、填空题:本大题 共4小题,每小题5分,共20分.13.设n S 是数列{}n a 是前n 项和,且1111,n n n a a S S ++=-=,则n S =_______.14.已知直线330ax y ++=和直线(2)10x a y +-+=垂直,则a 的值为________.15.已知过点(1,4)P 的直线l 在两坐标轴上截距均为正值,当两截距之和最小时,求直线l 的方程为________.16.如图①,已知ABCD 为平行四边形,060,2,6A AF FB AB ∠===,点E 在CD 上,//EF BC ,BD AD ⊥,BD 交EF 于点N ,现将四边形ADEF 沿EF 折起,使点D 在平面BCEF 上的射影恰在直线BC 上(如图②),则折后直线DN 与直线BF 所成角的余弦值为________.三、解答题 :本大题共6小题,共70分.17.(本小题满分10分)ABC ∆在内角A B C 、、所对的边分别为,,a b c ;向量(cos ,)m A a =与(sin ,3)n B b =平行.(1)求A ;(2)若7,2a b ==求ABC ∆的面积.18.(本小题满分12分)四棱柱1111ABCD A B C D -的三视图如下,(1)求证:11D C AC ⊥;(2)面1ADC 与1BB 交于点M ,求证:1MB MB =.19.(本小题满分12分)已知圆C 过点(2,0),(0,2)A B -,且圆心C 在直线y x =上,又直线:1l y kx =+与圆C 交于P Q 、两点.(1)求圆C 的方程;(2)若2CP CQ =-,求实数k 的值;(2)若2CP CQ =-,求实数k 的值.20.(本小题满分12分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在面互相垂直,//,,22,AB CD AB BC AB CD BC EA EB ⊥==⊥,(1)在AE 上是否存在一点F ,使得直线//DF 面BCE ,若存在求请给出点F 的位置;(2)点G 是三角形ABE 的重心,2CD =,试求三棱锥E ADG -的体积.21.(本小题满分12分)ABC ∆中(3,1)A -,AB 边上的中线CM 所在直线方程为610590x y +-=,B ∠的平分线方程BT 为4100x y -+=.(1)求顶点B 的坐标;(2)求直线BC 的方程.22.(本小题满分12分)已知函数1()(2)ln ,()2f x a x g x ax x =-+=,(1)当0a =时,求()f x 的极值;(2)若()()()F x f x g x =+对任意的[]12(3,2),,1,3a x x ∈--∈,恒有12(ln3)2ln3()()m a F x F x +->-成立,求实数m 的取值范围.参考答案一、选择题1 2 3 4 5 6 7 8 9 1011 12 D B C C A A D C A DB C二、填空题:13.1n - 14.32a = 15.260x y +-= 16.34三、解答题:17.(1)因为//m n ,所以sin 3cos 0a B b A -=, 由正弦定理,得sin sin 3sin cos 0A B B A -=,又sin 0B ≠,从而tan 3A =,由于0A π<<,所以3A π=,(2)由余弦定理,得2222cos a b c bc A =+-, 而7,2,3a b A π===,得2742c c =+-,即2230c c --=,因为0c >,所以3c =.故ABC ∆的面积为133sin 22bc A =.18.(1)证明:由三视图得,该四棱柱为直四棱柱且底面为直角梯形,在直四棱柱1111ABCD A B C D -中,连结1C D ,∵1DC DD =,∴四边形11DCC D 是正方形,∴11DC D C ⊥.又11,,AD C AD DD DC DD D ⊥⊥=,∴又AD ⊥平面11DCC D ,1DC ⊂平面11DCC D ,∴1AD DC ⊥∵1,AD DC ⊂平面1ADC ,且1AD DC D =,∴1DC ⊥平面1ADC , 又1AC ⊂平面1ADC ,∴11DC AC ⊥;(2)空间中两个角的边对应平行则1AMB DC C ∠=∠,又0190ABM DCC ∠=∠=,∴ABM ∆和1DCC ∆相似,∴112AB BMDC CC ==,∴1MB MB =.19.(1)圆C 的方程为:224x y +=;(2)0120PCQ ∠=,从而圆心到直线的距离为1,解得0k =.20.(1)点F 为AE 中点,可取AB 中点M ,证明面//DMF 面BCE ,(2)三棱锥E ADG -的体积为229由①②可得0010,5x y ==,即B 点的坐标为(10,5).设点(3,1)A -关于直线BT 的对称点D 的坐标为(,)a b ,则点D 在直线BC 上.由题知1113431410022b a a b +⎧⨯=-⎪⎪-⎨+-⎪-⨯+=⎪⎩,得17a b =⎧⎨=⎩,即(1,7)D ,7521109BC BD K K -===--, 所以直线BC 的方程为25(10)9y x -=--,即29650x y +-=.22.解:(1)当0a =时,2212121()2ln ,()(0)x f x x f x x x x x x -'=+=-=>,由221()0x f x x -'=>,解得12x >.∴()f x 在1(0,)2上是减函数,在1(,)2+∞上是增函数.∴()f x 的极小值为1()22ln 22f =-,无极大值. ..............................5分(2)1()(2)ln 2F x a x ax x =-++,则2222212(2)1(1)(21)()2(0)aax a x ax x F x a x x x x x -+--+-'=-+==>.当32a -<<-时,()F x 在1(,)2+∞上是减函数,即()F x 在[]1,3上是减函数,∴122()()(1)(3)4(2)ln 33F x F x F F a a -≤-=-+-, 由12(ln3)2ln3()()m a F x F x +->-对任意的[]12(3,2),,1,3a x x ∈--∈恒成立, ∴12max (ln3)2ln3()()m a F x F x +->-, 即2(ln 3)2ln 34(2)ln 33m a a a +->-+-对任意32a -<<-恒成立, 即243m a <-+对任意32a -<<-恒成立,由于当32a -<<-时,132384339a -<-+<-,∴133m ≤-. .....................12分。