∥3套精选试卷∥2018年常州市某达标实验中学七年级下学期期末质量跟踪监视数学试题

合集下载

【3套打包】常州市七年级下册数学期末考试试题(含答案)(1)

【3套打包】常州市七年级下册数学期末考试试题(含答案)(1)

最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )A B C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >6.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是( )A.21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个10.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x°和y°,那么所适合的一个方程组是()A.4890y xy x-+⎧⎨⎩==B.482y xy x⎨⎩-⎧==C.48290x yy x⎨⎩-+⎧==D.48290y xy x⎨⎩-+⎧==二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上.相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.14.如图,直线AB,CD点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:20.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,求∠C的度数.21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21x y ⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,∴电子百拼的人数为24-(6+4+6)=8人,补全图形如下:(3)估算全区参加科技比赛的获奖人数约是3215×1680=643人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. 【分析】(1)利用网格特点和平移的性质得出答案;(2)再利用(1)中平移的性质得出△MNP ;(3)先由AC 平移到A 1C 1,再由A 1C 1平移到MP ,所以线段AC 扫过的部分为两个平行四边形,于是根据平行四边形的面积公式可计算出线段AC 扫过的面积.【解答】解:(1)将△ABC 向右平移5个单位长度,然后再向上平移1个单位长度,可以得到△MNP ;故答案为:右,5,上,1;(2)如图所示:△MNP ,即为所求;(3)线段AC 扫过的面积为:4×5+1×6=26.故答案为:26.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离;作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形23. 【分析】(1)设A 种树苗每株x 元,B 种树苗每株y 元,根据条件“A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元”建立方程求出其解即可;(2)设A 种树苗购买a 株,则B 种树苗购买(36-a )株,根据条件A 种树苗数量不少于B 种数量的一半建立不等式,求出其解即可.【解答】解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得202200x y x y ⎨⎩-+⎧==, 解得8060x y ⎧⎨⎩==,答:A 种树苗每株80元,B 种树苗每株60元.(2)设购买A 种树苗a 株,由题意得: x≥12(36-a ), 解得:a≥12,∵A 种树苗价格高,∴尽量少买a 种树苗,最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )AB C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >06.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A .21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个 B .2个 C .3个 D .4个10.如图,将正方形ABCD 的一角折叠,折痕为AE ,点B 恰好落在点B'处,∠BAD 比∠BAE 大48°.设∠BAE 和∠BAD 的度数分别为x°和y°,那么所适合的一个方程组是( )A .4890y x y x -+⎧⎨⎩==B . 482y x y x⎨⎩-⎧== C .48290x y y x ⎨⎩-+⎧== D .48290y x y x ⎨⎩-+⎧==14.如图,直线AB,CD相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.16.如图,把一张长方形纸片ABCD沿EF折叠后,点A与点A′重合(点A在BC边上),点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21 xy⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,。

最新-江苏省常州市2018学年度七年级下期中质量调研数学试卷及答案 精品

最新-江苏省常州市2018学年度七年级下期中质量调研数学试卷及答案 精品

常州市2018-2018学年度第二学期期中质量调研七年级数学试题一、选择题(每小题2分,共16分)1.下列各组图形,可由一个图形平移得到另一个图形的是 ---------------------------- 【】A B C D2.下列长度的三根木棒首尾相接,能做成三角形框架的是 ---------------------------- 【】A.13cm、7cm、5cm B.5cm、7cm、3cmC.7cm、5cm、12cm D.5cm、15cm、9cm3.下列说法正确的是------------------------------------------------------------------------------- 【】A.同位角相等B.同旁内角相等C.内错角相等D.对顶角相等4.若-个多边形的内角和等于1620°,则这个多边形的边数为--------------------- 【】A.9 B.10 C.11 D.125.多项式1242--xx可以因式分解成-------------------------------------------------------- 【】A.124(--)xx B.)6)(2(+-xx C.)6)(2(-xx+D.)4)(3(-xx+6.若nm aaaa÷=⋅53,则m与n之间的关系是------------------------------------------ 【】A.2-=+nm B.2=+nm C.35=mn D.15=mn7.如图,ABC△中,∠BAC=90°,沿AD折叠ABD△,使点B恰好落在AC 边上的点E处.若︒=∠24C,则∠ADE等于---------------- 【】A.66°B.69°C.70°D.71°8.如图,小明从点O出发,沿直线前进10米后向左转︒n()900<<n,再沿直线前进10米向左转相同的度数,……照这样走下去,小明发现:当他第一次回到了出发点时,共转过了24次,则小明每次转过的角度n的值为 ------------------------------------------------------------------ 【】A.5214B.15C.231515D.36n°n°n°OAB CDE二、填空题(每小题2分,共20分)9. =131﹣)( , =322)(﹣b a . 10. =⨯1001008125.0-)( . 11. 中国钓鱼岛列岛8个小岛之一的飞濑岛的面积为0.0008平方公里,仅仅只有武进吾悦广场占地面积的2251.用科学记数法表示飞濑岛的面积约为 平方公里. 12.已知一个多边形的每一个内角都是 144,则这个多边形是 边形.13.如右图,CD AB ∥,直线l 分别交AB 、CD 于E 、F ,︒=∠561,则2∠的度数是 °.14.若多项式2212kb ab a +-是完全平方式,则常数k 的值 为 .15.若8))(22++=+mx x n x x -(,则=mn . 16.若2=a m ,3=b m ,4=c m ,则=-+c b a m 2 . 17.如右图,将周长为8的ABC △沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .18.在ABC △中,B ∠=50°,AD 是BC 边上的高,且︒=∠20DAC ,则=∠BAC °.三、解答题(共64分,其中第21题、22题、23题、24题各5分,第25、26题各6分)19.计算(16分)⑴ 0201631-)--(π⑵ 33452)(﹣a a a +⋅⑶ 2)3(2y x x -⋅ ⑷ )3)(3-+--y x y x (l12ABCDE F第13题A BCEFD第17题20.因式分解(16分)⑴ 2294y x -⑵ 1212322++xy y x⑶ 16824+-a a⑷ )()(22m n n n m m -+-21.(5分)已知:2=-b a ,1=ab ,求)(3)2(2b a a b a -+-的值.22.(5分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下..或左右..平移)后得到'''C B A △,点C 的对应点是直线上的格点'C . ⑴ 画出'''C B A △.⑵ ABC △两次共平移了 个单位长度.⑶ 试在直线上画出点P ,使得由点P C B A 、、、'''四点围成的四边形的面积为9.ABCC'l23.(5分)如图,ABC △和ADC △分别在AC 的两侧,234∶∶∶∶=∠∠∠ACB B BAC ,且︒=∠40DAC .⑴ 试说明BC AD ∥.⑵ 若AB 与CD 也平行,求D ∠的度数.24.(5分)如图,四边形ABCD 中,外角A DCG ∠=∠,点E 、F 分别是边AD 、BC 上的两点,且EF ∥AB . D ∠与1∠相等吗?为什么?A B C DAEDB FC G 125.(6分)小聪是一名非常爱钻研的七年级学生,他将4块完全一样的三角板(如图1)拼成了一个非常工整的图形(如图2),请教老师以后得知:该图形是一个正方形,并且里面的四边形也是一个正方形.为了作进一步的探究,小明将三角板的三边长用为c b a ,,表示(如图3),将两个正方形分别用正方形ABCD 和正方形EFGH 表示,然后他用两种不同的方法计算了正方形ABCD 的面积.图1 图2 图3 图4⑴ 请你用两种不同的方法计算出正方形ABCD 面积: 方法一: 方法二:⑵ 根据⑴中计算结果,你能得到怎么样的结论?⑶ 请用文字语言描述⑵中得到的结论.AB C DE FG Ha bcab ccc a abba bc26.(6分)ABCD 四边形中,BAD ∠的角平分线与边BC 交于点E ,ADC ∠的角平分线交AE于点O ,且点O 在四边形ABCD 的内部.⑴ 如图1,若BC AD ∥,︒=∠︒=∠8070C B ,,则=∠DOE °. ⑵ 如图2,试探索DOE C B ∠∠∠、、之间的数量关系,并将你的探索过程写下来.图1 图2A BC DEOABC DEO。

2017-2018年江苏省常州市七年级下期末联考数学试题(有答案)

2017-2018年江苏省常州市七年级下期末联考数学试题(有答案)

常州市教育学会学业水平监测2018.6七年级数学试题题号一二三四总分得分一、选择题(本大题共8小题)1.下列计算中,正确的是( )A. x3⋅x3=x6B. x3+x3=x6C. (x3)3=x6D. x3÷x3=x2.下列图形中,由MN//PQ,能得到∠1=∠2的是( )A. B.C. D.3.不等式组{x+1>0,的解集在数轴上表示正确的是()x<1A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组{x+2y=1,2x+y=a的解满足x+y=3,则a的值是( )A. 6B. 7C. 8D. 96.下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若|a|=|b|,则a=bC. 如果a>b,那么a2>b2D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银?(注:这里的斤是指市斤,1市斤=10两)设共有x人,y两银子,下列方程组中正确的是( )A. {6x+6=y5x−5=yB. {6x+6=y5x+5=yC. {6x−6=y5x−5=yD.{6x−6=y5x+5=y8.若关于x的不等式组{x−m<0,3−2x≤1所有整数解的和是10,则m的取值范围是( )A. 4<m≤5B. 4<m<5C. 4≤m<5D. 4≤m≤5二、填空题(本大题共8小题)9.计算:(2x−3)(x+1)=________.10.分解因式:x2y−xy2=________.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若a+b=6,ab=7,则a2+b2=________.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火材棒,图案②需15根火柴棒,……,按此规律,图案ⓝ需________________根火材棒.15.已知3n×27=38,则n的值是________________.16.如图,已知AB//DE,∠BAC=m∘,∠CDE=n∘,则∠ACD=________________ ∘.三、计算题(本大题共4小题) 17. 计算:(1)(−12)0+|3−π|+(13)−2; (2)(a +3)2−(a +1)(a −1).18. 分解因式:(1)5mx 2−20my 2; (2)12a 2b +12ab 2+3b 3.19. 解方程组和不等式组:(1){2x −y =3,4x −3y =1;(2){3(x −1)<5x +1,2x+13>2x −5.20. 求代数式x(y −z)−y(z −x)+z(x −y)的值,其中x =14,y =12,z =−34.四、解答题(本大题共5小题)21. 如图,已知点E 在AB 上,CE 平分∠ACD ,∠ACE =∠AEC.求证:AB//CD .22. 为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗.已知2棵A 种树苗和3棵B 种树苗共需270元,3棵A 种树苗和6棵B 种树苗共需480元.(1)A 、B 两种树苗的单价分别是多少元⊕(2)该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A 种树苗多少棵⊕23. 如图,从四边形ABCD 的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形⊕请画出示意图,并在图形下方写上剩余部分多边形的内角和.24.已知关于x、y的方程组{2x+y=k−5, x−y=2k−1.(1)求代数式22x⋅4y的值;(2)若x<5,y≤−2,求k的取值范围;(3)若x y=1,请直接写出两组x,y的值.25.如图①,直线l⊥MN,垂足为O,直线PQ经过点O,且∠PON=30∘.点B在直线l上,位于点O下方,OB=1.点C在直线PQ上运动.连接BC过点C作AC⊥BC,交直线MN于点A,连接AB(点A、C与点O都不重合).(1)小明经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是________________;(2)当BC//MN时,在图②中画出示意图并证明AC//OB;(3)探索∠OCB和∠OAB之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9. 2x 2−x −3 10. xy(x −y) 11. 2×10−712. 如果两个数的乘积为1,那么这两个数互为倒数 13. 22 14. (7n +1) 15. 516. (m +n −180)17. 解:(1)原式=1+π−3+9=7+π;(2)原式=a 2+6a +9−a 2+1 =6a +10.18. 解:(1)原式=5m(x 2−4y 2)=5m(x +2y)(x −2y); (2)原式=3b(4a 2+4ab +b 2) =3b(2a +b)2.19. 解:(1){2x −y =3①4x −3y =1②,①×2−②,得:y =5, 将y =5代入①,得:2x −5=3, 解得:x =4, ∴方程组的解为{x =4y =5; (2){3(x −1)<5x +1①2x+13>2x −5②,解不等式①,得:x >−2; 解不等式②,得:x <4, ∴不等式组的解集为−2<x <4.20. 解:原式=xy −xz −yz +xy +xz −yz=2xy −2yz=2y(x −z),当x =14,y =12,z =−34时,原式=2×12×(14+34)=1.21. 证明:∵CE 平分∠ACD ,∴∠ACE =∠DCE , 又∵∠ACE =∠AEC , ∴∠DCE =∠AEC , ∴AE//CD .22. 解:(1)设A 种树苗单价为x 元,B 种树苗单价为y 元,根据题意,得{2x +3y =2703x +6y =480, 解方程组,得{x =60y =50,答:A 种树苗单价为60元,B 中树苗单为50元.(2)设购进A 种树苗m 棵,则购进B 种树苗(28−m)棵, 根据题意,得60m +50(28−m)≤1550, 解不等式,得m ≤15,因为m 为整数,所以m 的最大值是15, 答:最多可以购进A 种树苗15棵.23. 解:如图①,剩余的部分是三角形,其内角和为180∘,如图②,剩余的部分是四边形,其内角和为360∘, 如图③,剩余的部分是五边形,其内角和为540∘.24. 解:{2x +y =k −5①x −y =2k −1②,①+②,得3x =3k −6, ∴x =k −2,把x =k −2代入①,得2k −4+y =k −5, ∴y =−k −1, ∴{x =k −2y =−k −1, (1)∵{x =k −2y =−k −1, ∴2x +2y =−6,∴22x ⋅4y =22x+2y =2−6=164; (2)∵x <5,y ≤−2,∴{k −2<5−k −1≤−2,解得1≤k <7; (3){x =−3y =0,{x =1y =−4.25. 解:(1)∠ABC(2)如图所示:∵BC//MN ,∴∠AOB +∠OBC =180∘, ∵∠AOB =90∘, ∴∠OBC =90∘, ∵∠ACB =90∘,∴∠OBC +∠ACB =90∘+90∘=180∘, ∴AC//OB .(3)如图①,设BC 与OA 相交于点E ,在△OCE 和△BAE 中,∵∠OCB=180∘−∠OEC−∠COE,∠OAB=180∘−∠BEA−∠ABE,又∠COE=∠ABE=30∘,∠OEC=∠BEA,∴∠OCB=∠OAB;如图②∠AOC=∠AOB+∠BOC=90∘+60∘=150∘,∵∠ABC=30∘,∴∠AOC+∠ABC=150∘+30∘=180∘,在四边形ABCO中,∠OCB+∠OAB=360∘−(∠AOC+∠ABC)=360∘−180∘=180∘,即∠OCB和∠OAB互补,∴∠OCB和∠OAB的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法.掌握法则是解题的关键.根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:A.x3⋅x3=x6,故A正确;B.x3+x3=2x3,故B错误;C.(x3)3=x9,故C错误;D.x3÷x3=1,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:A.由MN//PQ,能得到∠1+∠2=180∘,故不合题意;B.由MP//NQ,根据两直线平行,内错角相等能得到∠1=∠2,故不合题意;C.如图:∵MN//PQ,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2.故C合题意;D.观察图形∠1与∠2为同旁内角,由MN//PQ,不能得到∠1=∠2,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:{x+1>0①x<1②,解不等式①,得x>−1,解不等式②,刘x<1,所以不等式组的解集为−1<x<1,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:A.∵4+6<11,∴不能组成三角形,故不合题意;B.∵3+4>5,∴能组成三角形,故合题意;C.∵4+1=5,∴不能组成三角形,故不合题意;D.∵2+3<6,∴不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入x+y=3,转化为关于a的一元一次方程求解即可.【解答】解:{x+2y=1①2x+y=a②,①×2−②,得:3y=2−a,解得:y=2−a3,②×2−①,得:3x=2a−1,解得:x=2a−13,∵x+y=3,∴2a−13+2−a3=3,解得:a=8.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理 .利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:A.同旁内角互补,两直线平行,故A 错误;B .若|a|=|b|,则a =±b ,则B 错误;C .如果a =1,b =−2,则a 2<b 2,故C 错误;D .平行于同一直线的两直线平行,故D 正确.故选D .7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案.【解答】解:根据题意得:{6x −6=y 5x +5=y. 故选D .8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,要借助数轴做出正确的取舍.首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.【解答】解:{x −m <0①3−2x ≤1②, 由①得x <m ;由②得x ≥1;故原不等式组的解集为1≤x <m .又因为不等式组的所有整数解的和是10=1+2+3+4,由此可以得到4<m ≤5.故选A .9. 【分析】此题考查的是多项式乘多项式.用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:(2x −3)(x +1)=2x2+2x−3x−3=2x2−x−3.故答案为2x2−x−3.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.直接提取公因式xy进而分解因式得出即可.【解答】解:x2y−xy2=xy(x−y).故答案为xy(x−y).11. 【分析】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002cm=2×10−7cm.故答案为2×10−7.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值.将已知条件中的a+b=6两边平方,利用完全平方公式变形后整体代入即可求出a2+b2的值.【解答】解:∵a+b=6,∴(a+b)2=36,∴a2+2ab+b2=36,∵ab=7,∴a2+b2=36−14=22.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n−1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=8+7×2=22根;…∴图案n需火柴棒:8+7(n−1)=(7n+1)根.故答案为(7n+1).15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则.将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:∵3n×27=38,∴3n×33=38,3n+3=38,∴n+3=8,解得:n=5.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.延长ED交BC于F,根据平行线的性质求出∠AFE=∠BAC=m∘,求出∠DFC=180∘−m∘,根据三角形外角性质得出∠C=∠CDE−∠DFC,代入求出即可.【解答】解:延长ED交AC于F,如图所示:∵AB//DE,∠BAC=m∘,∴∠AFE=∠BAC=m∘,∴∠DFC=180∘−m∘,∵∠CDE=n∘,∴∠ACD=∠CDE−∠CFD=n∘−(180∘−m∘)=(m+n−180)∘.故答案为(m+n−180).17. 此题考查的是实数的运算以及整式的混合运算.熟练掌握相关的运算性质和运算法则是关键.(1)根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;(2)先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.(1)首先提公因式5m,再利用平方差进行分解即可;(2)首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法.熟练掌握解答步骤是关键.(1)利用加减消元法即可求解;(2)先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值.掌握法则是解题的关键.先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法.根据角平分线定义可得∠ACE=∠DCE,结合已知条件利用等量代换得到∠DCE=∠AEC,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用不超过1550元,列出关于m的一元一次不等式.(1)设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种树苗m棵,则购进B种树苗(28−m)棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理.注意分情况讨论.①过四边形的两个顶点剪一刀,剩余图形为三角形;②故其中一个顶点和一条边剪一刀,剩余图形为四边形;③过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法.解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;(2)根据x<5,y≤−2,列出不等式组,解不等式组求出k的取值范围即可;(3)由x y=1,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用.通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.(1)通过观察和动手操作易得答案;(2)根据平行线的性质可得∠AOB+∠OBC=180∘,结合已知条件易得∠OBC+∠ACB=180∘,根据同旁内角互补,两直线平行可得答案;(3)分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:(1)经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是∠ABC.故答案为∠ABC;(2)见答案;(3)见答案.。

2018-2019年江苏省常州市七年级下期末联考数学考试试题(有答案)

2018-2019年江苏省常州市七年级下期末联考数学考试试题(有答案)

常州市教育学会学业水平监测七年级数学试题一、选择题(本大题共8小题)1.下列计算中,正确的是()A. B. C. D.2.下列图形中,由,能得到的是()A. B.C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是()A. 6B. 7C. 8D. 96.下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是()A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.21.22.23.24.25.26.四、解答题(本大题共5小题)27.如图,已知点E在AB上,CE平分,求证:.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵29.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.30.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.31.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B 种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。

《试卷3份集锦》常州市某名校中学2017-2018年七年级下学期期末综合测试数学试题

《试卷3份集锦》常州市某名校中学2017-2018年七年级下学期期末综合测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m【答案】Ca⨯的形式,所以将【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n 1.11111111134用科学记数法表示10⨯,故选C.3.410-考点:科学记数法2.一个n边形的内角和比它的外角和大180°,则n等于()A.3 B.4 C.5 D.6【答案】C【解析】根据n边形的内角和为(n﹣2)•180°,外角和等于360°列出方程求解即可.【详解】根据题意得:(n﹣2)•180°﹣360°=180°,解得n=1.故选C.【点睛】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.把式子)A B C.D.【答案】D【解析】先根据二次根式有意义的条件求出a的范围,再把根号外的非负数平方后移入根号内即可.【详解】1∴-≥a∴<a∴==【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.4.将某图形的横坐标都减去2,纵坐标不变,则该图形( )A .向右平移2个单位B .向左平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】B【解析】由平移规律可知横坐标左减右加,故选B .5.如图,观察图中的尺规作图痕迹,下列说法错误的是( )A .DAE EAC ∠=∠B .C EAC ∠=∠C .//AE BCD .DAE B ∠=∠【答案】A 【解析】由作法知,∠DAE=∠B ,进而根据同位角相等,两直线平行可知AE ∥BC ,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B ,∴AE ∥BC ,∴∠C=∠EAC ,∴B 、C 、D 正确;无法说明A 正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.6.下列统计中,能用“全面调查”的是( )A .某厂生产的电灯使用寿命B .全国初中生的视力情况C .某校七年级学生的身高情况D .“娃哈哈”产品的合格率【解析】根据抽样调查和全面调查的特点依次分析各项即可判断.【详解】A 、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B 、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C 、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D 、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查;故选C .【点评】本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识. 7.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则4n ﹣2m 的算术平方根为( ) A .2BC .±2 D.【答案】B【解析】有题意可把x 与y 的值代入方程组求出m 与n 的值即可. 【详解】把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 则4n ﹣2m=8﹣6=2,即2,故选B .【点睛】9.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2019次运动到点( )A .(2018,2)-B .(2018,0)C .(2019,1)D .(2019,2)-【答案】A 【解析】找出P 点的运动规律即可解答.【详解】解:点P 每运动四次就向右平移四个单位,2019÷4=504……3,且每四个为一组,纵坐标为1,0,-2,0重复,故2019个纵坐标为-2,且初始坐标为-1,故横坐标为2019-1=2018,即答案为A.【点睛】本题考查找规律,关键是找出P 点的移动规律.10.如图(1)是长方形纸片,DAC m ∠=︒,将纸片沿AC 折叠成图(2),再沿EC 折叠成图(3),则图(3)中ACD ∠为( )A .m ︒B .90m ︒-︒C .902m ︒-︒D .903m ︒-︒【答案】D 【解析】证明∠ACB=∠DAC=m°,∠DCA=90°-m°,进而证明∠DCE=90° -2m °,即可解决问题.【详解】如图(1),∵四边形ABCD 为矩形,∴AD//BC ,∠ACB=∠DAC=m°,∠DCA=90°-m°, 如图(2),∠DCE=90°-2m°, 如图(3),∠ACD=90°-3m°,【点睛】此题考查翻折的性质,矩形的性质,正确掌握翻折前后的角度相等是解题的关键.二、填空题题∠=________度.11.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1【答案】1【解析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=1°.故答案为:1.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.12.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是____.【答案】(−4,3)【解析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=−4,y=3.即点P的坐标是(−4,3),故答案为:(−4,3).此题考查象限及点的坐标的有关性质,坐标确定位置,解题关键在于掌握其性质.13.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.75=,[]55=,[]4π-=-,如果241x +⎡⎤⎢⎥⎦=-⎣,那么x 的取值范围是________ 【答案】97x -<<-【解析】根据已知得出不等式组,求出不等式组的解集,再得出答案即可.【详解】解:根据题意,∵241x +⎡⎤⎢⎥⎦=-⎣ ∴1432x +-≤<-, 解得:97x -<<-;故答案为:97x -<<-.【点睛】本题考查了解一元一次不等式组,能根据已知得出不等式组是解此题的关键.14.如图,直线AB 、CD 交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT =_____.【答案】60°【解析】根据两直线平行,同位角相等,由CE ∥AB 可得∠BOD =∠ECO =30°,再根据垂直的定义得到∠BOT =90°,利用互余即可得到∠DOT 的度数.【详解】解:如图,∵CE ∥AB ,∴∠BOD =∠ECO =30°,∵OT ⊥AB 于点O ,∴∠BOT =90°,∴∠DOT =90°﹣∠BOD =90°﹣30°=60°.故答案为60°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了垂直的定义.【答案】1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.16.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩的解是____________. 【答案】9.30.8x y =⎧⎨=-⎩【解析】根据方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,两个方程组的形式相同,可得a=x-1,b=y+1,从而求出x 和y 值即可得到结果.【详解】解:∵方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩, ∴方程组()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩的解为18.32 1.2x y -=⎧⎨+=⎩, ∴9.30.8x y =⎧⎨=-⎩, 即方程组()()()()213213315230.9x y x y ⎧--+=⎪⎨-++=⎪⎩的解是9.30.8x y =⎧⎨=-⎩. 故答案为:9.30.8x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解,解题的关键是理解题意,得出a=x-1,b=y+1.17.如图,ABC ∆沿BC 平移至DEF ∆,10AB =,4DO =,平移距离为6,则阴影部分的面积是__________.【答案】1【解析】先根据平移的性质求出OE,BE 的长度,然后利用=ABEO S S 阴影四边形和梯形的面积公式即可得出答【详解】由平移的性质可知,6,10BE DE AB === ,1046OE DE OD ∴=-=-= .ABC DEF S S = , 11=()(610)64822ABEO S S OE AB BE ∴=+=⨯+⨯=阴影四边形. 故答案为:1.【点睛】本题主要考查平移的性质及梯形的面积公式,掌握平移的性质及梯形的面积公式是解题的关键.三、解答题18.(1)计算:3325116964--+-;(2)解不等式组21040x x -≥⎧⎨->⎩①②,并把解集在数轴上表示出来.【答案】(1)15;(2)142x ≤<,见解析. 【解析】(1)原式利用平方根、立方根定义计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:(1)原式5113415=++-=,(2)21040x x -≥⎧⎨->⎩①② 由①得:x ≥12, 由②得:x <4, ∴不等式组的解集为142x ≤<, 数轴如围所示.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.如图,B 、C 、E 三点在同一条直线上,//AC DE ,AC CE =,ACD B ∠=∠.(1)求证:ABC CDE ∆≅∆;(2)若55A ∠=︒,求BCD ∠的度数.【答案】(1)见解析 (2)125︒【解析】(1)首先利用AC CE =,再证明CDE B ∠=∠和ACB CED ∠=∠,因此可得ABC CDE ∆≅∆. (2)根据55A ︒∠=,由(1)可得55A E ︒∠=∠= ,BCD ∠=ACB ACD ∠+∠,利用等量替换进而计算BCD ∠的度数.【详解】(1)证明: //AC DE∴ ACD CDE ∠=∠,ACB CED ∠=∠ACD B ∠=∠B CDE ∴∠=∠AC CE =∴ ABC CDE ∆≅∆(2) 55A ∠=︒ABC CDE ∆≅∆∴ 55A E ︒∠=∠=,ACB DCE ∠=∠ACD B ∠=∠=D ∠∴ BCD ∠=ACB ACD ∠+∠=DCE D ∠+∠=180********E ︒︒︒︒-∠=-=【点睛】本题主要考查三角形的全等,这是三角形的重点,应当熟练掌握.20.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .(1)如图①,求证:∠BEC=∠ABE+∠DCE ;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).【答案】(1)证明见解析;(1)证明见解析;(3)∠BEC等于1nα度.【解析】试题分析:(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠1,进而得到∠BEC=∠ABE+∠DCE;(1)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC;同理可得∠BE1C=∠ABE1+∠DCE1=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E3,得出∠BE3C=18∠BEC;…据此得到规律∠E n=12n∠BEC,最后求得∠BEC的度数.试题解析:解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠1.∵∠BEC=∠1+∠1,∴∠BEC=∠ABE+∠DCE;(1)如图1.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC;∵∠ABE1和∠DCE1的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;(3)如图1.∵∠ABE1和∠DCE1的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=12∠ABE1+12∠DCE1=12∠CE1B=18∠BEC;…以此类推,∠E n=12n∠BEC,∴当∠E n=α度时,∠BEC等于1nα度.点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.某中学计划购进甲、乙两种规格的书柜.调查发现,若购买甲种书柜3个,乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?能够提供资金4320元,请设计几种购买方案供这个学校选择,并求出最省钱的方案.【答案】(1)甲种书柜单价为180元,乙种书柜的单价为240元;(2)方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.选择方案三,最省钱,花费是4200元.【解析】(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可; (2)设甲种书柜购买m 个,则乙种书柜购买(20-m )个.根据:购买的乙种书柜的数量≥甲种书柜数量,且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案,最后找出最省钱的方案.【详解】解:(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意,得321020431440x y x y +=⎧⎨+=⎩解得180240x y =⎧⎨=⎩答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)设甲种书柜购买m 个,则乙种书柜购买()20m -个;由题意,得20180240(20)4320m m m m -≥⎧⎨+-≤⎩解得810m ≤≤,∵m 取整数,∴8m =,9,10∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.若选用方案一:8180122404320⨯+⨯= 元若选用方案二:9180112404260⨯+⨯=元若选用方案三:10180102404200⨯+⨯=元所以应选择方案三,最省钱,花费是4200元.【点睛】本题主要考查二元一次方程组、不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.22.求不等式组123122x x -⎧⎪⎨+≤⎪⎩<【答案】-1<x≤3【解析】分别求出两个不等式的解集,再找出两个解集的公共解集即可得答案.【详解】123122xx-⎧⎪⎨+≤⎪⎩<①②∵解不等式①得:x>-1,解不等式②得:x≤3,∴不等式组的解集为-1<x≤3,【点睛】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.23.解下列不等式(组):(1)12223x xx-+-≤-;(2)331213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩.【答案】(1)x≤1;(2)-2<x≤1【解析】(1)根据一元一次不等式的解法:去分母、去括号、移项、合并同类项、化系数为1即可求解. (2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】解:(1)12223x xx-+ -≤-()() 6x3x1122x2 --≤-+ 6x3x3122x4-+≤--6x3x2x1243-+≤--5x5≤x1≤(2)331213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩①②解①得:x1≤解②得:x2>-则不等式的解集为:-2<x≤1【点睛】此题主要考查一元一次不等式(组)的解法,熟练掌握运算步骤和不等号的方向是解题的关键.24.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应) (2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.【答案】(1)见解析;(2)12.【解析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.作BM ⊥直线l 于点M ,并延长到B 1,使B 1M=BM ,同法得到A ,C 的对应点A 1,C 1,连接相邻两点即可得到所求的图形.(2)由图得四边形BB 1 C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4,根据梯形的面积公式进行计算即可.【详解】(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.∴S 四边形BB1C1C =()()1111BB +CC 4=4+2=1222⨯⨯⨯. 【点睛】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.25.观察下列各式:()10x -≠()()111x x -÷-=;()()2111xx x -÷-=+; ()()32111xx x x -÷-=++; ()()432111x x x x x -÷-=+++. (1)根据上面各式的规律可得()()111n x x +-÷-=_________;(2)利用(1)的结论化简201820172221++⋯++;(3)若2201810x x x ++++=,求2019x 的值.【答案】(1)11n n x x x -++++;(2)201921-;(3)1 【解析】(1)根据各式规律确定出所求即可;(2)仿照(1)的结论确定出所求即可;(3)已知等式变形后,计算即可求出所求.【详解】(1)(x n+1-1)÷(x-1)=x n +x n-1+…+x+1;故答案为:x n +x n-1+…+x+1;(2)()()20182017201920192221212121++++=-÷-=-;(3)由2201810x x x ++++=可得, ()()2019110x x -÷-=,∴201910x -=,∴20191x =.【点睛】此题考查整式的除法,有理数的混合运算,熟练掌握运算法则是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知,则的值为()A.B.C.D.【答案】A【解析】直接利用同底数幂的乘除运算法则计算得出答案【详解】解:∴2÷=36÷3=12故选:A【点睛】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.将图中的叶子平移后,可以得到的图案是()A.B.C.D.【答案】A【解析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.3.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】A【解析】解:设多边形的边数是n ,根据题意得,(n ﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C .【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.4.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【答案】D 【解析】试题分析:∵ D 为BC 中点,∴CD=BD ,又∵∠BDO=∠CDO=90°,∴在△ABD 和△ACD 中, AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ;∵EF 垂直平分AC ,∴OA=OC ,AE=CE ,在△AOE 和△COE 中, 0A 0C OE 0E AE CE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△COE ;在△BOD 和△COD 中,BD CD BDO CDO OD 0D =⎧⎪∠=∠⎨⎪=⎩,∴△BOD ≌△COD ; 在△AOC 和△AOB 中,AC AB OA 0A OC 0B =⎧⎪=⎨⎪=⎩,∴△AOC ≌△AOB ;所以共有4对全等三角形,故选D .考点:全等三角形的判定.5.下列调查方式,你认为最合适的是( )A .了解北京市每天的流动人口数,采用抽样调查方式B .旅客上飞机前的安检,采用抽样调查方式C .了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D .日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、了解北京市每天的流动人口数,采用抽样调查方式,正确;B 、旅客上飞机前的安检,采用全面调查方式,故错误;C 、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D 、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.对于代数式:,下列说法正确的是( ) A .有最大值B .有最小值C .有最小值D .无法确定最大最小值 【答案】B 【解析】首先将代数式化为,即可判定其最值. 【详解】解:代数式可化为: =, ∴当时,代数式有最小值1,故选B.【点睛】此题主要考查完全平方公式,掌握完全平方公式的结构特点,即可解题.7.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A .-3B .-1C .1D .-3或1 【答案】D【解析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键. 8.已知,则的大小关系是( ) A .B .C .D . 【答案】B【解析】先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】,,,.故选:.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.9.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠α=∠DCE+∠B,∴∠α=45°+30°=75°.故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.10.如图,两条直线a、b被第三条直线c所截,若直线a∥b,∠1=80°,则∠2=()A.80°B.100°C.120°D.130°【答案】B【解析】根据平行线的性质:两直线平行,同位角相等;则可以直接选出答案.【详解】∵a∥b,∴∠1=∠3=80°,∵∠3+∠2=180°,∴∠2=180°﹣80°=100°,故选:B.【点睛】本题考查了学生对平行线性质的掌握,掌握平行线同位角相等的性质是解决此题的关键.二、填空题题11.在图中,x的值为__________.【答案】135【解析】103o的邻补角=(180-103)o=77o,∵四边形的内角和为360度,即x o +65 o +83 o +77 o=360 o∴x=360-65-83-77=135.故答案是:135.12.如图,已知∠1=∠2=∠3=65°,则∠4的度数为___________.【答案】115°.【解析】根据平行线的判定与性质,可得∠3=∠5=65°,又根据邻补角可得∠5+∠4=180°,即可得出∠4的度数.【详解】解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.【点睛】本题主要考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.13.使代数式135x-的值不小于﹣7且不大于9的x的最小整数值是_____.【答案】﹣14【解析】首先根据题意列出不等式,再根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数值即可.【详解】依题意得-7≤135x -≤9解得443-≤x≤12所以x的最小整数值是-14故答案为:-14【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是_____.【答案】1【解析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【详解】根据题意得3﹣a+2a+1=0,解得:a=﹣4,∴这个正数为(3﹣a)2=72=1,故答案为:1.【点睛】本题考查了平方根的性质,熟知一个正数有两个平方根,它们互为相反数是解题的关键.15.已知关于x,y的二元一次方程组336x y kx y+=⎧⎨+=⎩的解互为相反数,则k的值是_____.【答案】-1【解析】方程组两方程相加表示出x+y,根据x+y=0求出k的值即可.【详解】解:336 x y k x y+=⎧⎨+=⎩①②①+②得:3(x+y)=k+1,解得:x+y=k63+,由题意得:x+y=0,可得k63+=0,解得:k=﹣1,故答案为:﹣1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是_____.【答案】36【解析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解【详解】如图,过点O作OB⊥AB于E作OF ⊥AC 于F,∵OB 、OC 分別平分∠ABC 和∠ACB,OD ⊥BC∴OE=OD=OF=4△ABC 的面积=12×18×4=36 故答案为36 【点睛】此题考查角平分线的性质,解题关键在于做辅助线 17.x 的12与5的和不大于3,用不等式表示为______________ 【答案】2x +5≤3 【解析】根据x 的12,即2x ,然后与5的和不大于3得出即可. 【详解】解:又题意得:2x +5≤3 故答案为:2x +5≤3. 【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.三、解答题18.已知直线l 1∥l 2,l 3和11,l 2分别交于C ,D 两点,点A ,B 分别在线l 1,l 2上,且位于l 3的左侧,点P 在直线l 3上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P 在射线DC 上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.【答案】(3)∠3=∠3+∠3;(3)不成立,应为∠3=∠3+∠3,证明见解析.【解析】试题分析:(3)过点P 作PE ∥l 3,根据l 3∥l 3可知PE ∥l 3,故可得出∠3=∠APE ,∠3=∠BPE .再由∠3=∠APE +∠BPE 即可得出结论;(3)设PB 与l 3交于点F ,根据l 3∥l 3可知∠3=∠PFC .在△APF 中,根据∠PFC 是△APF 的一个外角即可得出结论.试题解析:解:(3)∠3=∠3+∠3.证明如下:如图①,过点P 作PE ∥l 3.∵l 3∥l 3,∴PE ∥l 3,∴∠3=∠APE ,∠3=∠BPE .又∵∠3=∠APE +∠BPE ,∴∠3=∠3+∠3;(3)上述结论不成立,新的结论:∠3=∠3+∠3.证明如下:如图②,设PB 与l 3交于点F .∵l 3∥l 3,∴∠3=∠PFC .在△APF 中,∵∠PFC 是△APF 的一个外角,∴∠PFC=∠3+∠3,即∠3=∠3+∠3.点睛:本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 19.如图,已知点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B , DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE ,说明△ABC 与△DEF 全等的理由.【答案】见解析【解析】由垂直定义可得∠B=∠E=90°,根据等式的性质可得BC=EF ,然后可利用SAS 判定△ABC ≌△DEF .【详解】∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,∵BF=CE ,∴BF+FC=EC+FC ,即BC=EF ,在△ABC 和△DEF 中,AB DE B E BC EF ⎧⎪∠∠⎨⎪⎩=== , ∴△ABC ≌△DEF (SAS ).【点睛】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.如图,在平面直角坐标系中,线段AB 在x 轴上点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .得平行四边形ABDC(1)补全图形,直接写出点C ,D 的坐标;(2)若在y 轴上存在点M ,连接MA ,MB ,使S △MAB=S 四边形ABDC ,求出点M 的坐标.(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,探索∠CPO 、∠DCP 、∠BOP 的数量关系并说明理由.【答案】(1)(0,2)C ,(4,2)D ;详见解析;(2)M 点的坐标为(0,4)或(0,4)-;(3)详见解析,①当点P 在BD 上,CPO DCP BOP ∠=∠+∠;②当点P 在线段BD 的延长线上时,CPO BOP DCP ∠=∠-∠③当点P 在线段DB 的延长线上时,CPO DCP BOP ∠=∠-∠【解析】(1)根据平移法则作图即可,由平移法则可得出点C ,D 的坐标;(2)求出8ABDC S =平行四边形,设M 坐标为(0,)m ,利用三角形面积公式列式求解即可;(3)分类讨论:当点P 在BD 上,如图1,作PE ∥CD ,根据平行线的性质得CD ∥PE ∥AB ,则∠DCP=∠EPC ,∠BOP=∠EPO ,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ;当点P 在线段BD 的延长线上时,如图2,同样有∠DCP=∠EPC ,∠BOP=∠EPO ,由于∠EPO-∠EPC=∠BOP-∠DCP ,于是∠BOP-∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP-∠BOP=∠CPO .【详解】解:(1)如图,∵将(1,0)A -,(3,0)B 分别向上平移2个单位,再向右平移1个单位,∴(0,2)C ,(4,2)D ;(2)∵4AB =,2CO =,∴428ABDC S AB CO =⨯=⨯=平行四边形,设M 坐标为(0,)m , ∴1482m ⨯⨯=,解得4m =± ∴M 点的坐标为(0,4)或(0,4)-;(3)三种情况①当点P 在BD 上,如图1,由平移的性质得,//AB CD ,过点P 作//PE AB ,则//PE CD ,∴DCP CPE ∠=∠,BOP OPE ∠=∠,∴CPO CPE OPE DCP BOP ∠=∠+∠=∠+∠,②当点P 在线段BD 的延长线上时,如图2,由平移的性质得,//AB CD ,过点P 作//PE AB ,则//PE CD ,∴DCP CPE ∠=∠,BOP OPE ∠=∠,∴CPO OPE CPE BOP DCP ∠=∠-∠=∠-∠,③当点P 在线段DB 的延长线上时,如图3,。

{3套试卷汇总}2018年常州市某达标实验中学七年级下学期期末检测数学试题

{3套试卷汇总}2018年常州市某达标实验中学七年级下学期期末检测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A .3个B .2个C .1个D .0个【答案】C 【解析】①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD ,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.2.二元一次方程x+y=5的解的个数是( )A .1B .2C .3D .无数 【答案】D【解析】二元一次方程x+y=5的解有无数个,故选D .3.若a b <,则下列各式中一定成立的是( )A .a b -<-B .11a b -<-C .33a b >D .ac bc < 【答案】B【解析】关键不等式性质求解.【详解】∵a <b ,∴a b ->-,11a b -<-,33a b <, ∵c 的符号未知∴,ac bc 大小不能确定.【点睛】考核知识点:不等式性质.理解不等式性质是关键.4.已知,则下列变形正确的是( )A.B.C.D.【答案】C【解析】根据不等式性质进行判断即可;【详解】A、可以变形为,故本项错误;B、可以变形为,故本项错误;C、可以变形为,故本项正确;D、可以变形为,故本项错误;故选择:C.【点睛】本题考查了不等式性质,解题的关键是掌握不等式的性质,注意同时乘以或除以一个负数,不等号方向要改变.5.下列长度的线段能组成三角形的是()A.2,3,5B.4,4,8C.14,6,7D.15,10,9【答案】D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A. 2+3=5,不能组成三角形;B. 4+4=8,不能组成三角形;C. 6+7=13<14,不能组成三角形;D. 9+10>15,能组成三角形。

∥3套精选试卷∥2018年常州市某名校中学七年级下学期期末达标检测数学试题

∥3套精选试卷∥2018年常州市某名校中学七年级下学期期末达标检测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51.5°D.52.5°【答案】D【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=12(180°﹣25°)=77.5°,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°【详解】∵AC=CD=BD=BE∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED∵∠CDA=∠B+∠DCB即∠CDA=2∠B∴∠B=25°∴∠BDE=∠BED=12(180°﹣25°)=77.5°∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°故答案选D.【点睛】本题考查等腰三角形的性质;三角形内角和定理;三角形的外角性质.2.有理数a,b在数轴上的位置如图所示,下列各式正确的是()A.a<0 B.b>0 C.a+b>0 D.a+b<0【答案】D【解析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【详解】A. a>0,故错误;B. b<0,故错误;C. ∵a>0,b<0,,∴ a+b<0,故错误;D. ∵a>0,b<0,,∴ a+b<0,正确;故选D.【点睛】本题考查了数轴上点的分布特点,数轴上右边的点表示的数比左边的点表示的数大,在原点左边离原点越近的点表示的数越大,在原点右边离原点越远的点表示的数越大3.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS【答案】D 【解析】根据尺规作图得到OD O D ''=,OC O C ''=,CD C D ''=,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,OD O D ''=,OC O C ''=,CD C D ''=,由SSS 可判定COD C O D '''≅,则A O B AOB '''∠=∠,故选D .【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS 和全等三角形对应角相等是解题的关键.4.下面有4个汽车标志图案,其中不是轴对称图形的是( )A .B .C .D .【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,B 、是轴对称图形,C 、是轴对称图形,D 、不是轴对称图形,所以D 选项是正确的.【点睛】本题主要考查了轴对称图形与中心对称图形的概念,熟悉掌握概念是关键.5.点D 、E 分别在级段AB 、AC 上,CD 与BE 相交于点O ,已知AB =AC ,添加以下哪一个条件不能判定△ABE ≌△ACD ( )A .∠B =∠CB .∠BEA =∠CDAC .BE =CD D .CE =BD【答案】C 【解析】把选项代入,可知A 、B 、D 都符合全等三角形的判定,只有C 项不符合.【详解】添加A 选项中条件可用ASA 判定两个三角形全等;添加B 选项以后是AAS ,判定两个三角形全等;添加C 是SSA ,无法判定这两个三角形全等;添加D 因为AB=AC ,CE =BD ,所以AD=AE ,又因为∠A=∠A ,AB=AC 所以,这两个三角形全等,SAS. 故选C .【点睛】本题考查全等三角形的判定,要掌握ASA ,SSS ,SAS ,AAS 是解题的关键.6.下面四个图形中,1∠和2∠是同位角的是( )A .②③④B .①②③C .①②③④D .①②④【答案】D 【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:根据同位角的定义,可得图①②④中,∠1与∠2在两直线的同侧,并且在第三条直线(截线)的同旁,故是同位角,而图③中,∠1与∠2不是两条直线被第三条直线所截形成的同位角. 故选D .【点睛】本题主要考查了同位角的定义,解题时注意:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.7.在平面直角坐标系中,点(﹣6,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】根据平面直角坐标系中,点在各象限中的符号特征进行分析.即:第一(+,+),第二(-,+),第三(-,-),第四(+,-).【详解】在平面直角坐标系中,点(﹣6,2)在第二象限.故选B【点睛】本题考核知识点:平面直角坐标系.解题关键点:熟记点的坐标与位置特点.8.已知M 是含有字母x 的单项式,要使多项式24+1x M +是某一个多项式的平方,则这样M 的个数有( )A .2个B .3个C .4个D .5个 【答案】B【解析】利用完全平方公式的结构特征判断即可确定出M .【详解】解:已知M 是含有字母x 的单项式,要使多项式24+1x M +是某一个多项式的平方,则这样4M x =±,或者24+1M x +,44M x =,所有有M 的值有3个。

{3套试卷汇总}2018年常州市某名校中学七年级下学期数学期末学业水平测试试题

{3套试卷汇总}2018年常州市某名校中学七年级下学期数学期末学业水平测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法错误的是( )A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】A【解析】分别利用平行线的性质以及垂线的性质分别判断得出答案.【详解】A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A.【点睛】考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键.2.下列图案中,()是轴对称图形.A.B.C.D.【答案】D【解析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列长度的线段能组成三角形的是()A.2,3,5B.4,4,8C.14,6,7D.15,10,9【答案】D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A. 2+3=5,不能组成三角形;B. 4+4=8,不能组成三角形;C. 6+7=13<14,不能组成三角形;D. 9+10>15,能组成三角形。

故选D.【点睛】本题考查三角形,根据三角形的三边关系对选项进行判断是解题关键.4.已知a <b,则下列式子正确的是( )A .a+5>b+5B .3a >3bC .-5a >-5bD .3a >3b 【答案】C【解析】由于a <b ,根据不等式的性质可以分别判定A 、B 、C 、D 是否正确.【详解】解:A 、由a <b 得到a+5<b+5,故本选项不符合题意.B 、由a <b 得到3a <3b ,故本选项不符合题意.C 、由a <b 得到-5a >-5b ,故本选项符合题意.D 、由a <b 得到3a <3b ,故本选项不符合题意. 故选:C .5.如图是七年级二班参加社团活动人数的扇形统计图(每位同学只参加其中一个社团).根据统计图提供的信息,下列结论正确的是( )A .参加摄影社的人数占总人数的12%B .参加篆刻社的扇形的圆心角度数是 70︒C .参加种植社的同学比参加舞蹈社的多8人D .若参加书法社的人数是6人,则该班有50人【答案】D【解析】根据参加摄影社的人数所占度数除以360度可判断A ;20%360=72⨯︒︒可判断B ;根据题中信息无法得到参加种植社的同学比参加舞蹈社的多8人,故C 错误;1-10%-30%-18%-10%-20%=12%,可判断D.【详解】根据参加摄影社的人数所占度数除以360度,可得其占总人数的10%,故A 错误;20%360=72⨯︒︒,参加篆刻社的扇形的圆心角度数是 72︒,故B 错误;根据题中信息无法得到参加种植社的同学比参加舞蹈社的多8人,故C 错误;1-10%-30%-18%-10%-20%=12%,若参加书法社的人数是6人,则该班人数为6=5012%,故D 正确. 【点睛】本题考查扇形统计图,解题的关键是读懂扇形统计图中的信息. 6.小明家位于公园的正东200m 处,从小明家出发向北走300m 就到小华家,若选取小华家为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表1m 长,则公园的坐标是( )A .()300,200--B .()200,300C .()200,300--D .()300,200【答案】C【解析】根据题中“建立平面直角坐标系、公园的坐标”可知,本题考查了用有序数对或用方向和距离来确定物体的位置,运用建立平面直角坐标系的方法进行分析推断.【详解】依据题意建立平面直角坐标系如图所示:由“小明家出发向北走300m 就到小华家”可知小明在小华家的正南方向300m 处,由“小明家位于公园的正东200m ”可知公园在小明家的正西方向200m 处,如图点O 是小华家,点B 是小明家,点A 是公园,故点A 坐标为(-200,-300).【点睛】本题解题关键:能够了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置,能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.7.在227,3.141597,-8320.6,0363π中是无理数的个数有()个. A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:根据无理数的概念可以判断无理数有:7,32,3π共有3个. 故选B .考点:无理数.8.下列图形中,可以由其中一个图形通过平移得到的是( )A .B .C .D . 【答案】B【解析】根据平移的定义直接判断即可.【详解】解:由其中一个图形平移得到整个图形的是B ,故选:B .【点睛】此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动. 9.下列因式分解中正确的是( )A .222(1)x x x x -=-B .2221(1)x x x -+=+C .22()()x y x y x y -+=+-D .243(1)(3)x x x x -+=-- 【答案】D【解析】根据因式分解的方法逐项分析即可.【详解】A. 22(21)x x x x ,故错误;B. 2221(-1)x x x -+=,故错误;C. 22()()x y y x y x -+=+-,故错误;D. 243(1)(3)x x x x -+=--,正确;故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A.点A B.点B C.点C D.点D【答案】D【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.二、填空题题11.不等式﹣3≤5﹣2x≤3的正整数解是_____.【答案】1、2、3、4【解析】先把﹣3≤5﹣2x≤3转化为523523xx-≥-⎧⎨-≤⎩,然后解这个不等式组求出它的解集,再从解集中找出所有的正整数即可.【详解】∵﹣3≤5﹣2x≤3,∴523 523xx-≥-⎧⎨-≤⎩①②,解①得,x≤4,解②得,x≥1,∴不等式组的解集是1≤x≤4,∴不等式﹣3≤5﹣2x≤3的正整数解是1、2、3、4.故答案为:1、2、3、4.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.12.若(a ﹣1)x |a |+3=﹣6是关于x 的一元一次方程,则a=_____;x=_____.【答案】(1)﹣1; (2)92. 【解析】根据一元一次方程的定义和解法结合已知条件进行分析解答即可.【详解】∵方程(a ﹣1)x |a|+3=﹣6是关于x 的一元一次方程,∴101a a -≠⎧⎨=⎩,解得1a =-, ∴原方程为:236x -+=-,解得:92x =. 故答案为:(1)-1;(2)92. 【点睛】 熟知“一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax +b=0(a ,b 是常数且a ≠0)”是解答本题的关键.13.如图,在△ABC 中,AB =8,BC =6,AC 的垂直平分线MN 交AB 、AC 于点M 、N ,则△BCM 的周长为_________.【答案】1.【解析】试题分析:根据线段垂直平分线的性质可得AM=MC,所以△BCM 的周长为BM+MC+BC=BM+AM+BC=AB+BC=8+6=1.考点:线段垂直平分线的性质.14.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A 等级的扇形的圆心角的大小为 .【答案】108°.【解析】试题分析:根据C 等级的人数与所占的百分比计算出参加中考的人数,再求出A 等级所占的百分比,然后乘以360°计算即可得解.试题解析:参加中考的人数为:60÷20%=300人,A 等级所占的百分比为:90300×100%=30%, 所以,表示A 等级的扇形的圆心角的大小为360°×30%=108°.考点:扇形统计图.15.某水果店花费760元购进一种水果40千克,在运输与销售过程中,有5%的水果正常损耗,为了避免亏本,售价至少应定为_____元/千克.【答案】1【解析】设水果店把售价应该定为每千克x 元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x (1-5%),根据题意列出不等式即可.【详解】解:设售价应定为x 元/千克,根据题意得:x (1﹣5%)≥76040, 解得x≥1.故为避免亏本,售价至少应定为1元/千克.故答案为1.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.16.解方程:2236111x x x +=+--. 【答案】7x =【解析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.【详解】解:2236111x x x +=+-- 去分母得解得经检验是原方程的增根∴原方程无解.考点:解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.17.如图,△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为______.【答案】65°【解析】先根据三角形内角和定理求出∠BAC 的度数,再由线段垂直平分线的性质得出∠C =∠CAD ,进而可得出结论.【详解】解:∵△ABC 中,∠B =55°,∠C =30°,∴∠BAC =180°﹣55°﹣30°=95°.∵直线MN 是线段AC 的垂直平分线,∴∠C =∠CAD =30°,∴∠BAD =∠BAC ﹣∠CAD =95°﹣30°=65°.故答案为:65°.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.三、解答题18.已知关于 x , y 的二元一次方程组325x y a x y a-=-⎧⎨+=⎩(a 为实数). (1)若方程组的解始终满足1y a =+,求a 的值.(2)已知方程组的解也是方程31bx y +=(b 为实数,0b ≠ 且6b ≠-)的解.①探究实数a ,b 满足的关系式.②若a ,b 都是整数,求b 的最大值和最小值.【答案】(1)2a =;(2)①624ab a b ++=;②b 有最大值10,b 有最小值22-.【解析】(1)用加减消元法进行求解,即可得到答案;(2)①将21y a =-代入方程①,得到方程组的解为221x a y a =+⎧⎨=-⎩,由题意方程组的解也是方程31bx y +=的解,计算即可得到答案.②由624ab a b ++=可得462a b a -=+,因为a ,b 都是整数,进行计算即可得到答案. 【详解】(1)将方程组②-①,得363y a =- ∴21y a =-1y a =+∴211a a -=+∴2a =(2)①将21y a =-代入方程①,可得2x a =+∴方程组的解为221x a y a =+⎧⎨=-⎩ 方程组的解也是方程31bx y +=的解∴()()23211b a a ++-=∴624ab a b ++=②由624ab a b ++=可得462a b a -=+ ∴()()46221662166222a ab a a a -+--+===-+++ a ,b 都是整数∴21a +=±,2±,4±,8±,16±∴当21a +=时,b 有最大值10当21a +=-时,b 有最小值22-.【点睛】本题考查二元一次方程组和分式,解题的关键是掌握加减消元法求解.19.问题情境:如图1,AB ∥CD ,∠A =30°,∠C =40°,求∠AEC 的度数.小明的思路是:(1)初步尝试:按小明的思路,求得∠AEC 的度数;(2)问题迁移:如图2,AB ∥CD ,点E 、F 为AB 、CD 内部两点,问∠A 、∠E 、∠F 和∠D 之间有何数量关系?请说明理由;(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B 与∠D之问的数量关系.【答案】(1)70° (2)答案见解析(3)∠B+∠D=160°【解析】(1)添加辅助线,转化基本图形,过E作EM∥AB,利用平行线的性质可证得∠A=∠AEM,∠C=∠CEM,再证明∠AEC=∠A+∠C,继而可解答问题;(2)添加辅助线,转化两直线平行的基本图形,过点E作EM∥AB, 过点F作FN∥AB,利用平行线的性质可证AB∥ME∥FN∥CD,再根据两直线平行,内错角相等,可证得∠A=∠AEM,∠MEF=∠EFN,∠D=∠DFN,然后将三式相加,可证得结论;(3)过点E作EH∥AB,过点F作FM∥AB,结合已知可证得AB∥CD∥FM∥EH,利用两直线平行,同位角相等,同旁内角互补,可证∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,再将三个等式相加,整理可得到∠B+∠D=180°+∠BEF-∠EFD,然后由∠BEF+∠EFG=160° ,可推出∠BEF-∠EFD=-20°,整体代入求出∠B+∠D的值.【详解】(1)如图,过E作EM∥AB,∵AB∥CD,∴AB∥ME∥CD,∴∠A=∠AEM,∠C=∠CEM,∴∠AEC=∠A+∠C=70°;(2)∠A+∠EFD=∠AEF+∠D理由如下:过点E作EM∥AB, 过点F作FN∥AB∵AB∥CD,∴AB∥ME∥FN∥CD,∴∠A=∠AEM,∠MEF=∠EFN,∠D=∠DFN,∴∠A+∠EFD=∠AEF+∠D;(3)过点E作EH∥AB,过点F作FM∥AB,∵AB∥CD,∴AB∥CD∥FM∥EH,∴∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,∴∠B+∠EFM+∠MFD+∠D=180°+∠BEH+∠HEF,∴∠B+∠D+∠EFD=180°+∠BEF,∴∠B+∠D=180°+∠BEF-∠EFD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点(39,1)M a a --在第三象限,则点a 的取值范围是( )A .3a <B .1a >C .13a <<D .空集【答案】C【解析】根据第三象限点的符号特点列出不等式组,解之可得.【详解】解:根据题意知 39010a a -⎧⎨-⎩<<, 解得1<a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.若x 2﹣kxy+9y 2是一个两数和(差)的平方公式,则k 的值为( )A .3B .6C .±6D .±81【答案】C【解析】利用完全平方公式的结构特点即可确定.【详解】解:∵x 2﹣kxy+9y 2=x 2﹣kxy+(±3y )2,且是一个两数和(差)的平方公式,∴﹣k =±1,则k =±1.故选:C .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式的结构特点是解此题的关键.3.如果关于x 的不等式(m+1)x >m+1的解集为x <1,则m 的取值范围是( )A .m <0B .m <﹣1C .m >1D .m >﹣1 【答案】B【解析】试题解析:∵不等式(m+1)x >m+1的解集为x <1,∴m+1<0, 1,m ∴<-故选B .4.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A.20 B.24 C.25 D.26 【答案】D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=12(AB+EH)×BE=12(8+5)×4=1.故选D.5.如果点P(m,1﹣2m)在第一象限,那么m的取值范围是()A.0<m<12B.﹣12<m<0 C.m<0 D.m>12【答案】A【解析】根据第一象限内点的横坐标与纵坐标都是正数,列出不等式组求解即可.【详解】解:∵点P(m,1﹣2m)在第一象限,∴120mm>⎧⎨->⎩①②,由②得,m<12,所以,m的取值范围是0<m<12.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.方程组2237x yx y-=⎧⎨-=⎩的解为()A.13xy=⎧⎨=⎩B.13xy=-⎧⎨=⎩C.13xy=-⎧⎨=-⎩D.31xy=⎧⎨=⎩【答案】C【解析】用加减消元法由①×3-②即可求出x=-1,然后再代入①即可解答.【详解】解:2237x yx y-=⎧⎨-=⎩①②,由①×3-②得:x=-1,把x=-1代入①,解得:y=-3,故原方程组的解为:13 xy=-⎧⎨=-⎩,故选C.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.7.如图,将Rt∆ABC绕直角项点C顺时针旋转90°,得到∆A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A.70°B.65°C.60°D.55°【答案】B【解析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将Rt∆ABC绕直角项点C顺时针旋转90°,得到∆A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.8.如图,长方形ABCD中,AB=8,第一次平移长方形ABCD沿AB的方向向右平移6个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移6个单位,得到长方形A2B2C2D2,……第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1的方向平移6个单位,得到长方形A n B n∁n D n(n>2),若AB n的长度为2018,则n的值为()A.334 B.335 C.336 D.337【答案】B【解析】根据平移的性质得出AA 1=6,A 1A 2=6,A 2B 1=A 1B 1﹣A 1A 2=8﹣6=2,进而求出AB 1和AB 2的长,然后根据所求得出数字变化规律,进而得出AB n =(n+1)×6+2求出n 即可.【详解】∵AB=8,第1次平移将矩形ABCD 沿AB 的方向向右平移6个单位,得到矩形A 1B 1C 1D 1, 第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移6个单位,得到矩形A 2B 2C 2D 2…,∴AA 1=6,A 1A 2=6,A 2B 1=A 1B 1﹣A 1A 2=8﹣6=2,∴AB 1=AA 1+A 1A 2+A 2B 1=6+6+2=14,∴AB 2的长为:6+6+8=20;∵AB 1=2×6+2=14,AB 2=3×6+2=20,∴AB n =(n+1)×6+2=2018,解得:n=1.故选B .【点睛】本题考查了平移的性质,根据平移的性质得出AA 1=6,A 1A 2=6是解题的关键.9.按如下程序进行运算:并规定,程序运行到“结果是否大于 65”为一次运算,且运算进行 3 次才停止。

则可输 入的整数 x 的个数是( )A .5 个B .6 个C .7 个D .8 个【答案】D【解析】根据程序可以列出不等式组,即可确定x 的整数值,从而求解.【详解】根据题意得:第一次:2x−1第二次:2(2x−1)−1=4x−3第三次:2(4x−3)−1=8x−7 根据题意得: 216543658765x x x -≤⎧⎪-≤⎨⎪->⎩解得:917x <≤则x 的整数值是:10,11,12,13,14,15,16,17.共有8个故选D.【点睛】本题考查了一元一次不等式组的应用,解答本题的关键是正确理解题意,列出不等式组.10.如图,在平面直角坐标系上有点()01,0A ,点0A 第一次跳动至点()11,1A -,第二次点1A 跳动至点()22,1A ,第三次点2A 跳动至点()32,2A -,第四次点3A 跳动至点()43,2A ,……依此规律跳动下去,则点2019A 与点2020A 之间的距离是( )A .2021B .2020C .2019D .2018【答案】A 【解析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动的横坐标是相邻的下次偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2019与点A 2020的坐标,进而可求出点A 2019与点A 2020之间的距离.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n ),则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点A 2019的坐标是(﹣1010,1010).∵点A 2019与点A 2020的纵坐标相等,∴点A 2019与点A 2020之间的距离=1011﹣(﹣1010)=1. 故选A .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题题11.写出方程2+5=3x y 的一个整数解:__________.【答案】答案不唯一,如1 1x y =-⎧⎨=⎩,4 1x y =⎧⎨=-⎩. 【解析】把y 看作已知数表示出x ,即可确定出整数解. 【详解】方程整理得:x=352y -, 当y=1时,x=-1,则方程的整数解为1 1x y =-⎧⎨=⎩等(答案不唯一),故答案为:11xy=-⎧⎨=⎩等(答案不唯一)【点睛】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.12.若不等式组0,x bx a-<⎧⎨+>⎩的解集为2<x<3,则关于x,y的方程组521ax yx by+=⎧⎨-=⎩的解为___________.【答案】43 xy=-⎧⎨=-⎩【解析】分析:根据已知解集确定出a与b的值,代入方程组求出解即可.详解:根据题意得:a=-2,b=3,代入方程组得:25 231x yx y-+⎧⎨-⎩=①=②,①+②得:-2y=6,即y=-3,把y=-3代入①得:x=-4,则方程组的解为43 xy-⎧⎨-⎩==,故答案为:43 xy-⎧⎨-⎩==点睛:此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是________.【答案】3500【解析】根据样本容量的定义可直接作答.【详解】样本容量指数据中提取的总量,要考察某区3500名毕业生的数学成绩,则样本容量就是3500. 【点睛】此题重点考察学生对样本容量的理解,掌握其定义是解题的关键.14_____.【答案】2【解析】∵,4的算术平方根是2,∴ 2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.15.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.【答案】822x <≤【解析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤1;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x >8;综上可得:8<x≤1.故答案为:8<x≤1.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式. 16.如图,已知△OAB 中,∠AOB=70°,∠OAB 的角平分线与△OBA 的外角∠ABN 的平分线所在的直线交于点D ,则∠ADB 的大小为______.【答案】35°【解析】根据三角形的外角的性质得到∠ABN-∠OAB=∠AOB=70°,根据角平分线的定义计算即可.【详解】解:∵AD 平分∠OAB ,BC 平分∠ABN ,∴∠ABC=12∠ABN ,∠BAD=12∠OAB , ∵∠ABN=∠OAB+∠AOB ,∠AOB=70°,∴∠ABN-∠OAB=∠AOB=70°,∴∠ADB=∠ABC-∠BAD=12(∠ABN-∠OAB)=35°, 故答案为:35°.【点睛】本题考查三角形的外角的性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.17.33627-+ =___________________【答案】-3【解析】原式=633-+=-.三、解答题18.已知:如图,在ABC ∆中,90ACB ︒∠=,CD 是高,AE 是ABC ∆内部的一条线段,AE 交CD 于点F ,交CB 于点E ,且CFE CEF ∠=∠.求证:AE 平分CAB ∠.【答案】详见解析【解析】根据CD AB ⊥,可得29090AFD CFE ∠=︒-∠=︒-∠,再根据余角的性质可得190ECF ∠=︒-∠,通过CFE CEF ∠=∠,即可证明21∠=∠,从而得证AE 平分CAB ∠.【详解】证明: ,CD AB ⊥∴在AFD ∆中,29090AFD CFE ∠=︒-∠=︒-∠90,ACE ∠=︒在 AEC ∆中190ECF ∴∠=︒-∠CFE CEF ∠=∠21∴∠=∠即AE 平分CAB ∠.【点睛】本题考查了角平分线的证明问题,掌握余角的性质、角平分线的性质以及判定定理是解题的关键.19.如图,将等腰直角三角形ABC 的直角顶点置于直线m 上,过,A B 两点分别作直线m 的垂线,垂足分别为点,D E ,请你写出图中的一对全等三角形,并写出证明过程.【答案】全等三角形为:ACD CBE ≌,证明见解析.【解析】全等三角形为:ACD CBE ≌,根据已知条件易证090ADC CEB ∠=∠=,CAD BCE ∠=∠,AC BC =,再利用AAS 即可证得ACD CBE ∆∆≌.【详解】全等三角形为:ACD CBE ≌证明如下:由题意知:90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒CAD BCE ∴∠=∠ ABC 为等腰直角三角形AC BC ∴=因为AD m BE m ⊥⊥,90ADC CEB ∠=∠=在ACD 与CBE △中,90ADC CEB CAD BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ACD CBE ∴≌【点睛】本题考查了全等三角形的判定方法,判定三角形全等的方法有:SSS 、SAS 、ASA 、AAS 、HL (判定直角三角形全等).20.已知点P (3m ﹣6,m+1),试分别根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点P 在x 轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【答案】(1)点P的坐标为(0,3);(2)点P的坐标为(﹣9,0);(3)点P的坐标为(﹣3,2);(4)点P的坐标为(﹣3,2).【解析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标为0求得m的值,代入点P的坐标即可求解;(3)让纵坐标-横坐标=5得m的值,代入点P的坐标即可求解;(4)让纵坐标为2求得m的值,代入点P的坐标即可求解.【详解】(1)∵点P(3m-6,m+1)在y轴上,∴3m-6=0,解得:m=2,∴m+1=1+2+1=3-,∴点P的坐标为:(0,3);(2)∵点P(3m-6,m+1)在x轴上,∴m+1=0,解得:m=-1,∴3m-6=3×(-1)-6=-9,∴P点坐标为:(-9,0).(3)∵点P(3m-6,m+1)的点P的纵坐标比横坐标大5,∴m+1-(3m-6)=5, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).(4) ∵点P(3m-6,m+1)在过点A(-1,2),并且与x轴平行的直线上,∴m+1=2, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).21.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB ,再利用三角形内角和可求得∠A .(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC 、∠ACB 的三等分线交于点 E 、D;ABE EBD DBC x ACE ECD DCB y ∴∠=∠=∠=∠=∠=∠=设22EBC x ECB y ∴∠=∠=, , ∠ABC=3x,∠ACB=3y1+180,2180EBC DCB ECB DBC ∠∠+∠=∠+∠+∠=130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360°即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°(2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;∴∠=∠=∠=∠=∠=设ABD DBE EBC x ACE DCB y,∴∠=∠=ABC x ACB y32710879=120÷9【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.22.学习概念:三角形一边的延长线与三角形另一边的夹角叫做三角形的外角.如图1中∠ACD是△AOC的外角,那么∠ACD与∠A、∠O之间有什么关系呢?分析:∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO∴∠ACD=∠A+,结论:三角形的外角等于与它不相邻的两个内角的.问题探究:(1)如图2,已知:∠AOB=∠ACP=∠BDP=60°,且AO=BO,则△AOC△OBD;(2)如图3,已知∠ACP=∠BDP=45°,且AO=BO,当∠AOB=°,△AOC≌△OBD;应用结论:(3)如图4,∠AOB=90°,OA=OB,AC⊥OP,BD⊥OP,请说明:AC=CD+BD.拓展应用:(4)如图5,四边形ABCD,AB=BC,BD平分∠ADC,AE∥CD,∠ABC+∠AEB=180°,EB=5,求CD的长.【答案】∠O,和;(1)≌;(2)41°;(3)见解析;(4)CD=1.【解析】学习概念:∠ACD=∠A+∠O,理由是等量代换,所以得到结论:三角形的外角等于与它不相邻的两个内角的和.问题探究:(1)由邻补角互补可知∠ACO=∠ODB=120°,由外角性质可知∠AOC+∠OAC =∠ACP=60°,等量代换得∠OAC=∠BOD,进而可证三角形△AOC和△OBD全等.(2)当∠AOB=41°时,△AOC≌△OBD,证法同(1).(3)先证明△AOC≌△OBD,可得OC=BD,AC=OD,进而可证AC=CD+BD.(4)在DB上取一点F使CF=CD,由BD平分∠ADC,AE∥CD,可得∠AED=∠CFD,再利用等量代换,可得∠BAE=∠CBF,然后可证△ABE≌△BCF,进而可得CD=BE=1.【详解】解:学习概念:∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO∴∠ACD =180°﹣(180°﹣∠A ﹣∠O)=∠A+∠O ,即:三角形的外角等于与它不相邻的两个内角的和,故答案为:∠O ,和.问题探究:(1)∵∠ACP =∠BDP =60°,∴∠ACO =∠ODB =120°,∠AOC+∠OAC =∠ACP =60°,∵∠AOB =∠AOC+∠BOD =60°,∴∠OAC =∠BOD ,在△AOC 和△OBD 中,ACO ODB OAC BOD OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△OBD(AAS),故答案为:≌.(2)当∠AOB =41°时,△AOC ≌△OBD ,理由如下,同(1)∵∠ACP =∠BDP =41°,∴∠ACO =∠ODB =131°,∠AOC+∠OAC =∠ACP =41°,∵∠AOB =∠AOC+∠BOD =41°,∴∠OAC =∠BOD ,在△AOC 和△OBD 中,ACO ODB OAC BOD OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△OBD(AAS),故当∠AOB =41°时,△AOC ≌△OBD.(3)∵AC ⊥OP ,BD ⊥OP ,∴∠ACO =∠ODB =90°,∴∠1+∠3=90°,∵∠AOB =90°,∴∠2+∠3=90°,∴∠1=∠2,∴△AOC ≌△OBD ,∴OC =BD ,AC =OD ,∴AC =OD =OC+CD =BD+CD,(4)如图1,在DB 上取一点F 使CF =CD ,∴∠CFD =∠CDF ,∵BD 平分∠ADC ,∴∠ADB =∠CDB ,∴∠CFD =∠CDF =∠ADB ,∵AE ∥CD ,∴∠BDC =∠AED ,∴∠AED =∠CFD ,∵∠AEB+∠AFD =180°,∠AEB+∠ABC =180°,∴∠AED =∠ABC ,∴∠AEB =∠BFC ,∵∠AED =∠ABE+∠BAE ,∠ABC =∠ABE+∠CBF ,∴∠BAE =∠CBF ,∵AB =BC ,∴△ABE ≌△BCF ,∴CF =BE ,∴CD =CF =BE =1.【点睛】本题考查了三角形的内角和定理和全等三角形的判定与性质.熟练掌握相关性质定理是解题关键. 23.如图,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余.(1)求证:ED ∥AB ;(2)过点D 画直线MN ,使MN ∥OC 交AB 于点N ,若∠EDM =25°,补全图形,并求∠1的度数.【答案】(1)见解析;(2)补全图形见解析;∠1=25°.【解析】(1)先求出EDO DOC 1801∠+∠+∠=︒,再根据平行线的判定推出即可;(2)根据平行线的性质求出EDO DOC 1801∠+∠+∠=︒,求出∠EDO ,再根据∠EDO 与∠1互余求出∠1即可.【详解】(1)证明:∵OC OD ⊥,∠EDO 与∠1互余∴90DOC ∠=︒ ,EDO 190∠+∠=︒ ,∴EDO DOC 1801∠+∠+∠=︒,即D DOA 810∠+∠=︒,∴ED AB ∥;(2)解:如图,∵MN OC ∥,∴MDO DO 0C 18∠+∠=︒,∵90DOC ∠=︒,∴MDO 90∠=︒,∵EDM 25∠=︒,∴EDO 902565︒-︒=∠=︒,∵EDO 190∠+∠=︒,∴0651925∠=︒-︒=︒.【点睛】本题考查了平行线的性质和判定,余角等知识点,能熟练地运用平行线的性质和判定定理进行推理是解此题的关键.24.A ,B 两地相距100千米,甲,乙两人骑车同时分别从A 、B 两地相向而行,假设他们都保持匀速行驶,直线l 1,l 2分别表示甲,乙两人与A 地的距离S (单位:km )与行驶时间t (单位:h )之间关系的图象. 根据图象提供的信息,解答下列问题:(1)甲、乙两人的速度分别是多少?(2)经过多长时间,两人相遇?(3)分别写出甲,乙两人与A 地的距离S (单位:km )与行驶时间t (单位:h )之间的关系式.【答案】(1)甲的速度为: 15(km/h ),乙的速度为: 20(km/h );(2)经过207小时,两人相遇;(3)甲:s1=15t;乙:s2=﹣20t+1.【解析】(1)利用图象上点的坐标得出甲、乙的速度即可;(2)利用待定系数法求出直线l1、l2的解析式,利用两函数相等进而求出相遇的时间;(3)由(2)可得结论【详解】解:(1)如图所示:甲的速度为:30÷2=15(km/h),乙的速度为:(1﹣60)÷2=20(km/h);(2)设l1的关系式为:s1=kt,则30=k×2,解得:k=15,故s1=15t;设s2=at+b,将(0,1),(2,60),则100260ba b=⎧⎨+=⎩,解得:20100ab=-⎧⎨=⎩,故l2的关系式为s2=﹣20t+1;15t=﹣20t+1,t=207,答:经过207小时,两人相遇;(3)由(2)可知:甲:l1的关系式为:s1=15t;乙:l2的关系式为:s2=﹣20t+1.【点睛】此题考查一次函数的应用,列出方程是解题关键25.先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣13.【答案】9x﹣5,-1.【解析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【详解】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当13x=-时,原式=195953x⎛⎫-=⨯--⎪⎝⎭=﹣3﹣5=﹣1.【点睛】本题主要考查整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.25的算术平方根是()A.5 B.5±C.5-D.25【答案】A【解析】分析:根据“算术平方根”的定义进行分析判断即可.详解:∵2525=,∴25的算术平方根是5.故选A.点睛:熟记“算术平方根”的定义:“对于一个非负数x,若x2=a,则x叫做a的算术平方根”是解答本题的关键.2.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【解析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10【答案】C+<不能构成三角形.【解析】试题解析:C.5612,故选C.点睛:三角形任意两边之和大于第三边.4.已知在同一平面内有三条不同的直线a b c ,,,下列说法错误的是( )A .如果//,a b a c ⊥,那么b c ⊥B .如果//,b a c a //,那么//b cC .如果,b a c a ⊥⊥,那么b c ⊥D .如果,b a c a ⊥⊥,那么//b c【答案】C【解析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行;同一平面内,垂直于同一直线的两条线平行进行分析判断即可.【详解】解:A. 如果//,a b a c ⊥,那么b c ⊥,说法正确;B. 如果//,b a c a //,那么//b c ,说法正确;C. 如果,b a c a ⊥⊥,那么b c ⊥,说法错误;D. 如果,b a c a ⊥⊥,那么//b c ,说法正确.故选C.【点睛】本题主要考查平行线的判定推理以及其传递性,解此题的关键在于熟练掌握其知识点.5.为应对越来越复杂的交通状况,某城市对其道路进行拓宽改造,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路(米)与时间(天)的关系的大致图象是( ) A . B . C .D .【答案】D【解析】根据y 随x 的增大而减小,即可判断选项A 错误;根据施工队在工作了一段时间后,因雨被迫停工几天,即可判断选项B 错误;根据施工队随后加快了施工进度得出y 随x 的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵y 随x 的增大而减小,∴选项A 错误;∵施工队在工作了一段时间后,因雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.6.如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=110°,则∠AOC的度数是()A.110°B.115°C.120°D.125°【答案】D【解析】∵∠BOC+∠AOD=110°,∠BOC=∠AOD,∴∠BOC=55°,∴∠AOC=180°−55°=125°.故选D.7.关于x的方程323x aa+-=1的解是非负数,则a的取值范围是()A.a≥﹣3 B.a≤﹣3C.a≥﹣3且a≠32-D.a≤﹣3且a≠92-【答案】D【解析】首先解此分式方程,可得x=﹣a﹣3,由关于x的方程的解是非负数,即可得﹣a﹣3≥0且﹣a﹣3≠32,解不等式组即可求得答案.【详解】解:解方程323x ax+-=1,得:x=﹣a﹣3,∵方程323x ax+-=1的解是非负数,∴﹣a﹣3≥0且﹣a﹣3≠32,解得:a≤﹣3且a≠﹣92,故选D.【点睛】考查了分式方程的解法、分式方程的解以及不等式组的解法.此题难度适中,注意不要漏掉分式方程无解的情况.8.若分式方程311x m x x =--无解,则m 的值( ) A .1B .-1C .3D .-3 【答案】C【解析】分式方程无解或者有增根,需要分母10x -=,再代入原方程解答即可.【详解】解: 311x m x x =-- 据题意得3x m =,当1x =时,3m =.故选:C.【点睛】本题考查分式方程无解的情况,理解掌握分式方程的增根是解答关键.9.如图所示,下列结论中不正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是同位角D .2∠和4∠是内错角【答案】A 【解析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】A 、∠1和∠2是同旁内角,故本选项错误,符合题意;B 、∠2和∠3是同旁内角,故本选项正确,不符合题意;C 、∠1和∠4是同位角,故本选项正确,不符合题意;D 、∠2和∠4是内错角,故本选项正确,不符合题意;故选A .【点睛】考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.10.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),……依次扩展下去,则P 2018的坐标为( )A .(﹣503,503)B .(504,504)C .(﹣506,﹣506)D .(﹣505,﹣505)【答案】D 【解析】列式排点找规律即可.【详解】P 1(﹣1,0) P 5(﹣2,1) …P 2(﹣1,﹣1) P 6(﹣2,﹣2) …P 3(1,﹣1) P 7(2,﹣2) …P 4(1,1) P 8(2,2) …由以上各式可知,4组一循环,2018除以4等于504余2,所以,横坐标为505,符号均为“–”.【点睛】规律题可总结为排序列式找规律.二、填空题题11.如图,已知//AB CD ,直线MN 分别交AB ,CD 于点M ,N ,NG 平分MND ∠交AB 于点G ,若1110∠=,则2∠的度数_________.【答案】35【解析】先求得∠3的度数,再根据平行线的性质得出∠3=∠MND ,∠2=∠GND ,再由角平分线的定义即可得出结论.【详解】解:∵∠1=110°,∴∠3=70°,∵AB ∥CD ,∴∠3=∠MND=70°,∠2=∠GND .∵NG 平分∠MND ,∴∠GND=12∠MND=35°,∴∠2=∠GND=35°.故答案为:35°.【点睛】本题考查平行线的性质,解题时注意:两直线平行,同位角相等,内错角相等.12.如图是一组密码的一部分,目前,已破译出“努力发挥”的真实意思是“今天考试”.小刚运用所学的“坐标”知识找到了破译的“钥匙”.他破译的“祝你成功”的真实意思是“_____“.【答案】正做数学【解析】首先利用已知点坐标得出变化得出祝你成功对应点坐标,进而得出真实意思.【详解】由题意可得:“努”的坐标为(4,4),对应“今”的坐标为:(3,2);“力”的坐标为(6,3),对应“天”的坐标为:(5,1);故“祝你成功”对应点坐标分别为:(5,4),(6,8),(8,4),(3,6),则对应真实坐标为:(4,2),(5,6),(7,2),(2,4),故真实意思是:正做数学.故答案为:正做数学.【点睛】此题主要考查了坐标确定位置,正确得出坐标的变化规律是解题关键.13.若264a=3a=______.【答案】±2【解析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.3a故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..14.如图,将三角板ABC 沿BC 方向平移,得到三角形''A CC .已知30B ∠=︒,90ACB ∠=︒,则'BAA ∠的度数为_____.【答案】150°【解析】根据平移的性质,可得AA′与BC 是平行的,根据平行线的性质,可得答案.【详解】解:由将三角尺ABC 沿BC 方向平移,得到三角形A′CC′,得AA′∥BC .由AA′∥BC ,得∠BAA′+∠B=180°.由∠B=30°,得∠BAA′=150°.故答案为:150°.【点睛】本题考查了平移的性质,利用了平移的性质:对应点所连的线段平行或在同一条直线上.15.如图,点O 为直线AB 上一点,OC ⊥OD ,如果∠1=35°,那么∠2的度数是______________;【答案】55°【解析】分析:由OC ⊥OD ,得到∠COD=90°,再根据∠1+∠2=90°,即可得出结论.详解:∵OC ⊥OD ,∴∠COD=90°,∴∠2=90°-∠1=90°-35°=55°.故答案为55°.点睛:本题主要考查角的运算,比较简单.16.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 0007(毫米2),这个数用科学记数法表示为__________.【答案】1×10-1【解析】考点:科学记数法—表示较小的数.分析:科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.本题0.000 000 1<1时,n 为负数. 解:0.000 000 1=1×10-1.故答案为1×10-1.17.等腰三角形的一个外角是80,则这个等腰三角形的底角度数是___.【答案】40【解析】将80°角分为底角的外角和顶角的外角两种情况讨论即可.【详解】①若80°是顶角的外角时,该三角形的顶角为18080100︒-︒=︒底角=180100402︒-︒=︒ ②若80°是底角的外角时,该三角形的底角为18080100︒-︒=︒100100200180︒+︒=︒>︒不符合三角形内角和定理,此情况不存在.故答案为40°.【点睛】本题考查了等腰三角形的性质,当三角形的外角不确定是底角的外角还是顶角的外角时,要分类讨论,再根据三角形的内角和等于180°求解.三、解答题18.小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是_______米,小红在商店停留了_______分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?【答案】(1)1500,4;(2)450米/分【解析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度.【详解】(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,1214x ≤≤时,直线量陡,故小红在12-14分钟最快,速度为15006004501412-=-米/分. 【点睛】此题考查函数的图象,解题关键在于正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC 平移,使点A移动到点A',点B、C的对应点分别是点B'、C'.(1)△ABC的面积是;(2)画出平移后的△A'B'C';(3)若连接AA'、CC′,这两条线段的关系是.【答案】(1)72;(2)见解析;(3)平行且相等.【解析】(1)利用割补法求解可得;(2)由点A及其对应点A′得出平移方式为:先向左移5格,再向下移2格,据此作出点B和点C的对应点,再顺次连接即可得;(3)根据平移变换的性质可得答案.【详解】解:(1)△ABC的面积是3×3﹣12×1×2﹣12×2×3﹣12×1×3=72,故答案为72;(2)如图所示,△A'B'C'即为所求,(3)若连接AA'、CC′,这两条线段的关系是平行且相等,故答案为平行且相等.【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及割补法求三角形的面积.20.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):。

相关文档
最新文档