【课堂新坐标】2016-2017学年高中数学人教A版选修2-1 第三章 空间向量与立体几何 3.1.1、3.1.2 含答案
高中数学第三章空间向量与立体几何1空间向量及其运算5空间向量运算的坐标表示3课件新人教A版选修2

变式训练
已知 a=(1,2,12),b=(12,-12,1),c=(-2,3, -12),d=(1,-32,14).
求证:a⊥b,c∥d.
证明: ∵ a= (1,2,12), b= (12,-12,1), ∴a·b=1×12+2×(-12)+12×1=0. ∴ a⊥ b. ∵ c= (- 2,3,-12), d= (1,-32,14), ∴ c=- 2(1,-32,14)=- 2d. ∴ c∥ d.
(1)求证:EF⊥CF; (2)求E→F与C→G所成角的余弦值; (3)求 CE 的长. [分析] 可建立空间直角坐标系,利用向量的坐 标形式解题.
[解] 建立如图 3 所示的空间直角坐标系 D-xyz, 则 D(0,0,0),E(0,0,12),C(0,1,0), F(12,12,0),G(1,1,12).
[解] (1)如图 1,以 D 为原点,DA,DC,DD1 所在的直线为 x,y,z 轴建立空间直角坐标系,设 AA1=a,
则 B(4,4,0),N(2,2,a), A(4,0,0),M(2,4,a2),
图1
∴B→N= (- 2,- 2, a), A→M= (- 2, 4,a),
2 由B→N⊥A→M得B→N·A→M = 0, ∴4-8+a2=0,a=2 2,
b32.
2.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,a2,a3),B(b1, b2, b3),则: (1)A→B= (b1- a1, b2- a2, b3- a3); (2)AB= |A→B|=
b1- a1 2+ b2- a2 2+ b3- a3 2.
如何理解空间向量的坐标运算与平面向量的坐 标运算间的关系?
|E→F|= |C→G|=
2016-2017年数学·人教A版选修2-1课件:3.2第1课时空间向量与平行关系

解:(1)①因为 a=(4,6,-2),b=(-2,-3,1), 所以 a=-2b,所以 a∥b,所以 l1∥l2. ②因为 a=(5,0,2),b=(0,1,0), 所以 a·b=0,所以 a⊥b,所以 l1⊥l2.
第十七页,编辑于星期五:十七点 四十八分。
第十五页,编辑于星期五:十七点 四十八分。
(2)设 u,v 分别是不同的平面 α,β 的法向量,根据 下列条件判断 α,β 的位置关系;
①u=(-1,1,-2),v=3,2,-12; ②u=(3,0,0),v=(-2,0,0); (3)设 u 是平面 α 的法向量,a 是直线 l 的方向向量, 根据下列条件判断平面 a 与 l 的位置关系: ①u=(2,2,-1),a=(-6,8,4); ②u=(2,-3,0),a=(8,-12,0).
第三页,编辑于星期五:十七点 四十八分。
[知识提炼·梳理] 1.直线的方向向量 直线的方向向量是指和这条直线平行或共线的向 量.
第四页,编辑于星期五:十七点 四十八分。
温馨提示 一条直线的方向向量不唯一.直线的方向向量有无数 条,它们都是平行向量.
第五页,编辑于星期五:十七点 四十八分。
2.平面的法向量 直线 l⊥α,取直线 l 的方向向量 a,则 a 叫做平面 α 的法向量. 温馨提示 平面的法向量不唯一,平面的法向量有无数条,它们 都是平行向量.
第二十三页,编辑于星期五:十七点 四十八分。
(3)因为 a=(1,-4,-3),u=(2,0,3), 所以 a 和 u 既不共线,也不垂直, 所以 l 与 α 斜交. (4)因为 a=(3,2,1),u=(-1,2,-1), 所以 a·u=-3+4-1=0,所以 a⊥u, 所以 l⊂α 或 l∥α.
2016-2017学年高中数学第三章空间向量与立体几何3.1.2空间向量的数乘运算高效测评新人教A版选修2-1资料

2016-2017学年高中数学 第三章 空间向量与立体几何 3.1.2 空间向量的数乘运算高效测评 新人教A 版选修2-1一、选择题(每小题5分,共20分)1.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |⇔cos 〈a ,b 〉=1⇔〈a ,b 〉=0,当a 与b 反向时,不能成立.答案: A2.已知空间四边形ABCD 的对角线为AC ,BD ,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B.CG →C.BC →D.12BC → 解析: AB →+12(BD →+BC →)=AB →+BG →=AG →.答案: A3.下列条件使M 与A ,B ,C 一定共面的是( ) A.OM →=2OA →-OB →+OC → B.OM →+OA →+OB →+OC →=0 C.OM →=15OA →+23OB →+12OC →D.MA →+MB →+MC →=0解析: 根据共面向量定理知A ,B ,C 均错,只有D 能使其一定共面. 答案: D4.对于空间任一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →,则x +y +z =1是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件解析: 若x +y +z =1,则OP →=(1-y -z )OA →+yOB →+zOC →,即AP →=yAB →+zAC →,由共面定理可知向量AP →,AB →,AC →共面,所以P ,A ,B ,C 四点共面;反之,若P ,A ,B ,C 四点共面,当O 与四个点中的一个(比如A 点)重合时,OA →=0,x 可取任意值,不一定有x +y +z =1,故选B.答案: B二、填空题(每小题5分,共10分)5.命题:①向量a ,b ,c 共面,则它们所在的直线也共面;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM →=13OA →+13OB→+13OC →,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是________.解析: ①中a 所在的直线其实不确定,故①是假命题;②中当a =0,而b ≠0时,则找不到实数λ,使b =λa ,故②是假命题;③中M 是△ABC 的重心,故M 在平面ABC 上且在△ABC 内,故③是真命题.答案: ③6.在长方体ABCD -A 1B 1C 1D 1中,AC →+AB 1→+AD 1→与向量AC 1→之间的关系是________. 解析: ∵AC 1→=AB →+AD →+AA 1→,AC →=AB →+AD →,AB 1→=AB →+AA 1→,AD 1→=AD →+AA 1→,∴AC →+AB 1→+AD 1→=2AC 1→.答案: AC →+AB 1→+AD 1→=2AC 1→三、解答题(每小题10分,共20分)7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线. 证明: 设AB →=a ,AD →=b ,AA 1→=c .∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a=a -23b -c ,∴EF →=25EB →.又∵EF →与EB →有公共点E , 所以E ,F ,B 三点共线.8.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解析: ∵AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC →=-OA →+12OC →=-OA →+12(OD →+DC →)=-OA →+12(OD →+AB →)=-OA →+12OD →+12(OB →-OA →)=-32OA →+12OD →+12OB →,∴x =12,y =-32.9. (10分)如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接PA ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△PAB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. 解析: (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R , 连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形, ∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →) =32(PF →-PE →)+32(PH →-PE →) =32(EF →+EH →). 又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面. (2)平行.证明如下: 由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG ∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE →=32EF →,∴MN →∥EF →.即EF ∥平面ABCD .又∵EG∩EF=E,∴平面EFGH与平面ABCD平行.。
2016-2017学年高中数学 第3章 空间向量与立体几何 3.1.3 空间向量的数量积运算课时作业 新人教a版选修2-1

3.1.3 空间向量的数量积运算课时目标 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中的夹角及距离问题.1.空间向量的夹角 定义 已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角记法 范围 ,想一想:〈a ,b 〉与〈b ,a 〉相等吗?〈a ,b 〉与〈a ,-b 〉呢? 2.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a·b . (2)数量积的运算律(3)一、选择题1.设a 、b 、c 是任意的非零向量,且它们相互不共线,下列命题: ①(a·b )·c -(c·a )·b =0; ②|a |-|b |<|a -b |;③(b ·a )·c -(c ·a )·b 不与c 垂直;④(3a +2b )·(3a -2b )=9|a |2-4|b |2. 其中正确的有( )A .①②B .②③C .③④D .②④2.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |等于( ) A.7 B.10 C.13 D .44.在棱长为1的正四面体ABCD 中,E,F 分别是BC,AD 的中点,则AE ·CF →等于( )A .0 B.12 C .-34 D .-125.如图,已知PA ⊥平面ABC ,∠ABC =120°,PA =AB =BC =6,则PC 等于( ) A .6 2 B .6 C .12 D .144 6.若向量m 垂直于向量a 和b ,向量n =λa +μb (λ,μ∈R 且λ、μ≠0),则( ) A .m∥n B .m⊥nC .m 不平行于n ,m 也不垂直于nD .以上三种情况都有可能 二、填空题 7.已知a ,b 是空间两向量,若|a |=3,|b |=2,|a -b |=7,则a 与b 的夹角为________.8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3,则|a +b |=________.9.在△ABC 中,有下列命题: ①AB →-AC →=BC →; ②AB →+BC →+CA =0; ③(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形;④若AC →·AB →>0,则△ABC 为锐角三角形. 其中正确的是________.(填写正确的序号) 三、解答题 10.如图,已知在空间四边形OABC 中,OB =OC ,AB =AC .求证:OA ⊥BC .11.在正四面体ABCD 中,棱长为a ,M 、N 分别是棱AB 、CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.能力提升12.平面式O,A.B 三点不共线,设OA →=a ,OB =b ,则△OAB 的面积等于( )A.|a |2|b |2-a ·b 2B.|a |2|b |2+a ·b 2C.12|a |2|b |2-a ·b 2D.12|a |2|b |2+a ·b 2 13.如图所示,已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB ,且AB =7,AC =BD =24,线段BD 与α所成的角为30°,求CD 的长.3.1.3 空间向量的数量积运算知识梳理 1.〈a ,b 〉 [0,π]2.(2)λ(a·b ) b·a a·b +a·c(3)①a·b =0 ②|a|·|b | -|a|·|b | ③a·b|a||b |作业设计1.D [①错;②正确,可以利用三角形法则作出a -b ,三角形的两边之差小于第三边;③错,当b ·a =c·b =0时,(b·a )·c -(c·a )·b 与c 垂直;④正确,直接利用数量积的运算律.]2.A [a·b =|a||b |cos 〈a ,b 〉=|a||b |⇔cos 〈a ,b 〉=1⇔〈a ,b 〉=0,当a 与b 反向时,不能成立.]3.C [|a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=1+6·cos 60°+9=13.∴|a +3b |=13.]4.D [AE →·CF →=12(AB →+AC →)·12AD AC ⎛⎫- ⎪⎝⎭=14AB →·AD →+14AC →·AD →-12AB →·AC →-12|AC →|2=14cos 60°+14cos 60°-12cos 60°-12=-12.] 5.C [∵PC →=PA →+AB →+BC →, ∴|PC →|2=(PA →+AB →+BC →)2=PA →2+AB →2+BC →2+2PA →·AB →+2PA →·BC →+2AB →·BC →=108+2×6×6×12=144,∴|PC →|=12.]6.B [由题意m⊥a ,m ⊥b ,则有m·a =0,m·b =0, m·n =m (λa +μb )=λm·a +μm·b =0, ∴m⊥n .] 7.60°解析 由|a -b |=7,得(a -b )2=7,即|a |2-2a·b +|b |2=7,∴2a·b =6,∴|a||b |cos 〈a ,b 〉=3,∴cos 〈a ,b 〉=12,〈a ,b 〉=60°.即a 与b 的夹角为60°.8.7解析 |a +b |=a 2+2a·b +b 2=1+2×2×12+4=7.9.②③解析 ①错,AB →-AC →=CB →;②正确;③正确,|AB →|=|AC →|;④错,△ABC 不一定是锐角三角形.10.证明 ∵OB =OC ,AB =AC ,OA =OA , ∴△OAC ≌△OAB .∴∠AOC =∠AOB . ∵OA →·BC →=OA →·(OC →-OB →) =OA →·OC →-OA →·OB → =|OA →||OC →|cos ∠AOC -|OA →||OB →|·cos∠AOB =0,∴OA ⊥BC . 11.解如图所示,|AB →|=|AC →|=|AD →|=a ,把题中所用到的量都用向量AB →、AC →、AD →表示,于是MN →=MB →+BC →+CN → =23AB →+(AC →-AB →)+13(AD →-AC →)=-13AB →+13AD →+23AC →. 又AD →·AB →=AB →·AC →=AC →·AD →=|AD →|2cos 60°=12|AD →|2=12a 2,∴MN →·MN →=112333AB AD AC ⎛⎫-++ ⎪⎝⎭· 112333AB AD AC ⎛⎫-++ ⎪⎝⎭=19AB →2-29AD →·AB →-49AB →·AC →+49AC →·AD →+19AD →2+49AC →2=19a 2-19a 2+19a 2+49a 2=59a 2. 故|MN →|MN MN =53a ,即|MN |=53a .12.C [如图所示,S △OAB =12|a ||b |·sin〈a ,b 〉=12|a ||b |1-〈a ,b 〉2=12|a ||b | 1-a ·b |a ||b |2=12|a ||b | |a |2|b |2-a ·b2|a |2|b |2=12|a |2|b |2-a ·b 2.]13.解 由AC ⊥α,可知AC ⊥AB , 过点D 作DD 1⊥α,D 1为垂足,连结BD 1,则∠DBD 1为BD 与α所成的角,即∠DBD 1=30°, ∴∠BDD 1=60°,∵AC ⊥α,DD 1⊥α,∴AC ∥DD 1,∴〈CA →,DB →〉=60°,∴〈CA →,BD →〉=120°. 又CD →=CA →+AB →+BD →, ∴|CD →|2=(CA →+AB →+BD →)2 =|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2CA →·BD →+2AB →·BD →∵BD ⊥AB ,AC ⊥AB , ∴BD →·AB →=0,AC →·AB →=0. 故|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·BD →=242+72+242+2×24×24×cos 120°=625, ∴|CD →|=25.。
2016-2017学年人教版高中数学选修2-1课件:第三章 3.1 3.1.5 空间向量运算的坐标表

[活学活用] 在棱长为1的正方体ABCD-A1B1C1D1中,E,F 分别为D1D,BD的中点,G在棱CD上,且CG =14CD,H为C1G的中点. (1)求证:EF⊥B1C; (2)求EF与C1G所成角的余弦值; (3)求FH的长.
第二十二页,编辑于星期五:十五点 三十九分。
()
A.(2,0,-4)
B.(3,6,-12)
C.(1,1,-2) 答案:D
D.0,12,-1
3.已知 a=(2,1,3),b=(-4,5,x),若 a⊥b,则 x=________.
答案:1
第五页,编辑于星期五:十五点 三十九分。
空间向量的坐标运算
[典例] 已知 O 为坐标原点,A,B,C 三点的坐标分别是 (2,-1,2),(4,5,-1),(-2,2,3).求点 P 的坐标,使:
解:(1)证明:如图,建立空间直角坐标系 D-xyz, D 为坐标原点,则有 E0,0,12,F12,12,0,C(0,1,0), C1(0,1,1),B1(1,1,1),G0,34,0,H0,78,12. EF =12,12,0-0,0,12 =12,12,-12, B1C =(0,1,0)-(1,1,1)=(-1,0,-1). ∴ EF ·B1C =12×(-1)+12×0+-12×(-1)=0, ∴ EF ⊥ B1C ,即 EF⊥B1C.
(4)a⊥b⇔ a1b1+a2b2+a3b3=0 .
3.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,b1,c1),B(a2,b2,c2).
(1) AB= (a2-a1,b2-b1,c2-c1) ; (2)dAB=| AB|=___a_2-__a_1__2_+__b_2_-__b_1__2+___c_2_-__c_1_2___.
【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
2016-2017学年高中数学选修2-1课件:第3章 空间向量与立体几何3.2.1
D.-12
解析: 若 α⊥β,则它们的法向量也互相垂直,即 m·n
=0,
即(-1,2,4)·(x,-1,-2)=0,解得 x=-10,故选 B. 答案: B
第十三页,编辑于星期五:十七点 十二分。
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知平面α上两个不共线向量a=(2,3,1),b=(5,6,4),则 平面α的一个法向量为________.
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.若直线l的方向向量为a=(-1,0,2),平面α的法向量为n=
(-2,0,4),则( )
A.l∥α
B.,2),n=(-2,0,4),n=2a,∴n∥a,
高效测评 知能提升
4.如图,正方形 ABCD 和四边形 ACEF 所在的平面互 相垂直,CE⊥AC,EF∥AC,AB= 2,CE=EF=1.
(1)求证:AF∥平面 BDE; (2)求证:CF⊥平面 BDE.
第十五页,编辑于星期五:十七点 十二分。
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
∴l⊥α.
答案: B
第十二页,编辑于星期五:十七点 十二分。
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.若平面 α,β 的法向量分别为 m=(-1,2,4),n=(x,
-1,-2),且 α⊥β,则 x 的值为( )
A.10
B.-10
高中数学选修2-1第三章空间向量与立体几何07空间向量的综合应用(共52张PPT)
高中数学人教A版 选修2-1 第三章
四川省成都市新都一中 肖宏
No.1 middle school ,my love !
第7课时 空间向量的综合应用
• 前面我们学习了空间向量在立体几何中的应 用,分析了空间向量的平行与垂直关系,解 决了求空间角、空间距离等问题,这说明空 间向量与立体几何之间有着不可分割的联系, 我们需要熟悉并掌握空间向量.这一讲我们 就来进一步探讨空间向量在立体几何中的综 合应用问题.
第7课时 空间向量的综合应用
• 想一想:设α,β,γ是三个平面,a,b是两条 不同直线,有下列三个条件:①a∥γ,b⊂β; ②a∥γ,b∥β;③b∥β,a⊂γ.若命题“α∩β=a, b⊂γ,且 ,则a∥b”为真命题,则可 以在横线处填入的条件是 .(把所有 正确的序号填上) • 【解析】由线面平行的性质定理可知,①正 确;当b∥β,a⊂γ时,a和b在同一平面内,且 没有公共点,所以平行,③正确.故应填入 的条件为①或③.
No.1 middle school ,my love !
第7课时 空间向量的综合应用
• 预学2:空间中平行与垂直关系的判断 • 设直线l1、l2的方向向量分别为a、b,平面α、 β的法向量分别为m、n,则 • (1)平行关系的判断方法 • ①线线平行:通过证明a∥b 来判定l1∥l2; • ②线面平行:通过证明a⊥m来判定l1∥α; • ③面面平行:通过证明m∥n来判定α∥β;
No.1 middle school ,my love !
第7课时 空间向量的综合应用
• 议一议:设x、y、z是空间不同的直线或平面, 对下列四种情形:①x、y、z均为直线;②x、y 是直线,z是平面;③z是直线,x、y是平面; ④x、y、z均为平面. • 其中使“若x⊥z且y⊥z,则x∥y”为真命题的 有哪些? • 【解析】由正方体模型可知①④为假命题; 由线面垂直的性质定理可知②③为真命题.
2016-2017学年高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算高效测评新人教A版选修2-1资料
2016-2017学年高中数学 第三章 空间向量与立体几何 3.1.1 空间向量及其加减运算高效测评 新人教A 版选修2-1一、选择题(每小题5分,共20分)1.在平行六面体ABCD -A ′B ′C ′D ′中,与向量A ′B ′―――→的模相等的向量有( ) A .7个 B .3个 C .5个D .6个解析: |D ′C ′―――→|=|DC ―――→|=|C ′D ′―――→|=|CD →|=|BA →|=|AB →|=|B ′A ′―――→|=|A ′B ′―――→|.答案: A2.已知向量a ,b 是两个非零向量,a 0,b 0是与a ,b 同方向的单位向量,那么下列各式中正确的是( )A .a 0=b 0B .a 0=b 0或a 0=-b 0C .a 0=1D .|a 0|=|b 0|解析: 两单位向量的模都是1,但方向不一定相同或相反. 答案: D3.下列命题是真命题的是( )A .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →D .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →解析: A 错.因为空间任两向量平移之后可共面,所以空间任两向量均共面. B 错.因为|a |=|b |仅表示a 与b 的模相等,与方向无关.C 错.空间任两向量不研究大小关系,因此也就没有AB →>CD →这种写法. D 对.∵AB →+CD →=0,∴AB →=-CD →,∴AB →与CD →共线,故AB →∥CD →正确. 答案: D4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC →同向D.AC →与CB →同向解析: 由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.答案: D二、填空题(每小题5分,共10分)5.如图,在三棱柱ABC -A 1B 1C 1中,CA →与C 1A 1→是________向量,CB →与B 1C 1→是________向量.解析: CA 綊C 1A 1,CB 綊C 1B 1,所以CA →=C 1A 1→,CB →=-B 1C 1→. 答案: 相等 相反6.下列命题中正确的是________.①如果a ,b 是两个单位向量,则|a |=|b |; ②两个空间向量共线,则这两个向量方向相同; ③若a ,b ,c 为非零向量,且a ∥b ,b ∥c ,则a ∥c ; ④空间任意两个非零向量都可以平移到同一平面内.解析: 对于①:由单位向量的定义即得|a |=|b |=1,故①正确;对于②:共线不一定同向,故②错;对于③:正确;对于④:正确,在空间任取一点,过此点引两个与已知非零向量相等的向量,而这两个向量所在的直线相交于此点,两条相交直线确定一个平面,所以两个非零向量可以平移到同一平面内.答案: ①③④三、解答题(每小题10分,共20分)7.如图,在长、宽、高分别为AB =4,AD =2,AA 1=1的长方体ABCD -A 1B 1C 1D 1中的八个顶点的两点为起点和终点的向量中,(1)单位向量共有多少个? (2)写出模为5的所有向量; (3)试写出AA 1→的相反向量.解析: (1)由于长方体的高为1,所以长方体4条高所对应的向量AA 1→,A 1A →,BB 1→,B 1B →,DD 1→,D 1D →,CC 1→,C 1C →共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于长方体的左右两侧的对角线长均为5,故模为5的向量有AD 1→,D 1A →,C 1B →,BC 1→,B 1C →,CB 1→,A 1D →,DA 1→.(3)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →.8.如图所示,已知长方体ABCD -A 1B 1C 1D 1,化简下列向量表达式:(1)AA 1→-CB →; (2)AB 1→+B 1C 1→+C 1D 1→; (3)12AD →+12AB →-12A 1A →. 解析: (1)AA 1→-CB →=AA 1→+BC →=AA 1→+A 1D 1→=AD 1→. (2)AB 1→+B 1C 1→+C 1D 1→=AD 1→.(3)12AD →+12AB →-12A 1A →=12AD →+12AB →+12AA 1→=12(AD →+AB →+AA 1→)=12AC 1→.9.(10分)如图,已知空间四边形ABCD 中,向量AB →=a ,AC →=b ,AD →=c ,若M 为BC 中点,G 为△BCD 的重心,试用a ,b ,c 表示下列向量:(1)DM →;(2)AG →. 解析: (1)连接AM ,在△ADM 中,DM →=DA →+AM →,由线段中点的向量表示知, AM →=12(AB →+AC →)=12(a +b ).由相反向量的概念知,DA →=-AD →=-c .所以DM →=DA →+AM →=12(a +b )-c =12(a +b -2c ). (2)在△ADG 中,注意到三角形重心的性质, 得AG →=AD →+DG →=c +23DM →=c +23⎝ ⎛⎭⎪⎫12DB →+12DC →=c +13(AB →-AD →+AC →-AD →)=c +13(a +b -2c )=13(a +b +c ).。
高中数学第三章空间向量与立体几何3.1.5空间向量运算的坐标表示课件新人教A版选修21
在直三棱柱 ABC-A1B1C1 中,AB=AC=1,AA1=2,∠B1A1C1= 90°,D 为 BB1 的中点,则异面直线 C1D 与 A1C 所成角的余弦值为( )
A.
10 5
B.2 7 5
C.
15 15
D.
10 15
第十五页,共52页。
【解析】 建系如图,则 C1(0,1,2),D(1,0,1),A1(0,0,2), C(0,1,0).
【精彩点拨】 (1)已知两点的坐标,怎样表示由这两点构成的向量的 坐标?(2)向量的加、减、数乘、数量积的坐标运算的法则是怎样的?
第十八页,共52页。
【自主解答】 由于 A(-1,2,1),B(1,3,4),C(0,-1,4),D(2, -1,-2),所以 p=A→B=(2,1,3),q=C→D=(2,0,-6).
第二十七页,共52页。
向量平行与垂直问题主要有两种题型:(1)平行与垂直的判断;(2)利用 平行与垂直求参数或解其他问题,即平行与垂直的应用.解题时要注意:(1) 适当引入参数(比如向量 a,b 平行,可设 a=λb),建立关于参数的方程;(2) 最好选择坐标形式,以达到简化运算的目的.
第二十八页,共52页。
(1)A→B=_____(_a_2_-_a_1_,__b_2-__b_1_,_c_2_-__c_1)______; (2)dAB=|A→B|=_____(__a_2-__a_1_)__2_+__(__b_2-__b_1_)__2+__(__c_2_-__c_1)__2_____.
第十四页,共52页。
阶
阶
段
段
(j
(j
iē
iē
d
d
u
u
à
à
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.对于空间中任意三个向量a ,b ,2a -b ,它们一定是( ) A .共面向量 B .共线向量
C .不共面向量
D .既不共线也不共面向量
【解析】 由共面向量定理易得答案A. 【答案】 A
2.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )
A .A ,
B ,D B .A ,B ,
C C .B ,C ,D
D .A ,C ,D
【解析】 BD
→=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA →=-AB
→=-a -2b ,∴BD →=-2BA →, ∴BD
→与BA →共线, 又它们经过同一点B , ∴A ,B ,D 三点共线. 【答案】 A
3.A ,B ,C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( )
A .不共面
B .共面
C .不一定共面
D .无法判断
【解析】 ∵34+18+1
8=1, ∴点P ,A ,B ,C 四点共面. 【答案】 B
4.在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1
→表示向量BD 1
→的结果为( )
图3-1-11
A.BD 1→=AB →-AD →+AA 1→
B.BD 1→=AD →+AA 1→-AB →
C.BD 1→=AB →+AD →-AA 1→
D.BD 1→=AB →+AD →+AA 1
→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD →.故选B. 【答案】 B
5.如图3-1-12,在平行六面体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )
图3-1-12
A.EF
→+GH →+PQ →=0
B.EF
→-GH →-PQ →=0 C.EF
→+GH →-PQ →=0 D.EF
→-GH →+PQ →=0 【解析】 由题图观察,EF →、GH →、PQ →平移后可以首尾相接,故有EF
→+GH →+PQ →=0. 【答案】 A 二、填空题
6.已知两非零向量e 1,e 2,且e 1与e 2不共线,若a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则下列三个结论有可能正确的是________.(填序号)
①a 与e 1共线;②a 与e 2共线;③a 与e 1,e 2共面.
【解析】 当λ=0时,a =μe 2,故a 与e 2共线,同理当μ=0时,a 与e 1共线,由a =λe 1+μe 2知,a 与e 1,e 2共面.
【答案】 ①②③
7.已知O 为空间任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z 的值为________.
【解析】 由题意知A ,B ,C ,D 共面的充要条件是对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此2x +3y +4z =-1.
【答案】 -1
8.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2
,CB →=
e 1+3e 2,CD →=2e 1-e 2
,且A ,B ,D 三点共线,则k =________. 【导学号:18490085】
【解析】 由已知可得:BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1
-4e 2,∵A ,B ,D 三点共线,
∴AB
→与BD →共线,即存在λ∈R 使得AB →=λBD →. ∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2, ∵e 1,e 2不共线,
∴⎩⎪⎨⎪⎧λ=2,k =-4λ,
解得k =-8. 【答案】 -8 三、解答题
9.已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点.求下列各式中x ,y 的值.
(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO →+yPQ →+PD →. 【解】 如图所示,
(1)∵OQ
→=PQ →-PO → =PQ →-12
(P A →+PC →)
=PQ →-12P A →-12PC →, ∴x =y =-1
2. (2)∵P A →+PC →=2PO →, ∴P A →=2PO →-PC →. 又∵PC
→+PD →=2PQ →, ∴PC
→=2PQ →-PD →. 从而有P A →=2PO →-(2PQ →-PD →) =2PO
→-2PQ →+PD →. ∴x =2,y =-2.
10.如图3-1-13,四边形ABCD 、四边形ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点,判断CE
→与MN →是否共线.
图3-1-13
【解】 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD 、四边形ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12
FB →. 又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →, ∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →.
∴CE
→=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE
→=2MN →,∴CE →∥MN →,即CE →与MN →共线. [能力提升]
1.若P ,A ,B ,C 为空间四点,且有P A →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【解析】 若α+β=1,则P A →-PB →=β(PC →-PB →),即BA →=βBC →,显然A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB
→=λBC →,故PB →-P A →=λ(PC →-PB →),整理得P A →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C.
【答案】 C
2.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→,那么M 必( )
A .在平面BAD 1内
B .在平面BA 1D 内
C .在平面BA 1
D 1内
D .在平面AB 1C 1内
【解析】 由于PM →=PB 1→+7BA →+6AA 1→-4A 1D 1→=PB 1→+BA →+6BA 1
→-4A 1D 1→=PB 1→+B 1A 1→+6BA 1→-4A 1D 1→=P A 1→+6(P A 1→-PB →)-4(PD 1→-P A 1→)=11P A 1→-6PB →-4PD 1→,于是M ,B ,A 1,D 1
四点共面,故选C. 【答案】 C
3.已知两非零向量e 1,e 2,且e 1与e 2不共线,若a =λe 1+μ e 2(λ,μ∈R ,且λ2+μ2≠0),则下列三个结论有可能正确的是________. 【导学号:18490086】
①a 与e 1共线;②a 与e 2共线;③a 与e 1,e 2共面.
【解析】 当λ=0时,a =μ e 2,故a 与e 2共线,同理当μ=0时,a 与e 1共线,由a =λe 1+μ e 2,知a 与e 1,e 2共面.
【答案】 ①②③
4.如图3-1-14所示,M ,N 分别是空间四边形ABCD 的棱AB ,CD 的中点.试判断向量MN
→与向量AD →,BC →是否共面.
图3-1-14
【解】 由题图可得:MN →=MA →+AD →+DN →, ① ∵MN
→=MB →+BC →+CN →,
②
又MA
→=-MB →,DN →=-CN →, 所以①+②得:
2MN
→=AD →+BC →, 即MN →=12AD →+12
BC →,故向量MN →与向量AD →,BC →共面.。