北师大版六年级下册《圆柱的体积》教案之一
《圆柱的体积》教案(版)

一、教学目标1. 知识与技能:(1)让学生掌握圆柱体积的概念及计算公式。
(2)培养学生运用圆柱体积公式解决实际问题的能力。
2. 过程与方法:(1)通过观察、操作、交流等活动,引导学生发现圆柱体积的计算规律。
(2)培养学生运用数学知识进行推理、归纳的能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养其积极思考、勇于探索的精神。
(2)培养学生合作学习、乐于分享的良好品质。
二、教学重点与难点1. 教学重点:(1)圆柱体积的概念及计算公式。
(2)运用圆柱体积公式解决实际问题。
2. 教学难点:(1)圆柱体积公式的推导过程。
(2)运用圆柱体积公式进行灵活计算和解决问题。
三、教学准备1. 教具:圆柱模型、长方体模型、正方体模型、直尺、圆规等。
2. 学具:每个学生准备一个圆柱模型、一张白纸、一支笔。
四、教学过程1. 导入新课(1)教师出示圆柱模型,引导学生观察圆柱的特征。
(2)提问:同学们,你们能说出圆柱的体积是什么吗?2. 探究圆柱体积的计算方法(1)教师引导学生思考:圆柱的体积与哪些因素有关?(2)学生分组讨论,总结出圆柱体积与底面半径、高有关。
(3)教师引导学生推导圆柱体积公式:V = πr²h。
3. 运用圆柱体积公式解决问题(1)教师出示实际问题,如:一个底面半径为5cm,高为10cm的圆柱,它的体积是多少?(2)学生独立计算,分享解题过程和答案。
五、课堂小结1. 教师引导学生回顾本节课所学内容,总结圆柱体积的概念、计算公式及运用。
2. 学生分享自己在课堂上的收获和感受。
3. 教师鼓励学生课后运用圆柱体积公式解决更多实际问题,提高数学素养。
六、教学拓展1. 教师引导学生思考:圆柱的体积公式还可以应用于哪些几何图形?2. 学生分组讨论,发现圆锥和圆柱的体积公式类似,都是与底面半径和高有关。
3. 教师出示圆锥体积公式:V = 1/3πr²h,引导学生理解两者的联系和区别。
七、课堂练习1. 教师出示练习题目,要求学生独立完成。
《圆柱的体积》教学设计六年级下册数学北师大版

《圆柱的体积》教学设计六年级下册数学北师大版我今天要为大家讲授的是六年级下册数学北师大版中的《圆柱的体积》一课。
一、教学内容本节课的主要内容是圆柱的体积计算方法。
我们将从生活中的实例出发,引入圆柱的概念,并通过实际操作,让学生掌握圆柱体积的计算方法。
教材中的相关章节为“圆柱的认识”和“圆柱的体积”。
二、教学目标通过本节课的学习,我希望学生们能够掌握圆柱的概念,了解圆柱体积的计算方法,并能够运用所学知识解决实际问题。
三、教学难点与重点本节课的重点是圆柱体积的计算方法,难点是理解圆柱体积的计算原理。
四、教具与学具准备为了更好地帮助学生们理解圆柱体积的计算,我准备了一些实际的圆柱体,如圆柱形的饮料瓶、圆柱形的铅笔等,以及一些测量工具,如尺子、量筒等。
五、教学过程1. 实践情景引入:我会向学生们展示一些实际的圆柱体,让他们观察并描述圆柱的特点。
2. 圆柱的概念:我会通过讲解,让学生们了解圆柱的定义,包括底面、高 etc.3. 圆柱体积的计算方法:我会通过示例,向学生们讲解圆柱体积的计算方法,即底面积乘以高。
4. 实例讲解:我会选取一些实例,让学生们运用所学知识进行计算。
5. 随堂练习:我会布置一些练习题,让学生们巩固所学知识。
6. 作业设计:我会布置一些有关圆柱体积的计算题目,让学生们课后进行练习。
六、板书设计板书设计如下:圆柱的体积 = 底面积× 高七、作业设计(1)底面半径为3cm,高为5cm的圆柱;(2)底面半径为4cm,高为7cm的圆柱;答案:(1)282.7cm³;(2)351.68cm³。
2. 某饮料瓶的底面直径为8cm,高为10cm,求该饮料瓶的体积。
答案:502.4cm³。
八、课后反思及拓展延伸通过本节课的学习,学生们掌握了圆柱体积的计算方法,并能运用所学知识解决实际问题。
但在教学过程中,我发现部分学生对于圆柱体积计算原理的理解还不够深入,需要在今后的教学中加强引导和讲解。
北师大版小学数学六年级下册《圆柱的体积》教学设计

圆柱的体积》教学设计一、教学分析1.教学内容分析(1)本节课的内容是义务教育课程标准实验教科书(北师大版)六年级数学下册第8--9页内容。
(2)《圆柱的体积》是几何知识的综合运用,是在学生已经了解了圆柱体的特征,掌握了长方体体积的计算方法以及圆面积公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。
因此根据本节课内容的特点,我把教学设计定位在对圆柱体积计算公式的探究,不仅要让学生知道圆柱体积计算公式是什么,而且要让学生经历圆柱体积计算公式的推导过程,使学生学会学习方法,获得学习经验。
2.教学对象分析高年级学生发现问题、解决问题的能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解了部分几何图形之间的转化方法。
但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。
针对学生的实际,教学中应主要采用观察、比较、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成过程。
3.教学环境分析这节课选择在多媒体教室授课。
这样做主要是基于以下考虑:第一,充分发挥多媒体课件的形象、生动特点,有效化解教材难度。
第二,应用多媒体可以形象地演示圆柱体积计算公式的推导过程,发展学生的空间观念。
第三,多媒体课件容量大,可以有效提高课堂教学效率。
二、教学目标1.知识与能力结合具体情境和实践活动,通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确的计算圆柱体的体积和容积。
2.过程与方法让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”“极限”等数学思想,体验数学研究的方法。
3.情感态度与价值观通过对圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
三、教学重点、难点1.教学重点掌握圆柱体积的计算公式。
2.教学难点圆柱体积的计算公式的推导。
(北师大版)六年级数学下册教案 圆柱的体积 1

圆柱的体积教学内容北师大版六年级数学下册8—9页。
教学目标1.理解圆柱体积公式的推导过程。
2.能够初步地学会运用体积公式解决简单的实际问题。
3.进一步提高同学们解决问题的能力。
教学过程教师活动学生活动活动一:复习旧知。
1.什么是体积?2.长方体的体积该怎样计算?归纳到底面积乘高上来)3.圆的面积怎样计算?4.圆的面积是怎样推倒得来的?活动二:经历圆柱体积的推导过程,得出公式。
(一)1.计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?2.把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示。
3.思考:(1)圆柱切开后可以拼成一个什么形体?(2)通过实验你发现了什么?*拼成的近似长方体体积大小没变,形状变了。
*拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
*近似长方形的高就是圆柱的高,没有变化。
4.根据圆面积的推导公式进行猜想:如果把圆柱体32等份,64等份,128等份拼成的长方体的形状怎么样?(二)通过以上的观察你发现了什么?师:平均分的分数越多,每分扇形的底面就越小,弧就越短,拼成的长方体的长就越近似于一条线物体所占空间的大小叫做物体的体积。
指名说。
是把圆面积转化成(补充:面积相等的)近似的长方形面积进行计算的。
启发学生思考。
引导学生进行观察。
小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
说说你猜想的结果。
生:平均分的分数越多,拼起来的形体越近似于段,这样整个形体就越近似于长方体。
(三)推导圆柱体积公式。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
板书:V=Sh(四)算一算:已知一根柱子的底面半径为0.4米,高为5米。
你能算出它的体积吗?要求这根柱子的体积,要先求什么?活动三:试一试。
3.1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

3.1.3《圆柱的体积》(教案)20232024学年数学六年级下册作为一名经验丰富的教师,我始终相信“寓教于乐”的教学理念。
今天,我要分享的是3.1.3《圆柱的体积》这一课的教学设计。
一、教学内容本节课的教学内容主要包括六年级下册数学教材中的第三章“圆柱与圆锥”,第一节“圆柱的体积”。
在这一节中,学生需要学习圆柱体积的计算公式,并通过实际操作,理解圆柱体积的求解过程。
二、教学目标1. 理解圆柱体积的概念,掌握圆柱体积的计算公式;2. 能够运用圆柱体积的计算公式解决实际问题;3. 培养学生的动手操作能力和团队协作能力。
三、教学难点与重点本节课的重点是圆柱体积计算公式的理解和运用,难点是理解圆柱体积的求解过程。
四、教具与学具准备1. 圆柱模型;2. 直尺、圆规等绘图工具;3. 计算器;4. 练习题。
五、教学过程1. 实践情景引入:我会拿出一个圆柱模型,让学生观察并描述圆柱的特点,引导学生思考圆柱体积的求解方法。
2. 讲解圆柱体积的概念和计算公式:我会用PPT展示圆柱体积的定义和计算公式,让学生跟随我的讲解,理解圆柱体积的求解过程。
3. 例题讲解:我会选取一道典型的例题,讲解求解圆柱体积的步骤,让学生通过例题,理解圆柱体积的求解方法。
4. 随堂练习:我会设计一些练习题,让学生在课堂上练习,巩固所学知识。
5. 动手操作:我会让学生分组,利用教具和学具,自己动手求解圆柱体积,培养学生的动手操作能力和团队协作能力。
六、板书设计板书设计主要包括圆柱体积的计算公式和相关知识点,以便学生随时查阅。
七、作业设计答案:(1)282.7cm³;(2)502.4cm³。
八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看是否达到了教学目标,学生是否掌握了圆柱体积的计算方法。
同时,我会设计一些拓展延伸题目,让学生课后思考,进一步巩固所学知识。
重点和难点解析在上述教学设计中,有几个关键的细节是需要特别关注的。
《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
小学六年级下学期数学《圆柱的体积(一)》教案
2.1.3 圆柱的体积◆教学内容:教科书第27~28页做一做、议一议、试一试以及教材第28页例4,教材第29页课堂活动。
◆教学目标:1.知识与技能:通过学生体验圆柱体积公式的推导过程,掌握圆柱的体积公式,理解圆柱的体积与容积的区别与联系,并能应用公式解决实际问题。
2.过程与方法:倡导交流、合作、实验操作等学习方式,培养学生观察、猜测、分析、比较、综合的学习思考方法。
3.情感、态度、价值观:让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
◆重点难点:教学重点:圆柱体积的计算公式的推导及应用。
教学难点:推导圆柱体积公式的过程,理解容积与体积的异同。
◆教学准备:教具准备:多媒体课件、圆柱模型。
学具准备:圆柱形模型、圆柱形容器、直尺。
◆教学过程:(一)新课导入1.复习回顾请大家想一想,我们在学习圆的面积时,是怎样把演变成已学过的图形再计算面积的?2.引入新课问:能不能找到一种计算圆柱的体积的计算方法呢?这就是我们今天要研究的内容。
【设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。
】(二)探究新知1.学生动手操作探究教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
【设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫】2.小组合作,探究推导圆柱的体积计算公式。
启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。
那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢?(这时学生会有圆的面积想到把圆柱转化为长方体)老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。
《圆柱的体积》教学设计(精选9篇)
《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
《圆柱的体积》教案5篇
《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
北师六年级下册数学1单元 第5课时 圆柱的体积(1) 教案
如果圆柱的底面积未知,已知底面半径、直径、或底面周长,我们可以怎样计算呢?认真想一想。
生:如果已知底面半径,就需要先算出圆柱底面圆的面积再乘高,用字母表示为V =πr2h;
如果已知底面直径或周长,就需要先算出底面半径,再算底面积乘高,分别用字母表示是V =π(d÷2)2h、V =π(C÷π÷2)2h
师:在底面积未知的情况下,我们都需要先计算出底面半径,只有根据半径才能计算底面积。明白了这些让我们回头帮助淘气和笑笑解决刚才的问题吧!
笑笑了解到一根柱子的底面半径为0.4m,高为5m。你能算出它的体积吗?试一试,并说说你的计算过程和注意事项。
生:已知底面半径和高,求体积,可以根据V=πr2h直接计算。3.14×0.42×5=3.14×0.16×5我们先来计算0.16×5比较简单,不容易出错,最终计算结果是2.512m3,一定要注意单位是体积单位。
学情分析
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课最大化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过 “类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
教学策略
引导学生利用“等积变形”的方法去探究圆柱体积的计算方法。
教学内容
北师大版六年级下册 教科书第8页
教学目标
1.结合具体情境和实践活动,了解圆柱体积的含义,进一步理解体积和容积的含义。
2.通过圆柱与长方体的“类比”,经历“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”的数学思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生汇报讨论结果。
请你先求底面积,再求体积,自己试计算。请生板演。
正确理解题意,自己完成。
先求底面半径再求底面积,最后求体积。
板书:V=Sh
(四)算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
要求这根柱子的体积,要先求什么?
活动三:试一试。
1.一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
已知底面周长对解决问题有什么帮助吗?必须先求出什么?
物体所占空间的大小叫做物体的体积。
指名说。
是把圆面积转化成(补充:面积相等的)近似的长方形面积进行计算的。
启发学生思考。
引导学生进行观察。
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
说说你猜想的结果。
生:平均分的分数越多,拼起来的形体越近似于长方体。
(1)圆柱切开后可以拼成一个什么形体?
(2)通过实验你发现了什么?
*拼成的近似长方体体积大小没变,形状变了。
*拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
*近似长方形的高就是圆柱的高,没有变化。
4.根据圆面积的推导公式进行猜想:
如果把圆柱体32等份,64等份,128等份拼成的长方体的形状怎么样?
圆柱的体积
教学内容
北师大版六年级数学下册8—9页。
教学目标
1.理解圆柱体积公式的推导过程。
2.能够初步地学会运用体积公式解决简单的实际问题。
3.进一步提高同学们解决问题的能力。
教学过程
教师活动
学生活动
活动一:复习旧知。
1.什么是体积?
2.长方体的体积该怎样计算?归纳到底面积乘高上来)
3.圆的面积怎样计算?
4.圆的面积是怎样推倒得来的?
活动二:经历圆柱体积的推导过程,得出公式。
(一)
1.计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
2.把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示。
3.思考:
(二)通过以上的观察你发现了什么?
师:平均分的分数越多,分扇形的底面就越小,弧就越短,拼成的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
(三)推导圆柱体积公式。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。