干燥实验报告

合集下载

干燥实验实验报告数据处理

干燥实验实验报告数据处理

引言概述:本文旨在对干燥实验所得数据进行处理并分析,以获取实验数据中的有用信息和结论。

本实验旨在探究不同材料在不同干燥条件下的干燥曲线,并对其进行数据处理,从而得出相关的研究成果。

正文内容:一、实验数据处理方法1.1数据采集对于干燥实验中获得的原始数据,首先需要进行数据的采集。

通过在实验过程中使用合适的仪器和设备,可以获得关于材料的质量、时间等相关数据。

1.2数据整理在数据采集完成后,需要对原始数据进行整理。

这包括对数据的分类、去除异常值和错误数据等工作。

通过整理后的数据可以更好地进行后续的分析和处理。

1.3数据预处理在进行实验数据分析之前,需要对数据进行预处理。

这包括数据的归一化、平滑等操作,以保证数据的有效性和准确性。

1.4数据分析方法对于干燥实验数据的分析,可以采用统计学方法、回归分析等多种方法。

通过这些方法,可以从不同的角度来分析实验数据,进而得出相关结论。

1.5数据可视化为了更好地展示实验数据与分析结果,可以使用图表等形式对数据进行可视化。

通过可视化可以更直观地了解数据的特点和趋势。

二、实验数据处理结果分析2.1干燥速率分析通过对干燥实验数据的处理和分析,可以得到不同材料在不同干燥条件下的干燥速率。

对于每个材料,可以绘制干燥速率与时间的关系曲线,进一步分析材料的干燥特性。

2.2干燥时间分析通过对实验数据的处理,可以得到材料在不同干燥条件下的干燥时间。

通过比较不同材料的干燥时间,可以探究不同材料的干燥特性和影响因素。

2.3干燥升温率分析通过对实验数据的处理和分析,可以得到材料在干燥过程中的升温率。

通过对不同材料的升温率进行分析,可以了解材料的干燥速度和热传导性能。

2.4干燥湿度分析通过对实验数据的处理和分析,可以得到材料在不同干燥条件下的湿度变化情况。

通过分析湿度的变化,可以研究材料在干燥过程中的水分迁移和蒸发特性。

2.5干燥效果评估通过对实验数据的处理和分析,可以对不同干燥条件下的干燥效果进行评估。

干燥实验报告食品报告

干燥实验报告食品报告

一、实验目的1. 了解食品干燥的基本原理和过程;2. 掌握食品干燥设备的工作原理和操作方法;3. 研究不同干燥方式对食品品质的影响;4. 分析食品干燥过程中的水分变化规律。

二、实验原理食品干燥是利用热能将食品中的水分蒸发,使食品达到一定水分含量的过程。

根据干燥过程中物料水分的变化规律,食品干燥过程可分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,内部水分向表面迁移;2. 恒速干燥阶段:物料表面水分蒸发速率达到最大,内部水分继续向表面迁移;3. 降速干燥阶段:物料表面水分蒸发速率逐渐降低,内部水分迁移速率减小。

食品干燥过程中,水分变化规律可用干燥曲线表示,干燥速率曲线表示干燥速率随物料水分含量变化的关系。

三、实验材料与设备1. 实验材料:新鲜水果(如苹果、香蕉等)、食品干燥设备(如隧道式干燥机、流化床干燥机等);2. 实验设备:电子天平、温度计、湿度计、干燥曲线记录仪、干燥速率记录仪等。

四、实验方法1. 准备实验材料:将新鲜水果洗净、去皮、切片,备用;2. 设置干燥参数:根据实验要求,设置干燥温度、干燥时间和干燥方式;3. 干燥实验:将水果放入干燥设备中,进行干燥实验;4. 数据采集:记录干燥过程中物料水分、温度、湿度等数据;5. 数据分析:绘制干燥曲线和干燥速率曲线,分析不同干燥方式对食品品质的影响。

五、实验结果与分析1. 干燥曲线:实验结果表明,水果在干燥过程中水分含量随时间逐渐降低,干燥曲线呈非线性关系。

在恒速干燥阶段,水分含量降低速率较快;在降速干燥阶段,水分含量降低速率逐渐减慢。

2. 干燥速率曲线:实验结果表明,干燥速率随物料水分含量降低而逐渐减小,干燥速率曲线呈非线性关系。

在恒速干燥阶段,干燥速率达到最大值;在降速干燥阶段,干燥速率逐渐降低。

3. 食品品质变化:实验结果表明,不同干燥方式对食品品质的影响不同。

隧道式干燥机干燥的水果在色泽、口感和营养成分方面保持较好;流化床干燥机干燥的水果在色泽和口感方面较好,但营养成分损失较大。

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥概述:干燥是化工过程中常见的一种操作,用于除去物料中的水分或其他溶剂,以提高产品质量或满足后续工艺的需要。

本实验旨在探究干燥的原理及其在化工工艺中的应用。

一、干燥的原理干燥是通过将物料暴露在适当的条件下,使水分或其他溶剂从物料中蒸发出来,达到去除水分的目的。

常见的干燥方法包括自然干燥、加热干燥、真空干燥等。

1. 自然干燥自然干燥是将物料暴露在自然环境下,利用自然界的温度、湿度和风力等因素,使水分逐渐蒸发。

这种方法操作简单,但速度较慢,且受环境因素的影响较大。

2. 加热干燥加热干燥是通过加热物料,提高其表面温度,使水分蒸发。

常见的加热干燥方法包括烘箱干燥、喷雾干燥等。

烘箱干燥是将物料放入烘箱中,利用热空气对物料进行加热,使水分蒸发。

喷雾干燥是将物料以液滴形式喷入热空气中,通过瞬间蒸发的方式进行干燥。

3. 真空干燥真空干燥是在低压条件下进行干燥,通过降低环境压力,使水分在较低温度下蒸发。

真空干燥适用于对热敏性物料的干燥,能够避免物料的热分解或变质。

二、干燥在化工工艺中的应用干燥在化工工艺中具有广泛的应用,以下是几个常见的例子:1. 化工产品的干燥在化工生产中,很多产品需要经过干燥操作,以去除其中的水分或其他溶剂。

例如,某些化工产品在含水状态下容易发生反应或降解,因此需要进行干燥以提高稳定性和保存性。

2. 溶剂的回收在溶剂回收过程中,通常需要对溶剂进行干燥,以去除其中的水分或其他杂质。

通过干燥,可以提高溶剂的纯度和再利用率,减少资源的浪费。

3. 催化剂的干燥在催化反应中,催化剂的活性往往与其表面的水分有关。

因此,在使用催化剂之前,通常需要对其进行干燥,以提高催化剂的活性和稳定性。

4. 原料的干燥在某些化工工艺中,原料的水分含量会影响反应的速率和产物的质量。

因此,在反应之前,需要对原料进行干燥,以确保反应的顺利进行和产物的质量。

结论:干燥是化工过程中常见的一种操作,通过去除物料中的水分或其他溶剂,提高产品质量或满足后续工艺的需要。

干燥速率曲线测定实验报告

干燥速率曲线测定实验报告

干燥速率曲线测定实验报告一、实验目的干燥速率曲线的测定是为了了解物料在干燥过程中的水分变化情况,以及干燥速率与时间、温度、湿度等因素的关系。

通过本次实验,掌握干燥操作的基本原理和实验方法,学会使用相关仪器设备,分析实验数据,绘制干燥速率曲线,并对干燥过程进行分析和讨论。

二、实验原理干燥是利用热能使湿物料中的水分汽化并排除,从而获得干燥产品的过程。

在干燥过程中,物料的含水量随时间不断变化,而干燥速率则是单位时间内单位干燥面积上蒸发的水分量。

干燥速率可以通过对物料重量随时间的变化进行测量和计算得到。

当物料表面的水汽分压大于干燥介质中的水汽分压时,水分会从物料表面向干燥介质中扩散,从而实现干燥。

在干燥初期,物料表面水分充足,干燥速率较高;随着干燥的进行,物料内部的水分向表面迁移的速度逐渐减慢,干燥速率也逐渐降低,直至达到平衡含水量。

三、实验设备与材料1、电热恒温鼓风干燥箱2、电子天平3、不锈钢盘4、湿物料(例如土豆片、湿棉花等)四、实验步骤1、准备一定量的湿物料,并称量其初始重量$m_0$。

2、将湿物料均匀铺在不锈钢盘中,放入已预热至设定温度的干燥箱内。

3、每隔一定时间(例如 5 分钟)取出物料,迅速在电子天平上称量其重量$m_i$,记录时间$t_i$。

4、重复步骤 3,直到物料的重量基本不再变化,即达到恒重。

5、关闭干燥箱,整理实验仪器和场地。

五、实验数据记录与处理以下是一组实验数据的示例:|时间(min)|物料重量(g)||::|::|| 0 | 1000 || 5 | 850 || 10 | 700 || 15 | 580 || 20 | 480 || 25 | 400 || 30 | 350 || 35 | 320 || 40 | 300 |根据实验数据,可以计算出每个时间间隔内物料失去的水分量$\Delta m_i$:$\Delta m_i = m_{i-1} m_i$然后计算出干燥速率$u_i$:$u_i =\frac{\Delta m_i}{A \Delta t}$其中,$A$为物料的干燥面积,$\Delta t$为时间间隔。

干燥实验报告

干燥实验报告

一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。

实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

二、实验目的1. 了解流化床干燥器的基本流程及操作方法。

2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。

3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。

4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。

三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。

在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。

干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。

2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。

物料在干燥器内受到热风的作用,床层产生流动,形成流化床。

物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。

四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。

2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。

五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。

2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。

3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。

4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。

干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。

在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。

干燥仿真实验报告(3篇)

干燥仿真实验报告(3篇)

第1篇一、实验目的1. 了解干燥过程的基本原理和影响因素。

2. 掌握干燥仿真实验的操作方法。

3. 通过仿真实验,分析干燥过程中物料水分的变化规律,优化干燥工艺。

二、实验原理干燥过程是指将物料中的水分蒸发,使物料达到所需干燥程度的过程。

干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等。

本实验采用干燥仿真软件,模拟干燥过程,分析物料水分的变化规律。

三、实验仪器与材料1. 电脑一台;2. 干燥仿真软件一套;3. 物料样品;4. 温度计;5. 时间记录器。

四、实验步骤1. 打开干燥仿真软件,选择合适的干燥介质、干燥温度和干燥时间;2. 将物料样品放入干燥器,设定干燥器的初始状态;3. 启动仿真实验,观察物料水分的变化过程;4. 记录实验数据,包括干燥时间、物料水分、干燥温度等;5. 分析实验数据,优化干燥工艺。

五、实验结果与分析1. 干燥过程中,物料水分随干燥时间的延长而逐渐降低,符合干燥过程的基本规律;2. 在相同干燥条件下,物料水分的降低速度与干燥温度、干燥介质等因素有关;3. 仿真实验结果表明,提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度;4. 通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

六、实验结论1. 干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等;2. 通过干燥仿真实验,可以分析物料水分的变化规律,优化干燥工艺;3. 提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度,提高干燥效率。

七、实验注意事项1. 在进行干燥仿真实验时,应选择合适的干燥介质、干燥温度和干燥时间;2. 实验过程中,应注意观察物料水分的变化,及时调整干燥参数;3. 实验数据应准确记录,为优化干燥工艺提供依据。

八、实验总结本实验通过干燥仿真软件,模拟干燥过程,分析了物料水分的变化规律。

实验结果表明,干燥过程中,物料水分的变化受多种因素影响,通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

干燥的实验报告

干燥的实验报告

干燥的实验报告干燥的实验报告一、引言干燥是一项广泛应用于工业、实验室以及日常生活中的重要技术。

通过去除材料中的水分,可以提高产品的质量和稳定性。

本实验旨在探究不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

二、实验材料与方法1. 实验材料:- 鲜橙片- 烘箱- 风扇- 干燥剂(二氧化硅)2. 实验方法:1)将鲜橙片均匀分布在两个试验组中,一个放入烘箱,另一个放在通风良好的室内。

2)观察并记录两组橙片的干燥过程,包括颜色变化、质地变化等。

3)在烘箱中加入干燥剂,观察其对橙片干燥速度的影响。

三、实验结果与讨论1. 不同干燥方法对材料的影响:通过对比烘箱和自然通风两种干燥方法,我们发现烘箱能够更快速地将橙片中的水分去除,而自然通风所需时间较长。

这是因为烘箱提供了更高的温度和较低的湿度,有利于水分的蒸发和扩散。

然而,过高的温度可能导致橙片的质地变硬,影响其口感。

2. 干燥过程中可能出现的问题与解决方案:a) 氧化问题:在干燥过程中,橙片暴露在空气中,容易发生氧化反应,导致品质下降。

解决方案是使用氧化剂,如二氧化硅,来吸附橙片周围的氧气,减少氧化反应的发生。

b) 水分不均匀问题:由于橙片的形状和大小不一,干燥速度可能存在差异,导致一些橙片干燥不均匀。

解决方案是在干燥过程中定期翻动橙片,以保证其均匀受热和通风。

四、实验结论通过本实验,我们得出以下结论:1. 烘箱比自然通风更适合进行快速干燥,但需要控制好温度,以避免质地变硬。

2. 使用干燥剂可以减少氧化反应的发生,提高干燥效果。

3. 定期翻动材料可以避免干燥不均匀的问题。

五、进一步研究本实验仅探究了干燥方法对橙片的影响,未来的研究可以扩展到其他材料,如蔬菜、肉类等。

此外,还可以研究不同干燥剂对干燥效果的影响,以及温度、湿度等参数的优化。

六、结语干燥是一项重要的技术,广泛应用于各个领域。

通过本实验,我们了解了不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

干燥曲线的绘制实验报告

干燥曲线的绘制实验报告

一、实验目的1. 了解干燥曲线的概念及其在干燥工艺中的应用;2. 掌握干燥曲线的绘制方法;3. 通过实验,掌握物料干燥过程中的干燥速率和干燥时间的关系;4. 分析影响干燥曲线的因素。

二、实验原理干燥曲线是指在恒定干燥条件下,物料干燥过程中,物料平均干基湿度和温度随干燥时间变化的关系曲线。

干燥曲线的绘制可以帮助我们了解物料干燥过程中的干燥速率、临界含水量和平衡含水量等关键参数。

干燥过程可分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,物料温度逐渐升高;2. 恒速干燥阶段:物料表面水分蒸发速率与内部水分扩散速率相等,物料温度基本保持不变;3. 降速干燥阶段:物料内部水分扩散速率逐渐减小,物料温度开始下降。

干燥速率与物料平均干基湿度的关系可用下列公式表示:干燥速率 = (1 - α) / (1 - α1) × (α / α1) × (α1 / α)其中,α为物料平均干基湿度,α1为临界含水量。

三、实验仪器与材料1. 仪器:干燥箱、电子天平、温度计、湿度计、秒表;2. 材料:湿物料、干燥剂。

四、实验步骤1. 准备实验材料:将湿物料放入干燥箱中,使用电子天平称量湿物料的质量;2. 预热干燥箱:将干燥箱预热至预定温度;3. 称量干物料:将湿物料放入干燥箱中,使用电子天平称量干物料的质量;4. 记录数据:记录干物料的质量、温度、湿度以及干燥时间;5. 重复实验:重复步骤3和4,至少进行三次实验;6. 绘制干燥曲线:以干燥时间为横坐标,以物料平均干基湿度为纵坐标,绘制干燥曲线。

五、实验结果与分析1. 实验数据:实验1:湿物料质量为m1,干物料质量为m2,干燥时间为t1,温度为T1,湿度为H1;实验2:湿物料质量为m1,干物料质量为m2,干燥时间为t2,温度为T2,湿度为H2;实验3:湿物料质量为m1,干物料质量为m2,干燥时间为t3,温度为T3,湿度为H3。

2. 干燥曲线绘制:以干燥时间为横坐标,以物料平均干基湿度为纵坐标,将实验数据绘制成干燥曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京化工大学
实验报告
课程名称:干燥实验实验日期:2012-5
班级:化工0906 姓名:郭智博
同组人:常成维尉博然黄金祖学号:200911175
干燥实验
一、摘要
本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。

干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。

二、实验目的
1、了解流化床干燥器的基本流程及操作方法。

2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3、测定物料含水量及床层温度时间变化的关系曲线。

4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶
段的传质系数k H及降速阶段的比例系数K X。

三、实验原理
1、流化曲线
在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从
床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

D点处的流速即被称为带出速度(u0)。

在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。

C点处的流速被称为起始流化速度(u mf)。

在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2、干燥特性曲线
将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图,即为干燥速率曲线(见下下图)。

干燥过程可分以下三个阶段。

(1)物料预热阶段(AB段)
在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC段)
由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

(3)降速干燥阶段(CDE段)
物料含水量减少到某一临街含水量(X0),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面润湿,而形成干区,干燥速率开始降低,物料温度逐渐上升。

物料含水量越小,干燥速率越慢,直至达到平衡含水量(X*)而终止。

干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为
u=dW Adτ
式中u——干燥速率,kg水/(m2s);
A——干燥表面积,m2;
dτ——相应的干燥时间,s;
dW——汽化的水分量,kg。

图中的横坐标X为对应于某干燥速率下的物料平均含水量。

X̅=
X i+X i+1
式中X̅——某一干燥速率下湿物料的平均含水量;
X i,X i+1——△τ时间间隔内开始和终了是的含水量,kg水/kg绝干物料。

X i=G si−G ci
G CI
式中G si——第i时刻取出的湿物料的质量,kg;
G ci——第i时刻取出的物料的绝干质量,kg。

干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。

本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

四、操作步骤
1、将450g小麦用水浸泡2-3小时后取出,沥干表面水分。

2、检查湿球温度及水罐液位,使其处于液位计高度1/2处。

3、从加料口将450g小麦加入流化床中。

4、启动风机、空气加热器,空气流量调至合适值,空气温度达到设定值。

5、保持流量、温度不变,间隔2-3分钟取样,每次取10克,将湿物料及托盘测重。

6、装入干燥盒、烘箱,调节烘箱温度125℃,烘烤一小时,称干物料及托盘重量
7、干燥实验过后,关闭加热器,用剩余物料测定流化曲线,从小到大改变空气流量10次,
记录数据。

8、出料口排出物料,收集,关闭风机,清理现场。

五、实验设备图
1—风机;2—湿球温度水筒;3—湿球温度计;4—干球温度计;5—空气加热器;
6—空气流量调节阀;7—放净口;8—取样口;9—不锈钢筒体;10—玻璃筒体;11—气固分离段;12—加料口;13—旋风分离器;14—孔板流量计
六、数据处理
1、干燥速率曲线测定
含水量:236.026
.626
.674.7=-=-=
ci ci si i G G G X kg 水/kg 绝干物料
平均含水量:1522.02
1377
.01667.02
1
=+=
+=+i i X X X kg 水/kg 绝干物料
干燥速率: u
=
dW Adt
=
X i −X i+1
At
=
0.236−0.1791.5×3×60
=2.12×10−4 u 水/gm -2s -1
2、流化曲线测定
u 气
=26.8×p 10.54
π4⁄2=26.8×0.220.54
3.144⁄×0.12×3600
=0.409
七、实验结果及作图分析

曲线坐标下△p——u图
八、思考题
1、本实验所得的流化床压降与气速曲线有何特征?
答:当气速较小时,压降与流速成正比。

当气速逐渐增加,床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单
位面积的床层净重。

当气速增大至某一值后,床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

2、为什么同一湿度的空气,温度较高有利于干燥操作的进行?
答:因为温度较高,所对应的饱和蒸汽压也较高,而湿度相同,即水汽分压相同,这样就使得在较高的温度下,空气的相对湿度较小。

故传质推动力较大,有利于干燥操作的进行。

同时,同一湿度的空气,温度较高者单位质量所携带的热量多,可使干燥过程所需的空气用量减少,同时废气带走的热量相应减少,热效率也会提高。

3、本装置在加热器入口处装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求得
干燥器内空气的平均湿度H。

答:由加热器入口处测得的干、湿球温度可在空气的焓湿图上找到初始的状态点,并确定焓值,因为绝热增湿过程是等焓过程,可由等焓线求得干燥器内空气的平均湿度。

4、干燥开始10分钟时,计算进、出干燥器的湿空气的性能参数(假设湿空气进出干燥器
为绝热增湿过程),要求使用公式计算和I-H图两种方法。

方法1
认为实验所测干湿球温度为干燥器出口湿空气的状态。

方法1说明:由于认为该干燥属于等焓增湿过程,则空气的湿球温度不变,为31.5℃,且焓也不变。

则以进口空气计算为例:
tw = 41.2℃时,饱和蒸汽压Ps=7.868kpa
rw = 2420.37 kJ/kg
则Hw = 0.622 Ps/(P-Ps) = 0.622 ×4.624 /(101.325-4.624)
= 0.030 kg水汽/kg干气
H = Hw -(t-tw) · 1.09/ rw
= 0.030 -(70-31.5) ·1.09/ 2420.37 = 0.013 kg水汽/kg干气
由H = 0.622 P水汽/(P- P水汽)得:
P水汽= H P /(H+0.622)= 2.07 kpa
70℃时饱和蒸汽压Ps = 31.157kpa
φ= P水汽/Ps1 =2.07 /31.157 = 6.64%
I 1=(1.01+1.88H)t+2500H
= (1.01+1.88×0.013)70+2500×0.013 = 104.91kJ/kg干气
方法2说明:
①确定出口湿空气的状态参数:在焓湿图上,找到t=t W的线与φ=100%的线的交点A,过A
的等焓线与t=t的线交于点B,B即为湿空气的状态点,进而可以查得p水汽,H,φ,I。

②确定进口湿空气的状态参数:因为是绝热增湿过程,I与t W不变,故沿等焓线上升到t=70℃
时,即为进口湿空气的状态点,同理可查的p水汽,H,φ。

相关文档
最新文档