数理方程试题-定稿

合集下载

数理方程练习题(1)

数理方程练习题(1)

数理方程练习题(1)一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是(双曲)型,取值为负对应的是(椭圆)型,取值为零对应的是(抛物)型。

2.在实际中广泛应用的三个典型的数学物理方程:第一个叫(弦自由横振动),表达式为(2tt xx u a B u =),属于(双曲)型;第二个叫(热传导),表达式为( 2t xx u a B u =),属于(椭圆)型;第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=;(B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xφ?=><<?==??==?的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=?=+∑(D) ()001,cos sin cos n n n n at n at n x u x t a b t a b l llπππ∞=??=+++??∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ](A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+;(C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。

数理方程习题全解

数理方程习题全解
(2) z 4 4 0 ; 解 z 4 4 2 4 1 2 4 cos j sin
93


2k 1 j sin 2k 1 = 2 cos 4 4
k 0,1,2,3
1 1 k 0 : z1 2 cos j sin 2 j 1 j 4 4 2 2 3 3 1 1 k 1 : z2 2 cos j sin 2 j 1 j 4 4 2 2 5 5 1 1 k 2 : z3 2 cos j sin 2 j 1 j 4 4 2 2 7 7 1 1 k 3 : z4 2 cos j sin 2 j 1 j 4 4 2 2
3 8
k k 2 8 cos j sin 2 16 2 16
3 3 8 3
k 0,1,2,3
7 7 2 cos j sin , 2 8 cos j sin , 16 16 16 16 9 15 15 9 2 cos j sin , 2 8 cos j sin ; 16 16 16 16
1 3 5 5 (2) j sin cos j sin 2 2 j cos 3 3 3 3 1 3 j 2 2
4
cos j sin 4 4
4
2
cos j sin 1 j 3 5 5 cos j sin 3 3

数理方程练习题(1)

数理方程练习题(1)

一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。

2.在实际中广泛应用的三个典型的数学物理方程:第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xϕφ⎧=><<⎪==⎨⎪==⎩的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=⎡⎤=+⎢⎥⎣⎦∑(D) ()001,cos sin cos n n n n at n at n xu x t a b t a b l llπππ∞=⎡⎤=+++⎢⎥⎣⎦∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ] (A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+; (C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。

数理方程30题

数理方程30题
所以初边值问题的解为
u(x,t) = cos at sin x
注记:如果用系数计算公式
∫ ∫ Cn
=
2 L
L sin(ξ ) sin(nξ )dξ
0
, Dn
=
2 nπa
L 0 × sin(nξ )dξ ,(n=1,2,……)
0
会得出同样结论。
例 8.用分离变量法求解双曲型方程初边值问题
⎧u ⎪⎪⎨u
[Cn
n=1
cos
nπ L
t
+
Dn
sin
nπ L
t]sin
nπ L
x
利用初值条件,得
∑ ∑ ∞ Cn
n=0
sin
nπ L
x
=
x(L −
x) , π L

nDn
n=0
sin
nπ L
x
=
0
为计算系数,首先令ϕ(x) = x(L − x) ,显然ϕ(0) = 0,ϕ(L) = 0 ,且
ϕ′(x) = L − 2x ,ϕ′′(x) = −2
x x
+ +
C1 C2
⎡ ∂ξ
构造变换:
⎧ξ ⎩⎨η
= =
2 sin 4 sin
x x
+ +
cos cos
y y

⎢ ⎢ ⎢
∂x ∂η
⎢⎣ ∂x
∂ξ ⎤
∂y ∂η
⎥ ⎥ ⎥
=
⎡2 ⎢⎣4
cos cos
x x
∂y ⎥⎦
− sin y⎤ − sin y⎥⎦
所以, a12 = 8sin 2 y cos2 x − 18cos2 x sin 2 y + 8cos2 x sin 2 y = −2 cos2 x sin 2 y

数理方程试卷

数理方程试卷

南昌航空大学2009—2010 学年第二学期期末考试课程名称:数 理 方 程 闭 卷 A (B )卷 分钟一、 解答题(共40 分)1、 当n 为正整数时,讨论()n J x 的收敛范围。

(5分)2、解一维热传导方程,其初始条件及边界条件为:0t u x ==,0x u x=∂=∂,0x lu x=∂=∂ (10分)3、有一均匀杆,只要杆中任一小段有纵向位移或速度,必导致邻段的压缩或伸长, 这种伸缩传开去,就有纵波沿着杆传播。

试推导杆的纵振动方程。

(10分)4、写出01(),(),()n J x J x J x (n 是正整数)的级数表示式的前5项。

(15分)二、计算题(共60分)1、求方程:22,1,0ux y x y x y∂=>>∂∂,满足边界条件: 20y u x ==,1cos x u y ==的解。

(10分)2、就下列初始条件及边界条件解弦振动方程:(,0)0,0u x x l =≤≤;(,0)(),0u x x l x x l t∂=-≤≤∂; (0,)(,)0,0u t u l t t ==> (15分)3、试确定下列定解问题:22200(),0,0,,,0,(),0x x l t u ua f x x l t t x u A u B t u g x x l ===⎧∂∂=+<<>⎪∂∂⎪⎪==>⎨⎪=≤≤⎪⎪⎩(15分) 解的一般形式。

4、(20分)求下列柯西问题:22222200280,0,3,0,y y u u uy x x x y y u u x x y ==⎧∂∂∂+-=>-∞<<+∞⎪∂∂∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。

(20分)。

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数理方程试卷

数理方程试卷

工程数学一、 (10分)填空题1、初始位移为)(x ϕ,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题:⎪⎩⎪⎨⎧==>+∞<<∞-===).(),(0,,002x u x u t x u a u t t t xx tt ψϕ 2、为使定解问题⎪⎪⎩⎪⎪⎨⎧=======0,00002t lx x x xxt u u u u u a u (0u 为常数)中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w xu 03、方程0=xyu 的通解为)()(),(y G x F y x u +=4.只有初始条件而无边界条件的定解问题,称为柯西问题、5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为1cos 61),(223-++=y x y x y x u 二、 (10分)判断方程02=+yy xx u y u的类型,并化成标准形式.解:因为)0(02≠<-=∆y y ,所以除x 轴外方程处处就是椭圆型的。

……2分它的特征方程就是 022=+⎪⎭⎫⎝⎛y dx dy ……5分即iy dxdy±= 特征线为 21ln ,ln c ix y c ix y =+=-作变换:⎩⎨⎧==x yηξln ……7分求偏导数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-====)(112ξξξξηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式ξηηξξu u u =+ ……10分三、 (10分)求解初值问题⎪⎩⎪⎨⎧==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020解:x x x x a cos )(,)(,22===ψϕ利用达朗贝尔公式⎰+-+-++=atx atx d a at x at x t x u ξξψϕϕ)(21)]()([21),( ……5分得)]2sin()2[sin(414cos 41])2()2[(21),(222222t x t x t x d t x t x t x u tx tx --+-+=+-++=⎰+-ξξt x t x 2sin cos 21422++= ……10分四、 (15分)用分离变量法解定解问题⎪⎪⎩⎪⎪⎨⎧====><<=====.0,0|,00,0,0002t t t l x x x x xx tt u x u u u t l x u a u 解 先求满足方程与边界条件的解、设解为)()(),(t T x X t x u = ……2分代入方程得)()()()(2t T x X a t T x X ''=''除以)()(2t T x X a 有λ-=''='')()()()(2t T a t T x X x X得到两个常微分方程0)()(=+''x X x X λ ……3分0)()(2=+''t T a t T λ ……4分由边界条件得0)()(,0)()0(='='t T l X t T X 由0)(≠t T ,得0)(,0)0(='='l X X ……5分 于就是固有值问题为⎩⎨⎧='='=+''0)(,0)0(,0)()(l X X x x X λ解之得一系列固有值Λ,2,1,0,)(2===n ln n πλλ 相应的固有函数为x ln x X n πcos)(= ……8分 再解方程 0)()()(2=+''t T l a n t T π,通解为t lan D t l a n C t T n n n ππsin cos )(+= ……10分利用解的叠加原理,可得满足方程与边界条件的级数形式解∑∞=+=1cos )sin cos(),(n n n x ln t l a n D t l a n C t x u πππ ……12分 由初始条件0|0==t t u ,得0=n D , ……13分 由得,0x u t == ∑∞==1cos n n x ln C x π其中⎰==l l xdx l C 0021⎰=--==l nn n n l dx l n x l C 02,2,1],1)1[()(2cos 1Λππ ……14分 将n n D C ,代入),(t x u 得定解问题解∑∞=--+=122cos cos 1)1(22),(n n x l n t l a n n l l t x u πππ……15分 五、 (15分)解非齐次方程的混合问题⎪⎪⎩⎪⎪⎨⎧≤≤=≥==><<+====πππx u t u u t x x u u t x x xx t 0.00,0,00,0,00 解 先确定固有函数)(x X n 、令)()(),(t T x X t x u =代入相应的齐次方程与齐次边界条件得固有值问题⎩⎨⎧===+''0)(,0)0(0)()(πλX X x X x X 固有函数为 Λ,2,1,sin )(==n nx x X n ……5分设解为∑∞==1sin )(),(n n nx t T t x u (1) ……7分其中)(t T n 就是待定函数、显然),(t x u 满足边界条件、为确定函数)(t T n ,先将方程中的非齐次项展为固有函数级数 ∑∞==1sin )(n n nxt f x (2) ……8分其中nnxdx x t f n n 2)1(sin 2)(10+-=⋅=⎰ππ……9分再将(1),(2)代入方程得∑∞=+=⎥⎦⎤⎢⎣⎡--+'1120sin 2)1()()(n n n n nx n t T n t T比较系数,有Λ,2,1,2)1()()(12=-=+'+n nt T n t T n n n ……10分由初始条件得0sin )0(1=∑∞=n n nx T所以0)0(=n T ……11分解初值问题⎪⎩⎪⎨⎧=-=+''+,0)0(2)1()()(12nn n n T n t T n t T 得)1(2)1()(231tn n n e n t T -+--=……14分 将)(t T n 代入级数(1),得定解问题的解、nx e n t x u n tn n sin )1()1(2),(1312∑∞=-+--= ……15分 六、 (15分)用积分变换法解无界杆热传导问题⎪⎩⎪⎨⎧=>+∞<<∞-==).(0,,02x u t x u a u t xx t ϕ 本题所用公式:ta x ta eta eF 22224121][---=πλ解 对x 作傅氏变换,记=),(~t uλ F )],([t x u =)(~λϕF )]([x ϕ ……2分 对方程与初始条件关于x 取傅氏变换,有⎪⎩⎪⎨⎧=-==)(~~~~022λϕλt u u a dtu d ……7分 解常微分方程的初值问题,得t a et u 22)(~),(~λλϕλ-= ……10分 再对),(~t uλ进行傅氏逆变换得 =),(t x u F])(~[221t a e λλϕ-- ……13分 ta x eta x 22421)(-*=πϕ⎰∞+∞---=ξξϕπξd et ata x 224)()(21 ……15分七、 (15分)用静电源像法求解上半平面0>y 的狄利克雷问题⎪⎩⎪⎨⎧=>=+=).(|0,00x f u y u u y yy xx解 先求格林函数,由电学知在上半平面0>y 的点),(000y x M 处置单位负电荷,在0M 关于x 轴的对称点),(001y x M -处置单位正电荷,则它与0M 产生的电势在x 轴上 互相抵消,因此上半平面0>y 的格林函数为)1ln 1(ln 21),(100MM MM r r M M G -=π[][]}{20202020)()(ln )()ln(41y y x x y y x x ++---+--=π……7分 下面求==∂∂-=∂∂y y yG nG0)()()(2)()()(2412020020200=⎥⎦⎤⎢⎣⎡++-+--+--=y y y x x y y y y x x y y π2200)(1y x x y +-⋅-=π ……10分 所以dx y x x x f y dl n Guy x u ⎰⎰+∞∞-Γ+-=∂∂-=220000)(1)(),(π……15分 八、 (10分)证明调与方程的狄利克雷内问题的解如果存在,则必就是唯一的,而且连续地依赖于所给的边界条件f .证明:假设有两个调与函数),,(1z y x u 与),,(2z y x u ,它们在有界区域Ω的边界Γ上完全相同,则它们的差21u u u -=在Ω中也满足方程0=∆u ,且0|=Γu 。

数理方程6

数理方程6

4、用分离变量法求解定解问题
ut a 2u xx , 0 x l, t 0 u |x 0 0, ux |x l 0 u | ( x) t 0
得到的级数形式的解 u ( x, t )

┊┊┊┊┊┊┊┊┊
w s + w2
2
a e
n 1 n

[
1
1 ] (s 3) ( s 1)

┊┊┊┊┊┊┊┊┊┊┊
4、当初始扰动限制在有限区域上时,下列对二维波和三维波的说法正确的是( A、只有三维波存在“无后效现象” B、只有二维波存在“无后效现象” C、三维波出现“弥散现象” D、二维波出现“惠更斯原理” 5、下列对拉普拉斯变换的式子错误的是( ) A、 L[sin wt ] =

┊┊┊┊┊┊┊┊
7、下列说法错误的是( ) A、强极小函数一定是弱极小函数 B、弱相等意义下

┊┊┊┊┊┊┊┊┊
3v v ( x v) xv 2 f ( x, y, z ) 是( 3 x z
B、二阶 C、 三阶
(ax) a ( x)
(a 0)
)偏微分方程 C 、 )型偏微分方程
六、 (13 分)用 Fourier 变换法求解定解问题
2 x R, t 0 utt a u xx u |t 0 x , ut |t 0 0

┊┊┊┊┊┊┊┊┊┊┊

┊┊┊┊┊┊┊┊┊
注: 1.试题请按照模板编辑,只写试题,不留答题空白; 2.内容请勿出边框。

┊┊┊┊┊┊┊┊┊
u M0
1 4 a 2
udS
a
五、 (14 分)用本征函数展开法求解定解问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理方程试题-定稿
班号学号姓名成绩
2009年数理方程期末试题
(注:期末试题为70分,平时成绩为30分,合计100分)
一、填空题(18分,每题3分)
1、如果函数)(x f 的付立叶变换为)(λg ,则)(''x f 的Fourier 变换为
2、定解问题包括和两部分
3、数学物理问题的适定性包括:存在性、和稳定性
4、定解问题==>+∞<<-∞=1
)0,(,0)0,(0,,2x u x u t x u a u t xx tt 的解为 =),(t x u
5、一长为l 的均匀细弦,弦的x=0端固定,x=l 端受迫作谐振动Atsinω,弦的初始
位移和初始速度都是零,弦的位移函数u(x,t)所满足的定解问题是:
6、一矩形薄板,其中板的一组对边是绝热的;而另一组对边中,一边温度保持零度,另一边保持常温0u ,那么此矩形薄板的稳定温度分布所满足的定解问题是:
二、选择题(21分,每题3分)
1、经典的分离变量法要求(),否则方法失效。

A .方程和初始条件是齐次的
B .初始条件和边界条件是齐次的
C .方程和边界条件是齐次的
D .方程、初始条件和边界条件都是齐次的
E. 上面各表述都不对
2、三维波动与二维波动传播的特性有:()
A .二者都有后效性
B .二者都没有后效性
C .三维波动传播有后效性,二维波动传播没有后效性
D .二维波动传播有后效性,三维波动传播没有后效性
E. 上面各表述都不对
3.以下关于调和函数和拉普拉斯方程的描述不正确的是()
A .调和函数在球心的值,等于其在球面上的值
B .调和函数在区域内任意一点的函数值,可用区域边界上的函数值表达
C .调和函数的最大和最小值发生在区域的边界上
D .拉普拉斯方程第二边值问题的解如果存在,必定唯一
E. 上面各表述都不对
4.方程02=---t yy t Ae u u 是()
A. 波动方程
B .热传导方程
C .稳定场方程
D .以上都不对
5.方程yy xx x u u u =-4是
A .双曲型方程
B .抛物型方程
C .椭圆型方程
D .以上都不对
6. 设函数),(0M M G 在Ω内除0M 点外满足拉普拉斯方程, 且0=ΓG , Γ为Ω
的边界, 则ΓΩ??-
=dS n
M M G M dV M f M M G M u )),()((41)(),((41
)(000?ππ是定解问题( )的解
A. ??
=??==?ΓΓ)(),(0M f n u M u u ?
B. ==?Γ
)()(M u M f u ? C. ==?Γ
)()(M f u M u ? D. )(),(0M n u M f u u ?=??
==?ΓΓ
E. 上面各表述都不对
7. 设M at S 表示以M 为球心,以at 为半径的球面,则积分表达式
+
=M at M at S S dS f r dS f r t a t M u 211141),(π是定解问题( )的解 A. =??=>
+∞<<-∞?===)
(),()
0,,,( 212M f n u M f u t z y x u a u at
r at r tt B. =??=>+∞<<-∞?===)
(),()
0,,,( 122M f n u M f u t z y x u a u at
r at r tt C. ??=??=>+∞<<-∞?===)
(),()
0,,,( 20
102M f t u M f u t z y x u a u t t tt D. =??=>+∞<<-∞?===)
(),()
,,,( 10
202
M f t u M f u t z y x u a u t t tt
E. 上面各表述都不对
三、试用分离变量法求解下面的定解问题(12分)
====><<=??+??∞
→0
),()0,(0),(),0(0
,0 ,0lim 0
2222
y x u u x u y a u y u y a x y u
x u y
其中0,u a 为常数
四、试用行波法(通解法)解下面的边值问题:(9分)
==+∞
<<+=x
x u y y u y x y x y x u
)0,(sin ),0(,0 ,sin 22
五、用Green 函数法求解上半平面上的Laplace 方程第一边值问题:(10分)
=>+∞<<-∞=??+??)
()0,(0,,02222x x u y x y u x u ?。

相关文档
最新文档