线性系统的能控性和能观性

合集下载

第三章 线性控制系统的能控性和能观性PPT课件

第三章 线性控制系统的能控性和能观性PPT课件
能观性之间的关系
.
1
在现代控制理论中,能控性和能观性是两个重 要的概念,是卡尔曼(Kalman)在1960年首先提出 来的,它是最优控制和最优估计的设计基础。
现代控制理论是建立在用状态空间描述的基 础上的。状态方程描述了输入u(t)引起状态x(t)的 变化过程;输出方程则描述了由状态变化引起的输 出y(t)的变化。
可以看出,系统中某一状态的能控和系统的 状态完全能控在含义上是不同的。
.
7
几点说明:
1) 在线性定常系统中,为简便计,可以假定初始 时刻t0=0,初始状态为x(0),而任意终端状态就指 定为零状态,即 x(tf )0
2) 也可以假定x(t0)=0,而x(tf)为任意终端状态, 换句话说,若存在一个无约束控制作用u(t),在 有限时间[t0, tf]能将x(t)由零状态驱动到任意x(tf)。 在这种情况下,称为状态的能达性。
.
13
b b 1b 2b n T
为简明起见,下面举三个具有上述类型的二阶 系统,对能控性加以剖析。
x 0 1 0 2 x b 0 2 u ; yc1 c2x
(3-3)
x 0 1 1 1 x b 0 2 u; yc1 c2x
(3-4)
x 0 1 1 1 x b 0 1 u; yc1 c2x
具有约旦标准型系统矩阵的单输入系统,状态
方程为
x Λ b xu
(3-1)

x J b xu
(3-2)
1
0
2
Λ
3
0
n
12 3 n 即n个根互异
.
12
1 1
1 1
0
0
1
1
m 1
0

能控性与能观性

能控性与能观性
c11 c12 c c22 21 y (t ) c m1 cm 2 c1n e1t x10 c2 n e2t x20 nt cmn e xn 0
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。

能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。

能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。

但是⼀般没有特别指明时,指的都是状态的可控性。

所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。

4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。

反之,只要有⼀个状态不可控,我们就称系统不可控。

对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。

能控性和能观测性

能控性和能观测性

0 0
0 0
−1 0
0 2
0 1
0 0
0⎥⎥ 0⎥
x
+
⎢⎢0 ⎢0
0 0
04⎥⎥⎥u

⎥⎢

⎢ 0 0 0 0 0 2 0 0⎥ ⎢1 2 0⎥
⎢ ⎢
0
0
0
0 0 0 2 0⎥⎥
⎢⎢0 3 3⎥⎥
⎢⎣ 0 0 0 0 0 0 0 5⎥⎦ ⎣⎢3 0 0⎥⎦
解:此为8阶系统,n=8
19
S=
⎡0 0 0 1 0 0 −2 0 0 3 0 0 −4 0 0 5 0 0 −6 0 0 7 0 0 ⎤
再证必要性,即已知系统能控,证明rankS=n。
同样采用反证法假设rankS<n,表明S的各行线性相关,那么一
定存在一个非零的向量α使
α T [B AB L An−1B] = 0,
α T Ai B = 0,i = 1,2,Ln −1
12
α T Ai B = 0, i = 1,2,Ln −1
根据凯莱-哈密尔顿定理 α T Ai B = 0, i = n, n +1,L
α T e−At B = α T [I − At + 1 A2t 2 − 1 A3t3 + L]B
2!
3!
= α T B −α T ABt + 1 α T A2Bt 2 − 1 α T A3Bt 3 + L = 0
2!
3!
∫t1 [α T e−Aτ B][α T e−Aτ B]T dτ = 0
0
∫ ∫ t1 α T e−Aτ BBT e−ATταdτ = α T t1 e−Aτ BBT e−ATτ dτα

第3章_线性控制系统的能控性和能观性

第3章_线性控制系统的能控性和能观性

证明 定理3.3-1
y(t1) 0(t1)Im 1(t1)Im n1(t1)Im C
y(t2) 0(t2)Im
1(t2)Im
n1(t2)ImC
A x(0)
y(tf)
0(tf)Im
1(tf)Im
n1(tf)ImCnA 1
上式表明,根据在(0,tf)时间间隔的测量值 y(t1),y(t2),…,y(tf),能将初始状态x(0)唯一地 确定下来的充要条件是能观测性矩阵N满秩。
4)不可控
18
3.1.2 线性定常系统的能控性判别
3.可控性约当型判据
J1

x AxBu
J2
xu
Jk
若 A为约当型,则状态完全可控的充要条件是:
每一个约当块的最后一行相应的 阵中所有的行 元素不全为零。(若两个约当块有相同特征值,此
结论不成立。)
精选可编辑ppt
19
3.1.2 线性定常系统的能控性判别
➢本章结构
• 第3章 线性控制系统的能控性和能观性 ✓3.1 能控性 ✓3.2 能观性 ✓3.3 能控性与能观性的对偶关系 ✓3.4 零极点对消与能控性和能观性的关系
精选可编辑ppt
1
引言
状态空间模型建立了输入、状态、输出之间的关系
u
x
y x Ax Bu
y Cx Du
状态方程反映了控制输入对状态的影响;输出方程 反映系统输出对控制输入和状态的依赖
10
3.1 能控性
3.1.2 线性定常系统的能控性判别
证明 定理3.1-1
n1
x(0) AkBk B AB A2B k0
0
An1B1
n1
若系统是能控的,那么对于任意给定的初始状态x(0)都

第3章 能控性和能观性

第3章  能控性和能观性

t 0, t 1
0
W (0, t1 ) 奇异,
与已知条件矛盾
rank W n
说明:1.
在应用格拉姆矩阵判据时计算矩阵指数
函数以及积分的计算量非常大,所以这一判据主要 用在理论分析中。 2. 矩阵W可以利用Matlab函数ctrb(A,B)来计算, 不过其计算在数值上容易导致病态,所以建议使用
1.2 可观性
[例]电路 ((信息)观测的可能性)
如果 u 0,不管电容储存了多少电荷, 由于 y 0 无法知道状态(信息) 图 假定输入恒为0
u
R
R C R
y
R
(信息)观测的可能性
y ce At x0 (未知量
有输入时
At t
(u 0) x0 )
y y ce
0
y ce x0 ce A(t )bu( )d

, T An1B 0
B AB
T

系统不可控。
n1 T A B W 0 rank W n
充分性:证明过程与上相反。
所以输入维数增加 那么特征值 i 不可控。 约当标准形判据 线性定常系统可控的充分必要条件是 系统可控的可能性增加。
T i T i
t 0 A( t )
bu ( )d 可将它看做输出
已知
可观性的直观意义和定义
所谓系统可观是指通过观测系统的外部变量即输 入输出变量就能正确地知道系统的内部状态。 定义 如果基于有限长的输入输出数据:
u(t ), y(t ),
0 t T
能唯一地确定系统的初始状态 x0 ,则称点 x0 可观 测。进一步,如果状态空间中任意的初始状态 x0 都可观测,则称系统可观测。

线性系统能控性能控性与能观性

线性系统能控性能控性与能观性

时变系统
能达性定义及判据 能观性定义及判据
①Gram 判据 ①Gram 矩阵非奇异
离散时间线性
能控性判据 ①Gram 判据②秩判据
rank H GH G n 1 H n
时不变系统
能达性判据 能观性判据 ①Gram 判据②秩判据 ①Gram 判据②秩判据


三、连续时间线性时不变系统的结构分解
* * 于物理构成,问题的提法;取输出反馈控制律 u Fy v ,对任意给定期望极点组 1 , * 2 , n ,确定
一个反馈矩阵 F ,使导出的输出反馈闭环系统
x A BFC x Bv y Cx

的所有特征值实现期望的配置,即有 i A BFC * i , i 1,2, , n 。 输出反馈局限性: (1)对完全能控连续时间线性时不变受控系统,输出反馈一般不能任意配置系 统全部极点。 (2)对完全能控 n 维 SISO-LTIC 受控系统,输出反馈只能使闭环极点配置到根轨迹上。 扩大输出反馈配置功能的一个途径是采用动态输出反馈, 即在采用输出反馈同时附加引入补偿器。 可以证明,通过合理选取补偿器机构和特性,可对带补偿器输出反馈系统的全部极点进行任意配置。 4.2 状态反馈镇定问题 4.2.1 所谓的镇定问题就是,对给定的线性时不变受控系统,确定状态反馈控制律 u Kx v ,使 导出的状态反馈闭环系统 x A BK x Bv 为渐进稳定,即闭环系统特征值均具有负实部。 镇定问题实质上属于极点区域配置问题,对于镇定问题,系统闭环极点的综合目标,并不要求配 置于任意指定期望位置,而只要求配置于复平面的左半开平面上。 4.2.2 可镇定条件
4.1.2 极点配置问题的算法 [极点配置定理] 对 n 维连续时间线性时不变系统,系统可通过状态反馈任意配置全部 n 个极点 即特征值的充分必要条件是 A, B完全能控。 [多输入状态反馈阵算法] 给定 n 维多输入连续时间时不变受控系统 A, B 和一组任意的期望闭

线性系统理论(第四章)线性系统的能控性和能观测性

线性系统理论(第四章)线性系统的能控性和能观测性

An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
h1 H h2
5 2h1 0 0 A BHC 1 0 h 2 h 1 1 2 h2 3 0 1
闭环特征多项式是
sI (A BHC) = s3 + (3+h2)s2 +(h12h2+1) s (5+2h1)
1 0 A 2 3 0 B 1 C 2 0
令观测器的反馈矩阵为
g1 G g2
15
sI ( A GC )
s 2 g1 2 2g2
1 s3
s 2 (3 2 g1 ) s (6 g1 2 g 2 1)
12
例4-11 已知系统的状态空间表达式为
0 0 5 A 1 0 1 0 1 3 2 0 B 1 2 1 0 C 0 0 1
设计输出反馈阵H,使闭环系统渐近稳定。 解: 利用能观测标准形可以判定原系统是能观测的。 列出原系统的特征多项式为 sI A = s3 + 3s2 + s 5 显然系统是不稳定的。 采用输出至输入的反馈控制,设u = r Hy,并设输 出反馈阵为
9
(1) 闭环系统的极点具有分离特性,即闭环极 点是由观测器的极点和直接状态反馈闭环系统的 极点组成的,并且两者是相互独立的。设计时可 分别独立进行。 (2) 闭环系统的传递矩阵具有不变性,也就是 说总的闭环传递矩阵等于直接状态反馈闭环系统 的传递矩阵。 (3) 带观测器的状态反馈系统,只有当t, 即进入稳态时,才会与直接状态反馈系统完全等 价。 (4) 带观测器的闭环系统一定是不能控但能观 测的。
而希望的特征多项式为 (s + 10) (s +10) = s2 +20s + 100 g1=8.5 g2 = 23.5
所以全维状态观测器为
ˆ ( A GC ) x ˆ Bu Gy x 17 1 0 8.5 ˆ u x y 49 3 1 23.5
⑶ 状态观测器极点可任意配置的充要条件是受
控系统是完全能观测的。
7
4. 带观测器的状态反馈闭环系统的性质
r u
B

A G
x
C
y
B

A K
^ x
C
^ y
8
A x BK x B r ˆ GC A GC BK x ˆ B x y C 0 x x ˆ A BK x ˆ 0 x x y C 0 x x x ˆ BK x B r ˆ 0 A GC x x
现代控制理论
第 4章 小 结
1. 状态反馈与极点配置
r u B x y

A
C
K
K[(A BK),B,C]
2
(1) 状态反馈不改变受控系统(A,B,C)的能 控性,但却不一定保持系统的能观测性。 (2) 用状态反馈实现闭环极点任意配置的充要 条件是被控系统能控。 (3) 状态反馈不改变系统的零点,只改变系统 的极点。 (4) 当受控系统不完全能控时,状态反馈只能 任意配置系统能控部分的极点,而不能改变不能 控部分的极点。
5Leabharlann 3. 状态观测器u ( A, B, C ) y
G B 状态观测器

A
^ x
C
^ y
^ x
ˆ Ax ˆ G( y y ˆ ) Bu ( A GC) x ˆ Bu Gy x
6
⑴ 状态观测器的任务是实现状态估计,结构
是渐近观测器,即当t 时, x ˆx 。 ⑵ 状态观测器存在的充要条件是受控系统其不 能观测的部分是渐近稳定的。
x 0 u x 0 0 1 0 2 3 1 y 10 0 0x
11
希望的特征多项式为
(s+2) (s+1+j) (s+1j) = s3 + 4s2 + 6s + 4 原系统的特征多项式为 s (s+1) (s+2) = s3 + 3s2 + 2s 令 K = [ k 1 k 2 k 3] K = [a3*a3 a2*a2 a1*a1 ] = [ 4 0 6 2 4 3]
3
2. 输出反馈与极点配置
r u B

A
x
C
y
K[(A BHC),B,C]
H u
B

A H
x
C
y
K[(A HC),B,C]
4
⑴ 用输出至状态微分的反馈可任意配置闭环极 点的充要条件是被控系统完全能观测。 ⑵ 用输出至状态微分的反馈保持系统的能观测 性,但不一定能保持系统的能控性。也不改变系统 的闭环零点。 ⑶ 用输出至参考输入的反馈不能实现任意的极 点配置。若要任意配置闭环极点必须串联补偿器。 这类输出反馈,可保持系统的能控性和能观测性不 变。
显然系统是不稳定的。
不管怎样选择h1和h2,都不能使闭环特征多项式的
三个系数为任意值,所以采用输出至输入的反馈控
制不能任意配置闭环极点。
14
例4-15 设受控系统的传递函数为
Y (s) 2 U ( s) ( s 1)(s 2)
设计全维状态观测器,将其极点配置在10,10 。 解: ⑴ 由传递函数可知,该系统是能控且能观 的,建立其能控标准型实现 :
10
例4-10 已知线性定常系统的传递函数为 欲将闭环极点配置在s1= 2,s2 = 1+j,s3= 1j, 试确定状态反馈阵K。
10 G( s) s( s 1)(s 2)
解:因为给定系统的传递函数无零极点相消,所 以给定系统为能控的,能够通过状态反馈将闭环极点 配置在希望的位置上。由给定的传递函数可写出相应 的能控标准形 0 0 1 0
相关文档
最新文档