最新北师大版第三章生活中的数据练习题

合集下载

七年级数学月考试题(第三章《生活中的数据》第四章《概率》) (北师大版)

七年级数学月考试题(第三章《生活中的数据》第四章《概率》) (北师大版)
出 两 只 刚 好 配 成 一 双 的 概 率 是 . 1 . 猫 在 如 图 所 示 的 地 板 砖 上 随 意 地 走 来 走 去 . 后 随 意 停 1小 然
( 趣 圈) 8
留 在 某 块 砖 上 , p(S - 角 砖 上 ) 则 g ̄ C = 1 . 意 抛 掷 两 个 均 匀 的 骰 子 , 朝 上 面 的 点 数 之 和 为 1= 2随 )

…… 矗 笱 … 矗 坑… 矗 … …
…… 吃 矗
. 效 数 字 有 有
填 空题 ( 题 2 , 2 分 ) 每 分 共 4
1某 建 筑 物 的 高 经 过 “ 舍 五 人 ”  ̄ 3 .O . 个 近 似 数 精 确 到 . . 四 后  ̄ 25 米 这 J 个
2 国 家 测 绘 局 局 长 陈 邦 柱 于 2 o 年 1 Y 9日在 国 务 院 新 闻 办 新 闻 发 布 会 上 正 式 宣 布 . 界 第 . o5 0 t 世
各 ห้องสมุดไป่ตู้ 出一 球 , 摸 出红 球 就 出租 给谁. 果 摸球 顺 序 按先 甲 , 乙 , 后 轮到 丙 进行 , 么这 种 做 谁 如 后 最 那
法公 平 吗 ? : 答



( 公 平 或不公 平) 填
8如 图 是 商 场 里 为 了 招 揽 生 意 , 立 的 有 奖 转 盘 , 盘 被 分 成 相 同 的 四 部 . 设 转
米.
— —
4在 比 例 尺 为 1l 万 的 地 图 上 , 、 两 地 的 距 离 是 2 m, 甲 、 两 地 的 实 际 距 离 是 . :百 甲 乙 c 则 乙
千米.



5建 设 世 界 最 长 跨 径 的 斜 拉 式 苏 通 大 桥 , 划 总 投 资 6 .亿 元 , 近 似 精 确 到 . 计 45 该

北师大版七年级数学下册教案_第三章_生活中的数据

北师大版七年级数学下册教案_第三章_生活中的数据

第三章 生活中的数据 3.1 认识百万分之一一、复习提问1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。

2.什么叫科学记数法?把下列各数用科学记数法来表示:(1)2500000 (2)753000 (3)205000000 四、随堂练习:几吨的百万分之一是多少吨?是多少克? 五、继续探索新知识,用科学计数法表示绝对值较小数 1. 正的纯小数的科学记数法表示: (1)学生填空:551010100001.0-==(2)总结规律:n-=1001......0.0:一般地把一个绝对值小于1的数也可以表示成na 10⨯的形式,其中101 a ≤,n 为负整数,n 等于非零的数前面的连续零的个数。

1、例:大多数花粉的直径约为20微米到50微米,这相当于多少米?解:因为1微米=610-米,所以大多数花粉的直径为61020-⨯米到61050-⨯米,即5102-⨯米到5105-⨯米。

2、做一做(1)你能在科学计算器上表示出12109.2⨯吗?7102.7-⨯呢?(2)在显微镜下,人体内一种细胞的截面图的形状可以近似地看成圆,它的直径约为61056.1-⨯米,利用科学计算器求出这种细胞的截面图的面积。

3、练习:把下列各数用科学记数学法表示: (1)0.000 000 001 65;(2)0.000 36微米,相当于多少米? (3)600纳米,相当于多少米? 小结1、1米=1000毫米、1毫米=1000微米、1微米=百万分之一米,即610-米。

2、把较小的数表示成科学记数法,小数点向右移动几位,就写成10的负几次方。

3、用科学记数法表示绝对值较小的数也是将它写成na 10⨯米的形式,其中a 也是大于或等于1且小于10的一个数,不同的地方是此时10的指数n 变成了负整数。

3.2近似数与有效数字 (一)通过学生的练习,加深对近似数的理解,并讲解例题1、2 (二)练习: 1、判断下列各数,哪些是准确数,哪些是近似数(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;( )(2)检查一双没洗过的手,发现带有各种细菌80000万个;( ) (3)张明家里养了5只鸡;( )(4)1990年人口普查,我国的人口总数为11.6亿;( ) (5)小王身高为1.53米;( )(6)月球与地球相距约为38万千米;( ) (7)圆周率π取3.14156( )2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:(1)四舍五入到十分位___________ (2)四舍五入到百分位_________ (3)四舍五入到个位____________一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 在上题中,小明得到的近似数分别精确到哪一位。

北师大七年级下第三章复习与回顾第三章生活中的数据学案及答案

北师大七年级下第三章复习与回顾第三章生活中的数据学案及答案

《生活中的数据》复习与回顾班级:___________ 姓名:___________ 学号:___________课前预习※自主阅读1、课前复习:阅读课本P85—P103,并完成以下各题(1)请用你熟悉的事物描述一些较小的数据,如10-6;(2)哪些数据用科学记数法表示比较方便?举例说明。

(3)你在生活中使用过近似数吗?举例说明。

(4)说一说可以利用哪些统计图来描述数据?本章中哪幅图给你的印象最深?2、知识点过关(1)百万分之一:对较小数据的感受,用科学计数法表示绝对值较小数及单位的换算如:1微米= 米,1纳米= 米,4纳米= 微米= 毫米= 厘米= 米,200千米的百万分之一是米,用科学计数法表示为:_______;0.00000368= .(2)近似数和有效数字:一般地,通过测量的结果都是近似的.对于一个近似数从边第个不是的数字起,到的数位止,所有的数字都叫做这个数的有效数字,如:0.03296精确到万分位是,有个有效数字,它们是 .(3)世界新生儿图:会从给出的信息图中得到有用信息;会画生动形象的统计图。

※质疑问难_____________________________________________________________________课堂研习※知识理解知识结构※典例剖析例1.按括号里的要求用四舍五入法对下列各数取近似值:(1)-3.19964(精确到千分位); (2)560340(保留三个有效数字);(3)5.306×105(精确到千位).例2.计算机存储容量的基本单位是字节,用b表示,计算中一般用Kb(•千字节)•或Mb(兆字节)或Gb(吉字节)作为存储容量的计算单位,它们之间的关系为1Kb=210b,1Mb=210Kb,1Gb=210Mb.学校机房服务器的硬盘存储容量为40Gb,它相当于多少Kb?(结果用科学记数法表示,并保留三个有效数字)例3.(1)根据表中的数据,制作统计图表示这六个城市年平均气温情况,•你的统计图能画得形象些吗?(2)如果要利用面积分别表示这六个城市的年平均气温,六个城市所占的面积之比大约是多少?(利用计算器计算)课后复习一、判断题1.近似数3.15用科学记数法表示为0..315×10.()2.小明量的课桌长1.025米,四舍五入到十分位为1米.()3.40万精确到个位,有两个有效数字.()4.数706.2保留两个有效数字是71.()二、选择题5.下列数据中,精确的是().A.太平洋的面积为17900万平方千米;B.北京地区年平均降水量约为280mm;C.2002年,我国发现首个世界级大气田,储量达6000亿立方米;D.某校现有教职工181人6.下列说法正确的是().A.四舍五入得到的近似数49.0是精确到个位,有效数字是4,9两个;B.四舍五入得到的近似数21.00是精确到百分位,有效数字是2,1,0,0四个;C.两个近似数1千和1000的精确度是相同的;D.近似数2.30和2.3是一样的7.测一张纸大约有多厚,甲、乙、丙、丁四人分别说出了各人观点,你认为合理且可行的是().A.直接用三角板测量一张纸的厚度; B.先测量2张纸的厚度;C.先测量同类50张纸的厚度; D.先测量同类10000张纸的厚度8.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径为35000纳米,那么用科学记数法表示花粉的直径为().A.3.5×104米 B.3.5×10-4米 C.3.5×10-5米 D.3.5×10-9米9.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果见图.根据此条形图估计这一天该校学生平均课外阅读时间为().A.0.9时 B.1.15时 C.1.25时 D.1.5时三、填空题10.某种感冒病毒的直径是0.00000012m,用科学记数法表示为________m.11.3.60万精确到_______位,有_____个有效数字,分别是_____.12.用最小刻度为mm的刻度尺测量某物体的长为4.12cm,则该读数中______是精确的,________估计的.13.已知100张100元纸币的厚度为0.7cm,•那么一张纸币的厚度用科学记数法表示为_______m.14.在2004年的第28届奥运会上,中国体育代表团取得了很好的成绩.•由金牌条形统计图提供的信息可知,中国代表团的金牌总数约占奥运会金牌总数的_____%(结果保留两个有效数字).四、解答题15.世界上最大的沙漠──非洲的撒哈拉沙漠可以粗略地看成是一个长方形,撒哈拉沙漠的长度大约是5149900m,沙层的深度大约是366cm.已知撒哈拉沙漠中沙的体积约为33345km3.请分别按下列要求取近似数.(1)将撒哈拉沙漠的长度用科学记数法表示;(2)将撒哈拉沙漠中沙层的深度四舍五入到10cm;(3)将撒哈拉沙漠中沙的体积保留2个有效数字.16.随机抽取某城市30天的空气质量情况如下表:其中,w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染;w>150时,空气质量为严重污染.(1)求出这30天中,空气质量分别为优、良和轻微污染的天数之比;(2)估计该城市一年(以365天计)中有多少天空气质量达到良以上.(不包含良)。

北师大版二年级下册数学《生活中的大数》练习题

北师大版二年级下册数学《生活中的大数》练习题

北师大版二年级下册数学《生活中的大数》练习题删除此段落,因为它只包含了一个问题,没有上下文信息)一、填空:1.10个一是(10),10个十是(100),10个一百是(1000),10个一千是()。

2.一个数,从右边起第一位是(个位)位,第二位是(十位)位,第三位是(百位)位,第四位是(千位)位。

第五位是(万位)位。

读数时,中间有一个或两个零,只读(一个)个,末尾的(零)不读。

3.读数时,先从(左边第一位)读起,千位上是几,就读(千),百位上是几,就读(百),十位上是几,就读(十),个位上是几,就读(个)。

4.四位数肯定比三位数(大),三位数肯定比两位数(大)。

5.在数位表中,从右起第二位是(十位)位,最低位是(个位)位。

6.9587是由(9)个千、(5)个百、(8)个十、(7)个一组成的。

7.一个数从右边起,第二位是(万位)位,第三位是(千位)位,第五位是(十位)位。

8.最小的三位数是(100),最大的三位数是(999),最大的四位数是(9999),最小的四位数是(1000),最小的五位数是()。

9.与1000相邻的两个数是(XXX)和(1001)。

10.写出998后面连续的两个数是(XXX)、(1000)。

11.百位的左边是(十位)位,右边是(个位)位。

12.3009这个数的最高位是(3)位,这个数是由(3)个千和(9)个一组成的。

13.用2、5、6这3个数,你能排出(6)个三位数。

14.用3、6、1、5组成一个最大的四位数是(6531),最小的四位数是(1356)。

15.568这个数百位上是(5),表示(5)个(百);十位上是(6),表示(6)个(十);个位上是(8),表示(8)个(个)。

16.4600里面有(46)个百,260里面有(2)个十。

17.读数和(写)数都从高位起。

18.某林场有2403棵杨树,约是(2400)。

19.东风村有9998口人,约是()。

二、选择题。

把下面正确答案序号填在括号里。

北师大版一年级数学下册第三单元生活中的数专项练习题155

北师大版一年级数学下册第三单元生活中的数专项练习题155

92〇49 72〇81 65〇66 74〇7749〇83 91〇57 36〇71 61〇6942〇41 28〇26 88〇83 65〇6890〇92 15〇35 47〇45 13〇89二、填一填。

37<□□>44 □<78 12>□45<□□>55 □<91 86>□72<□□>68 □<100 45>□20<□□>91 □<12 12>□三、填空。

93的前面一个数是____,后面一个数是____。

93在____和____中间。

47,48,49,50,____,____。

90,85,80,____,____,____。

25,26,27,____,____,____。

35,37,39,____,____,____。

5个十,2个一,合起来是____。

91里面有____个十和____个一。

25的前面一个数是____,后面一个数是____。

15〇51 41〇35 31〇29 55〇5332〇83 69〇46 57〇24 17〇6381〇29 90〇88 69〇70 57〇5039〇64 77〇88 75〇63 92〇63二、填一填。

27<□□>32 □<52 22>□97<□□>78 □<18 13>□15<□□>44 □<60 28>□96<□□>49 □<70 42>□三、填空。

44的前面一个数是____,后面一个数是____。

82在____和____中间。

45,47,49,51,____,____。

70,65,60,____,____,____。

24,25,26,____,____,____。

30,32,34,____,____,____。

1个十,3个一,合起来是____。

38里面有____个十和____个一。

52的前面一个数是____,后面一个数是____。

91〇85 36〇32 24〇28 68〇7729〇35 93〇16 98〇96 43〇7951〇29 66〇60 38〇38 58〇5915〇89 46〇60 32〇12 76〇46二、填一填。

北师大版七年级数学上第三章练习题

北师大版七年级数学上第三章练习题

第三章练习题一、代数式求值1、用代数式表示:(1) _________________________________ 温度由t°C下降2°C后是°C;(2) _________________________________ 今年李华m岁,去年李华岁,5年后李华岁;(3) __________________________________________________________________ 某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元;(4) __________________________________________ 明明用ts走了sm,他的速度为m/s;(5) _________________________________________________ 如果正方体的棱长是a-1,那么正方体的体积,表面积是;(6) __________________________________________________________________ —个两位数的个位数字是a,十位数字是b,则这个两位数可以表示为;(7) __________________________________________________________ 三个连续整数中,n是最小的一个,这三个数的和为;(8) __________________________________________ 写出一个与2xyz3是同类项的代数式;2、举例说明下列各代数式的意义:(1)(1+8o0)x可以解释为;(2)8a3可以解释为;a+b(3)丁可以解释为;3、在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min 叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(°C)。

(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?4、人体血液的质量约占人体体重的6%〜7.5%.(1)如果某人体重是a kg,那么他的血液质量大约在什么范围内?(2)亮亮体重是35kg,他的血液质量大约在什么范围内?(3)估计你自己的血液质量。

北师大版七年级下册数学第1-5章试题

北师大版七年级下册数学第1-5章试题

第三章《生活中的数据》复习一、知识点:1、百万分之一:对较小数据的感受,用科学计数法表示绝对值较小数及单位的换算。

如:1微米= 米,1纳米= 米,4纳米= 微米= 毫米= 厘米= 米200千米的百万分之一是米.用科学计数法表示:0.00000368=2、近似数和有效数字:一般地,通过测量的结果都是近似的。

对于一个近似数从边第个不是的数字起,到的数位止,所有的数字都叫做这个数的有效数字.如:0.03296精确到万分位是,有个有效数字,它们是3、世界新生儿图:会从给出的信息图中得到有用信息;会画生动形象的统计图。

二、巩固练习:(一)填空选择题:1、下列数据中,是精确值的有()个(1)在9·11恐怖事件中,估计有5000人死亡;(2)某细胞的直径为百万分之一米;(3)中国的国土面积约为960万km2(4)我家有3口人(5)一(1)班有53人(A)1 (B)2 (C)3 (D)42、下列各组数据中,()是精确的。

(A)小明的身高是183.5米(B)小明家买了100斤大米(C)小明买笔花了4.8元(D)小明的体重是70千克3、某学生测量长度用的刻度尺的最小单位是厘米现测量一物品的结果为6.7cm ,那么位是精确值,位是估计值。

4、1纳米相当于一根头发丝直径的六万分之一,那么一根头发丝的半径为米(用科学计数法表示)5、一只蚂蚁的重量约为0.0002㎏,用科学计数法记为用科学计数法表示的数3.02×10-8,其原数为6、小东买了12.65kg苹果,精确到0.1kg,则所买苹果约为 kg7、数0.8050精确到位,有个有效数字,是8、数4.8×105精确到位,有个有效数字,是9、数5.31万精确到位,有个有效数字,是10、一箱雪梨的质量为20.95㎏,按下面的要求分别取值:(1)精确到10㎏是㎏,有个有效数字,它们是(2)精确到1㎏是㎏,有个有效数字,它们是(3)精确到0.1㎏是㎏,有个有效数字,它们是11、我国普通高校招生2756300人,若精确到万位是人有个有效数字,它们是米,12、九届人大一次会议上,李鹏同志所作的政府工作报告中指出:1997年我国粮食总产量达到492500000t,按要求填空:(1)精确到百万位是(用科学计数法表示),有个有效数字,它们是(2)精确到亿位是(用科学计数法表示),有个有效数字,它们是13、数0.000125保留两个有效数字记为14、北冰洋的面积是1475.0万平方千米,精确到()位,有()个有效数字(A)十分位,四(B)十分位,五(C)千位,四(D)千位,五15、下表是中国奥运会奖牌回眸统计表及历届奖牌总数折线图届数金牌银牌铜牌总计第23届15 8 9第24届11 12 28第25届22 12 54第26届16 16 50第27届28 16 59(1)完成上表(2)把第23届奖牌总数在统计图上标出,并完成此折线统计图7035G H I J K2324252627(二)解答题1、举例说明哪些是近似数,哪些是准确数,哪些是有效数字?2、、如图,(1)写出图中阴影部分的面积;(2)当a=3, b=2时,计算阴影部分的面积( =3.1415,保留3个有效数字,单位:cm)3、随机抽取城市30天的空气质量状况统计图如下:污染指数(w)40 70 90 110 120 140天数(t) 3 5 10 7 4 1其中:w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染。

北师大版七下数学第三章各节练习题含答案

北师大版七下数学第三章各节练习题含答案

3.1 用表格表示的变量间关系一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.一杯开水越晾越凉,这一过程中自变量是()A.时间B.温度C.时间和温度D.空气中的温度2.从深圳往北京打电话,电话费随时间的变化而变化,在这个问题中,因变量是( )A.时间B.电话费C.电话D.距离3.已知电费的收费标准为0.5元/千瓦时,当用电量为x(千瓦时)时,收取电费为y(元);在这个问题中,下列说法中正确的是()A.x是自变量,0.5元/千瓦时是因变量B.B.0.5元/千瓦时是自变量,y是因变量C.y是自变量,x是因变量D.D.x是自变量,y是因变量4.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:在这个问题中,下列说法正确的是()A.定价是不变量,销量是变量B.定价是变量,销量是不变量C.定价与销量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x (kg)间有下面的关系:A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0 cmD.物体质量每增加1kg,弹簧长度y增加0.5 cm6.在实验课上,利用同一块木板测得小车从不同高度(h)下滑时,高度(h)与下滑的时间(t)的关系如下表:下列结论错误的是()A.当40cmh=时,t约为2.66秒B.随高度增加,下滑时间越来越短C.估计当80cmh=时,t一定小于2.56秒D.高度每增加10cm,时间就会减少0.24秒二.填空题:(把正确答案填在题目的横线上)7.在一个变化过程中,如果有两个变量x和y,其中y随x的变化而变化,则x叫做__________,y叫做__________.8.用表格表示两个变量之间的关系:表示两个变量的关系的表格,一般第一行表示______变量,第二行表示______变量,借助表格,可以表示因变量随自变量的变化而变化的情况.9.汽车以m 千米/小时的速度从甲地驶向乙地,若甲、乙两地相距s 千米,当汽车行驶了x 小时后,距离乙地还有y 千米,在这个问题中,常量是__________,变量是__________,其中自变量是__________,因变量是__________.10.下表是某河流在汛期一天中涨水的情况,警戒水位为25米.(1)上表反映了 与时间之间的关系,其中 是自变量, 是因变量;(2) 从0时到24时,水位从 上升到 ; (3) 从 时到 时,水位上升最快;(4) 假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位 米.11.下表为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位:件)发生相应的变化:这个表反映了______个变量之间的关系,__________是自变量,__________是因变量;从表中可以看出每降价5元,日销量增加__________件,从而可以估计降价之前的日销量为__________件,如果售价为500元,日销量为__________件. 三.解答题:12.下表是学校气象兴趣小组记录某天一昼夜温度变化的数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)早晨8时和中午12时的气温各是多少?(3)根据表格中的数据,说说一昼夜中什么时候气温最低?什么时候气温最高?温差是多少?(4)你能粗略说一说一昼夜内气温随时间变化的大概情况吗?13.下表是某自行车厂某年各月份生产自行车的数量:(2)为什么称自行车的月产量y为因变量?它是谁的因变量?(3)哪个月份自行车产量最高?哪个月份自行车产量最低?(4)哪两个月份间产量相差最大?根据这两个月的产量,自行车厂应采取什么措施?14.实验证明在弹性限度内,弹簧的伸长长度与所挂物体的质量有一定的比例关系,下表是某次实验测得的弹簧的长度y(cm)与所挂物体质量x(kg)的几组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体的质量为3kg时,弹簧多长?不挂重物时呢?(3)若所挂物体的质量为7kg时(在弹性限度内),弹簧的长度是多少?3.1 用表格表示的变量间关系(参考答案)1~6 ABDCCD7.自变量;因变量;8.自;因;9.s,m;x,y;x;y;10.(1)超警戒水位,时间,超警戒水位;(2)25.2,26;(3)12,20;(4)26.5;11.两;降价;日销量;30;750;1110;12.(1)反映了气温和时间的关系,时间是自变量,气温是因变量;(2)早上8点的气温是4℃,中午12点的气温是9℃;(3)早晨4时气温最低,午后14时气温最高,温差14℃;(4)0时至4时气温下降到4 ℃,4时至14时逐渐升高到10℃,然后气温又下降.13.(1) 随月份的增加,自行车总产量也逐渐增加;(2) 因为自行车的月产量y随时间x的变化而变化.自行车的月产量y;(3) 6月份产量最高,1月份产量最低;(4) 从6月份到7月份,自行车产量变化最大,下降2万辆,应总结经验教训,改善管理.14.(1)表格反映的是弹簧所挂物体质量与弹簧的长度两个变量之间的关系,弹簧所挂物体质量是自变量,弹簧的长度是因变量;(2)当所挂物体的质量为3kg时,弹簧长24 cm;不挂重物时,弹簧长18 cm;(3)由表中数据变化情况得:若所挂物体的质量为7kg时,弹簧的长度是32cm;3.2《用关系式表示的变量间关系》习题1.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n-4 B.y=4n C.y=4n+4 D.y=n22.如图,△ABC的底边边长BC=a,当顶点A沿BC边上的高AD向D点移动AE时,△ABC的面积将变为原来的( )到E点,使DE=12A.12B.13C.14D.193.如图,△ABC 的面积是2cm 2,直线l ∥BC ,顶点A 在l 上,当顶点C 沿BC 所在直线向点B 运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )A.向直线l 的上方运动;B.向直线l 的下方运动;C.在直线l 上运动;D.以上三种情形都可能发生.4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( )A.23B.29C.43D.495.如图,△ABC 中,过顶点A 的直线与边B C 相交于点D ,当顶点A沿直线AD 向点D 运动,且越过点D 后逐渐远离点D ,在这一运动过程中,△ABC 的面积的变化情况是( )A.由大变小B.由小变大D CAlCB AC.先由大变小,后又由小变大D.先由小变大,后又由大变小6.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.7.一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:写出用t表示s的关系式:________.8.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x分钟后水壶的水温为y℃,当水开时就不再烧了.(1)y与x的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.9.设梯形的上底长为x cm,下底比上底多2 cm,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为y cm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km (1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小? 12.一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5变7时,y如何变化?(3)用表格表示当x从3变到10时(每次增加1),y的相应值.(4)当x每增加1时,y如何变化?说明你的理由.13.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?14.一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:请你根据表格,解答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少参考答案1.答案:B解析:【解答】由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.故选B【分析】由图观察可知.2.答案:B解析:【解答】根据三角形的面积公式判断△ABC的面积将变为原来的三分之一.故选B.【分析】由图观察可知根据三角形的面积公式.3.答案:A解析:【解答】根据三角形的面积公式判断当顶点C沿BC所在直线向点B 运动时,三角形的底变小,则要保持△ABC的面积不变,高就要增大,即顶点A应向直线l的上方运动.故选A.【分析】由图观察可知根据三角形的面积公式.4.答案:C解析:【解答】设圆锥的底面半径为r,高为h,即可表示出变化后的底面半径和高,再根据圆锥的体积公式分别表示出原来的体积和变化后的体积,比较即可得到结果.故选C.【分析】根据圆锥的体积公式分别表示出原来的体积和变化后的体积.5.答案:C解析:【解答】由题意得,这个过程中△ABC的底始终不变,根据三角形的面积公式即可判断. 由题意得,这个过程中△ABC的底始终不变,则△ABC 的面积的变化情况是先由大变小,后又由小变大.故选C.【分析】根据三角形的面积公式即可判断.6.答案:(1)半径,体积;(2)297π.解析:【解答】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)体积增加了(π×102-π×12)×3=297πcm3.故答案为:(1)半径,体积;(2)297π.【分析】根据函数的定义.圆柱的高没有变化,只有底面积变化,因此计算底面积之差即可.7.答案:s=2t2(t≥0).21解析:【解答】观察表中给出的t与s的对应值,再进行分析,归纳得出关系式.t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s =2×42,…所以s与t的关系式为s=2t2,其中t≥0.故答案为s=2t2(t≥0).21【分析】观察表中给出的t与s的对应值,归纳出关系式.8.答案:(1)y=8x+20 x 在0--10变化;(2)28 60;(3)3.5解析:【解答】(1)根据题意,在20℃的基础上x和y有一定的变化规律,即y=8x+20;水温是随着时间的变化而变化的,因此自变量是时间x;当水温y=100时,水沸腾,因此时间x=10,所以x的变化范围是0≤x≤10.(2) x=1时,代入关系式y=28 x=5时代入关系式y=60(3)把y=48代入关系式,变形计算出x=3.5.【分析】先根据题意列出函数关系式,再依次代入求值即可9.答案为:x2+x-2=0解析:【解答】设这个梯形上底边长为x c m,那么下底就应该为(x+2)cm,高为x cm,根据梯形的面积公式得(2x+2)x÷2=2,化简后得x2+x-2=0.故答案为:x2+x-2=0【分析】如果设这个梯形上底边长为x cm,那么下底就应该为(x+2)cm,高为x cm,根据梯形的面积公式即可列出方程.10.答案:y=-x2+25x解析:【解答】设矩形的一边长为x cm,面积为y cm2,根据题意得出:y=-x2+25x答案为:y=-x2+25x【分析】先利用长方形的面积公式列出二次函数关系式即可.11.答案:见解析过程x+2)=17x+1400解析:【解答】(1)W1=16x+1000+200(200x+4)=6x+2800W2=4x+2000+200(100x+2)=12x+1400W3=8x+1000+200(50(2)当x=250时,W1=17×250+1400=5650(元)W2=6×250+2800=4300(元)W3=12×250+1400=4400(元),因为W1>W2>W3,所以应采用火车运输,才能使运输时的总支出费用最小.【分析】(1)根据表格中的关系列出式子:总费用=(运输时间+装卸时间)×损耗+途中费用×距离+装卸费用,依次代入数据即可.(2)x=250,依次代入关系式比较计算结果即可.(2)当x由5变到7时,y由18变到24(3)(4)x每增加1时,y增加3,这是因为:当x变为x+1时,y由3x+3变为3(x+1)+3=(3x+3)+3【分析】根据梯形的面积公式列出关系式,依次代入数值计算即可. 13.答案:见解答过程解析:【解答】(1)Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米).答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12.答:12小时后,池中还有200立方米的水.【分析】(1)根据“抽水时间×抽水速度=抽水量”,“蓄水量-抽水量=剩余水量”解题即可;(2)根据自变量与因变量的关系式,可得自变量相应的值;(3)根据自变量与因变量的关系式,可得相应自变量的值.14.答案:见解答过程.解析:【解答】(1)表中反映的是油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,时间t是自变量,油箱中剩余油量Q是因变量;(2)随着行驶时间的不断增加,油箱中的剩余油量在不断减小;(3)由题意可知汽车行驶每小时耗油7.5L,Q=54-7.5t;把t=6代入得Q =54-7.5×6=9(L);(4)由题意可知汽车行驶每小时耗油7.5L,油箱中原有54L汽油,可以供汽车行驶54÷7.5=7.2(h).答:最多能连续行驶7.2h.【分析】(1)认真分析表中数据可知,油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,再根据自变量、因变量的定义找出自变量和因变量;(2)由表中数据可知随着行驶时间的不断增加,油箱中剩余油量的变化趋势;(3)由分析表中数据可知,每行驶1h消耗油量为7.5L.然后根据此关系写出油箱中剩余油量Q(L)与行驶时间t(h)的代数式;(4)根据图表可知汽车行驶每小时耗油7.5L,油箱原有汽油54L,即可求出油箱中原有汽油可以供汽车行驶多少小时.15.答案:见解答过程解析:【解答】(1)y=2022x·x=(10-x)·x,x是自变量,它的值应在0到10之间(不包括0和10)(2)(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;③当x取距5等距离的两数时,得到的两个y值相等.(4)从表中可以发现x=5时,y取到最大的值25.【分析】解答本题的关键是熟练掌握长方形的面积公式,同时熟记在一个变化的过程中,数值发生变化的量称为变量,函数值为因变量,另一个值为自变量.3.3 用图像表示变量间的关系同步测试一、单选题(共9题;共18分)1.2017年“中国好声音”全国巡演新安站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图能反映y与x的函数关系式的应该图象是()A. B.C. D.2.函数y=的图象为()A. B.C. D.3.小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A. ④②B. ①②C. ①③D. ④③4.小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示,给出以下结论:①小华骑车到县城的速度是15km/h;②小华骑车从县城回家的速度是13km/h;③小华在县城购买学习用品用了1h;④B点表示经过h,小华与县城的距离为15km(即小华回到家中),其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A. B.C. D.6.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米7.已知P(x1,1),Q(x2,2)是一个函数图象上的两个点,其中x1<x2<0,则这个函数图象可能是()A. B.C. D.8.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t 变化的函数图象是()A. B.C. D.9.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A. B.C. D.二、填空题(共5题;共5分)10.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .11.如图是甲、乙两种固体物质在0°C—50°C之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息:①30°C时两种固体物质的溶解度一样;②在0°C—50°C之间,甲、乙两固体物质的溶解度随温度上升而增加;③在0°C—40°C之间,甲、乙两固体物质溶解度相差最多是10g;④在0°C—50°C之间,甲的溶解度比乙的溶解度高.其中正确的信息有:________ (只要填序号即可).12.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为________ 平方米.13.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C 时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线0M为抛物线的一部分),则下列结论:①BC=BE=5cm;②=;③当0<t≤5时,y=t2;④矩形ABCD的面积是10cm2.其中正确的结论是________ (填序号).14.小亮早晨从家骑车到学校,先上坡后下坡,所行路程y(米)与时间x (分钟)的关系如图所示,若返回时上坡、下坡的速度仍与去时上、下坡的速度分别相同,则小明从学校骑车回家用的时间是________分钟.三、解答题(共2题;共20分)15.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?16.某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S(km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:(1)求该团去景点时的平均速度是多少?(2)该团在旅游景点游玩了多少小时?(3)求返回到宾馆的时刻是几时几分?四、综合题(共2题;共33分)17.如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.(1)如图反映的自变量、因变量分别是什么?(2)爷爷每天从公园返回用多长时间?(3)爷爷散步时最远离家多少米?(4)爷爷在公园锻炼多长时间?(5)计算爷爷离家后的20分钟内的平均速度.18.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,________是自变量,________是因变量.(2)甲的速度________乙的速度.(大于、等于、小于)(3)6时表示________;(4)路程为150km,甲行驶了________小时,乙行驶了________小时.(5)9时甲在乙的________(前面、后面、相同位置)(6)乙比甲先走了3小时,对吗?________.第三章变量之间的关系单元测试题一、选择题(3分×10=30分)1.某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是( )A.70 B.xC.y D.不确定2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器3.变量x与y之间的关系是y=2x-3,当因变量y=6时,自变量x的值是( ) A.9 B.15C.4.5 D.1.54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的关系式为( )A.y=-12x B.y=12xC.y=-2x D.y=2x5.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )6.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( ) A.-2 B.2C.-1 D.07.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个8.李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的关系式是( )A.y=-2x+24(0<x<12) B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12) D.y=12x-12(0<x<24)9.在关系式y=5x+3中,有下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x的值无关;④用关系式表示的,不能用图象表示;⑤y 与x的关系还可以用列表如图象法表示.其中,正确的是( )A.①②③B.①②④C.①②⑤D.①④⑤10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地二、填空题(3分×8=24分)11.在求补角的计算公式y=180°-x中,变量是,常量是.12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.13.若一个长方体底面积为60cm2,高为h cm,则体积V(cm3)与h(cm)的关系式为,若h从1cm变化到10cm时,长方体的体积由cm3变化到cm3.14.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=.15.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.16.某种储蓄的月利率是0.2%,存入100元本金后,不扣除利息税,本息和y(元)与所存月数x(x为正整数)之间的关系为,4个月的本息和为.17.如图是小明从学校到家里行进的路程s(米)与时间t(分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).18.如图(1),在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止.设点P运动的路程为x,三角形ABP的面积为y,如果y关于x的函数图象如图(2)所示,则三角形BCD的面积是.三、解答题(共66分)19.(8分)某商场经营一批进价为a元/台的小商品,经调查得如下数据:(1)(2)用语言描述日销售量y和日销售额t随销售价x变化而变化的情况.20.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?21.(8分)科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?22.(10分)汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题单位:电力设备厂子校姓名:卢会军评价等级优良达标待达标
评价结果
一、选择题(3分×10=30分)
1.用四舍五入法,将
2.1648精确到百分位的近似值是( )
A.2.16 B.2.160 C.2.161 D.2.20
2.将0.000490用科学记数法表示为( )
A.4.9×104 B.4.90×104 C.4.90×10-4 D.4.90×10-6
3.下列说法错误的是( )
A.近似数0.8与0.80表示的意义不同
B.近似数0.2000有四个有效数字
C.3.450×104是精确到十位的近似数
D.49554精确到万位是4.9×104
4.下列用科学记数法表示各数的算式中,正确的算式有( )
①5489=5.489×10-3②-21400=-2.14×104③0.000000543=5.43×10-7
④-0.0000123=1.23×10-5
A.①和② B.①和③C.②和③ D.②③④
5.下列语句中给出的数据,是准确值的是( )
A.我国的国土面积约是960万平方公里
B.一本书142页
C.今天的最高气温是23℃
D.半径为10 m的圆的面积为314 m2
6.下列数据中是准确值的有( )个.
(1)在“9·11”K怖事件中,估计有5000人死亡;
(2)小红测得一张纸的厚度约为0.005cm;
(3)某细胞的直径为百分之一米;
(4)中国的国土面积约为960万平方千米;
(5)我家有3口人.A.1
B.2
C.3
D.4
7.0.000125保留两个有效数字记为( ).
A.
B.
C.
D.
8.下列由四舍五入得到的近似数,百分位是四舍五入得到的是( ).
A.3.6cm
B.3.60cm
C.3.600cm
D.以上都不对
9.把32.982保留3个有效数字,并用科学记数法表示是( ).
A.3.29×10
B.3.298
C.33.0
D.3.30×10
10.随着微电子制造技术的不断进步,半导体材料的精细加工尺寸大幅度缩小,目前1个元件约占,
560的芯片上集成( )个元件.
A.7亿
B.8亿
C.9亿
D.10亿
二、填空题(3分×6=18分)
1.小明买了12.65kg苹果,精确到0.1kg,则所买苹果约为_______kg.
2.用科学记数法表示.
3.一个电子的静止质量约为原子质量单位,用小数表示为________原子质量单位.4.0.02000精确到________,有_________个有效数字.
5.天文学上常用太阳和地球的平均距离作为一个天文单位,1个天文单位约
149600000千米,精确到百万位为________千米.
三、计算题(第一题20分,第二题5分,共25分)
1.用四舍五入法,将下列各数按括号中的要求取近似数.
(1)0.6328(精确到0.01);
(2)7.9122(精确到个位);
(3)130.06(保留4个有效数字);
(4)47155(精确到百位);
(5)460215(保留3个有效数字).
2. 某种蚕丝的直径约为一根头发丝的十分之一.已知一根头发丝的直径大约是6×104纳米,那么多少根这种蚕丝
扎成一束的直径能达到6厘米?
四、应用题(第一题15分,第二题12分,共27分)
1.下表是我国近年来普通中学在校学生和教师人数的统计情况(单位:万人)
1985 1990 1995 1998 1999
在校学生5092.6 5105.4 6191.5 7340.7 8002.7
专任教师296.7 349.2 388.3 431.2 459.6
(1)用一幅折线统计图表示我国近年来普通中学在校学生和教师人数的变化情况.
(2)借助计算器求出近年来普通中学每个教师负担学生数的情况(精确到十分位),并在上面的统计图中画出第三条
折线表示这一变化情况.
(3)比较三条折线的变化趋势.2.下表是1999年我国部分城市年平均气温统计情况.
北京哈尔滨上海重庆西安乌鲁木齐
13.1℃ 4.8℃16.6℃18.4℃15.0℃8.0℃
(1)根据表中的数据,制作统计图表示这六个城市年平均气温情况,你的统计图能画得形象些吗?
(2)如果要利用面积分别表示这六个城市的年平均气温,六个城市所占的面积之比大约是多少?(利用计算器计算)
(3)在中国地图上找出这些城市,你发现这六个城市的年平均气温与它们的地理位置有联系吗?。

相关文档
最新文档