差分输入与单端输入

合集下载

ADC的多种输入类型介绍

ADC的多种输入类型介绍

ADC的多种输入类型介绍ADC(Analog-to-Digital Converter)是模拟信号转换为数字信号的设备或电路。

它是现代电子系统中不可或缺的组成部分,用于将来自各种传感器、电源、音频设备等的模拟信号转化为数字信号,以便于数字处理、存储和传输。

根据不同的应用需求,ADC可以接受多种输入类型。

以下是几种常见的ADC输入类型及其特点。

1. 单端输入(Single-Ended Input):单端输入是最常见的ADC输入类型,它接受来自一个信号源的单个信号输入。

例如,一个温度传感器可以通过单端输入将模拟温度信号转化为数字形式。

单端输入的优势是简单易用,但由于信号只有一种极性,有时可能会受到噪声的影响。

2. 差分输入(Differential Input):差分输入允许两个信号源之间的差异信号被转换为数字信号。

差分输入可以提供更好的抗干扰能力和动态范围。

它可以使用两个相位相反但幅度相等的信号来消除共模噪声,提高信号的准确性和可靠性。

差分输入常用于音频设备和精密测量仪器等需要高质量信号转换的应用。

3. 伪差分输入(Pseudo-Differential Input):伪差分输入是一种介于单端输入和差分输入之间的输入方式。

它接受单个信号源的信号输入,但采用了与差分输入相似的电路拓扑结构,以提供一些差分输入的特性。

伪差分输入可以减少来自共模噪声的影响,并在成本和复杂度方面相对较低,因此在一些需要一定抗干扰性能的应用中得到应用。

4. 压缩输入(Ratiometric Input):压缩输入是一种将传感器输出信号与电源电压进行比较的输入方式。

这种输入方式主要用于传感器输出的电压与电源电压有关联的情况,比如热敏电阻器(thermistor)或光敏二极管(photodiode)。

在这种情况下,ADC会测量传感器输出相对于电源电压的比例,从而消除电源电压的波动对转换结果的影响。

5. 高电压输入(High Voltage Input):高电压输入是指ADC可以接受高于其供电电压的信号输入。

集成运算放大电路的输入方式

集成运算放大电路的输入方式

集成运算放大电路的神奇输入方式集成运算放大电路是当前电子工程中非常常见且重要的模拟电路
之一。

为了让电路发挥更好的性能,对其输入方式的选择也显得尤为
重要。

以下是集成运算放大电路的三种神奇输入方式:
1.差分输入方式:差分输入方式是一种常见的、灵活的输入方式,它使用两个信号作为输入信号,并使用差分放大电路将这两个信号进
行差分放大,并输出放大后的差分信号。

这种输入方式具有很高的输
入阻抗,且输入信号可以有任意一个点为参考电压,是目前最为常用
的输入方式之一。

2.单端输入方式:单端输入方式使用一个信号作为输入信号,且
一般将该信号的参考点接在放大电路的中心点。

单端输入方式的缺点
是其输入阻抗不高,对信号源造成的干扰比较明显,不过它仍然是一
种比较常见的输入方式之一。

3.共模输入方式:共模输入方式是使用两个相同的信号作为输入
信号,并输出它们的差分信号。

该输入方式的优点是在信号源干扰比
较大时,可以通过共模抑制器来减小其影响,并保证输出信号的准确性。

然而,该输入方式对大部分集成运算放大电路并不适用。

以上三种输入方式各具特点,人们在选择时需要根据其具体的应
用环境和性能需求来进行选取。

在实际应用中,常使用多种不同方式
进行组合,以达到更高的性能和稳定性。

plc模拟量差分和单端

plc模拟量差分和单端

plc模拟量差分和单端
模拟量输入模块对电压型输入信号有很高的输入阻抗(为兆欧级),能与输入传感设备的高源阻抗相匹配。

电流型输入模块提供低输入阻抗(250Ω-500Ω),能与兼容场传感设备连接正常动作。

有些模拟量输入模块的输入接口功能有单端或差分输入两种方式,区别在于单端输入的所有输入公用线连在一处,而差分输入模式为每一通道都有单独公共线。

单端模块比其每个差分同类模块有较多输入点。

选择单端还是差分模式在软件设置时用拨动开关设置接口来选择。

每一通道接口有信号滤波和隔离电路来保护模块不受场噪声的影响。

除此之外,用户要考虑在安装模块期间其他电噪声。

典型地,输入模块和转换器连接使用屏蔽导线以提供较好的接口,这使线阻不匀衡达到最小,并提高抗噪声干扰率。

模拟量输出接口有各种配置,从每个模块2个输出到16个输出,一般有4个模拟输出通道,这些通道可置为单端或差分输出,当要求单个隔离输出时常用差分输出。

每一模拟输出与其他通道及PLC本身有电隔离,从而防止由于输出口过压而损坏系统,这些接口可以有也可不带外接电源,这取决于设备类型。

现在大多数模块从PLC电源系统得到电源,因而在计算电流负载时要予以考虑。

单端与差分输入

单端与差分输入

单端输入,输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1 V),信号源到模拟输入硬件的导线较短(低于15 ft),且所有的输入信号共用一个基准地线.如果信号达不到这些标准,此时应该用差分输入.对于差分输入,每一个输入信号都有自有的基准地线;由于共模噪声可以被导线所消除,从而减小了噪声误差.单端输入时, 是判断信号与GND 的电压差.差分输入时, 是判断两个信号线的电压差.信号受干扰时, 差分的*同时受影响, 但电压差变化不大. (抗干扰性较佳)而单端输入的一线变化时, GND 不变, 所以电压差变化较大. (抗干扰性较差)差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。

b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。

步进电机驱动卡与雷塞运动控制器连接方法和案例解析来源:本站原创作者:佚名日期:2012年12月03日【字体:大中小】为了帮助使用者更好地了解雷赛公司运动控制卡、步进电机驱动器的特点,掌握运动控制卡与步进驱动器的连接方法,本文主要概述了脉冲输出模式、脉冲输出驱动方式的概念,讲述了运动控制卡与步进驱动器的连接方法,并对几个典型的故障案例进行了分析,指导使用者自行排查间题,完成自动控制系统构建.为了帮助使用者更好地了解雷赛公司运动控制卡、步进电机驱动器的特点,掌握运动控制卡与步进驱动器的连接方法,本文主要概述了脉冲输出模式、脉冲输出驱动方式的概念,讲述了运动控制卡与步进驱动器的连接方法,并对几个典型的故障案例进行了分析,指导使用者自行排查间题,完成自动控制系统构建.一、脉冲输出模式与脉冲输出驱动方式1、脉冲输出模式雷赛运动控制卡支持两种脉冲输出模式:一是单脉冲(脉冲十方向),一种是双脉冲《CW+CCW),可以通过调用运动控制卡的底层函数进行设定.(1)单脉冲模式中,PUL和DIR信号如图,1-1所示:(2)双脉冲模式中,PUL和DIR信号如图1-2示:2.脉冲输出驱动方式雷赛运动控制卡支持两种脉冲输出方式:一是单端输出,一是差分输出,可以通过运动控制卡上的跳线开关进行选择.二、雷塞运动控制卡与步进电机驱动器的连接方法雷赛运动控制卡与步进电机驱动器的连接方式只有两种:一是单端接法;一是差分接法.由于雷赛公司所有的运动控制卡对单端、差分接法都是支持的,因此,在实际应用中,具体采用哪种接线方法,只取诀于电机驱动器的接口特点.如雷赛公司步进电机驱动器M415B只支持单端接法,则运动控制卡(本文以雷赛运动控制卡DMC2410为例进行说明)与M41SB的配线只能如下图所示:图2-11、运动控制卡内部跳线设置为单端输出.2、步进电机驱动器的公共端OPTO, PUL, DIR分别接控制卡的PC+5V (PUL+或DIR+),PUL-, DIR-.雷赛公司步进电机驱动器MD556对单端接法、差分接法均支持,则运动控制卡与MD556的配线可以采用单端接法或差分接法(为了提高抗干扰能力,建议采用差分接法).驱动器MD556差分接法的配线如图2-2所示:图2-21、运动控制卡内部跳线设置为差分输出.2、步进电机驱动器的公共端PUL+, PUL-, DIR+, DIR-分别接控制卡的PUL+, PUL-, DIR+, DIR-.驱动器MD556单端接法的配线如图2-3所示:图2-31、运动控制卡内部跳线设置为单端输出.2、步进电机驱动器的公共端PUL+, PUL-, DIR+, DIR-分别接控制卡的PUL+, PUL-, DIR+, DIR-.三、雷赛控制卡与驱动器连接的故障案例分析及其解诀办法1.案例一现象:无论运动控制卡给步进驱动器发送正向脉冲还是负向脉冲,电机都能跑,但只往一个方向运动,其接法方法如图3-1所示.图3-1原因:根据故障现象可以判断:运动控制卡的脉冲输出模式为单脉冲,驱动器为双脉冲模式.运动控制卡的脉冲输出模式与驱动器的脉冲接收模式不一致.因此,当控制卡发正向脉冲,如图3-1所示脉冲从控制卡的PUL端输出,由于控制卡的PUL与驱动器的PUL相连,这时驱动器的PUI端有脉冲输入,则电机正转.当控制卡发负向脉冲,如图3-2所示脉冲还是从控制卡的PUI端输出,然后从驱动器的PUI端输入,则电机还是按原来的方向运动.解诀办法:把运动控制卡的脉冲输出模式改为双脉冲或把驱动器的脉冲模式设置为单脉冲模式.让控制卡的脉冲模式与驱动器的脉冲模式保持一致.2.案例二现象:运动控制卡给驱动器发送正向脉冲,电机正转正常.运动控制卡给驱动器发送负向脉冲,电机不能运动.接法方法如图3-3所示.图3-4原因:根据故障现象可以判断:运动控制卡的脉冲输出模式为双脉冲,驱动器为单脉冲模式。

mic 单端和差分电路 arm-概述说明以及解释

mic 单端和差分电路 arm-概述说明以及解释

mic 单端和差分电路arm-概述说明以及解释1.引言1.1 概述概述部分的内容可以是对mic单端和差分电路的简要介绍和背景说明。

可以按照以下内容来组织文章1.1概述部分的内容:概述在现代电子设备中,麦克风(Mic)扮演着至关重要的角色,用于将声音转换为电信号。

为了实现高质量的音频采集和处理,单端和差分电路是常用的麦克风电路设计方案。

在本篇文章中,我们将深入研究mic单端和差分电路的原理和应用。

单端电路是一种简单而常见的电路配置,其中麦克风的输出信号通过一个信号引脚传输给前置放大器或其他后续电路。

该电路方式适用于占用空间较小且成本较低的应用,并且易于实现。

我们将详细探讨mic单端电路的工作原理和适用场景。

与此相反,差分电路包含两个信号引脚,麦克风的输出信号通过这两个引脚之间的差分方式传输。

相比于单端电路,差分电路具有更好的抗干扰能力和共模抑制比,可以提供更高的信号品质和较低的噪音水平。

我们将详细探讨mic差分电路的工作原理和适用场景。

通过研究和分析mic单端和差分电路的原理和应用,我们可以更好地理解它们在实际电路设计中的优缺点和适用范围,从而为选择合适的电路方案提供指导。

接下来的章节将分别介绍mic单端电路和差分电路的原理和应用。

(P.S. 这只是一个提供参考的写作方向,具体的文章内容和表达方式可以根据需要进行调整和修改)1.2文章结构文章结构是指文章的整体框架和组织方式,它决定了文章的逻辑性和系统性。

本文的结构分为引言、正文和结论三个部分。

在引言部分,我们将对mic单端和差分电路的概念和背景进行概述。

通过介绍mic单端和差分电路的定义、原理和应用,为后续的详细介绍做好铺垫。

在正文部分,我们将详细介绍mic单端电路和差分电路。

首先,我们将以mic单端电路为主题,分别介绍其原理和应用。

通过解释mic单端电路的基本工作原理和其在实际应用中的表现,让读者对mic单端电路有更深入的了解。

接着,我们将转向mic差分电路,同样介绍其原理和应用。

差分放大电路单端输入和双端输入

差分放大电路单端输入和双端输入

差分放大电路单端输入和双端输入差分放大电路是一种常见的放大电路,在工业、电子通讯、医疗等领域都有广泛应用。

该电路可以将输入端信号放大,输出更大的信号,以达到放大信号的目的。

差分放大电路主要分为单端输入和双端输入两种。

一、单端输入差分放大电路单端输入差分放大电路是最常见的差分放大电路之一。

其结构是由两个输入端和一个共用输出电路组成。

当输入端之一接入正电极,而另一个接入负电极时,通过差分放大器的比较,输出一个差分电压信号。

单端输入的差分放大电路电路简单,性能可靠,但抗干扰能力相对较差。

二、双端输入差分放大电路双端输入差分放大电路具有更高的抗干扰性能。

其输入电路结构是由两个相同的输入端和一个差动输出端组成。

当两个输入端同时接收到相同幅度、逆向极性的信号时,输出电压为零。

在使用双端输入差分放大电路时,需要注意两个输入端的信号必须相等,否则会对放大电路产生干扰。

三、差分放大电路的应用差分放大电路主要应用于信号放大和信号滤波等领域。

在医疗、工业生产中,差分放大电路被广泛应用于生物信号检测、温度、压力等参数的检测和控制。

此外,差分放大电路还被应用于音频和视频信号的处理和放大。

在信号处理和放大方面,单端输入差分放大电路通常用于较低频率的信号,而双端输入差分放大电路适用于高频信号的处理。

总之,差分放大电路在工业、电子通讯、医疗等多个领域都具有广泛的应用前景。

通过学习和理解单端输入、双端输入差分放大电路的原理和应用,我们可以更加深入地掌握差分放大电路的技术知识,从而为电子技术的进一步发展提供更为坚实的基础。

差分信号和单端信号概述

差分信号和单端信号概述

差分信号与单端信号概述差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a. 抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。

b. 能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS (low voltage differential signaling )就是指这种小振幅差分信号技术。

1、共模电压和差模电压我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。

就像初中时平面坐标需要用x,y两个数表示,而到了高中或大学就只要用一个“数”v,但这个v是由x,y两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为vi = (vi+, vi-) 也可以表示为vi = (vic, vid) 。

c表示共模,d表示差模。

两种描述是完全等价的。

只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。

运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比CMRR条件下允许的共模信号的范围。

显然,不存在“某一端”上的共模电压的问题。

但“某一端”也一样存在输入电压范围问题。

而且这个范围等于共模输入电压范围。

道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。

对其它放大器,共模输入电压跟单端输入电压范围就有区别了。

例如对于仪放,差分输入不是0 ,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

理解什么是单端&差分&伪差分

理解什么是单端&差分&伪差分

Google+百度の英文关键词Single-Ended Input(单端)差分(Fully-Differential Input)伪差分(Pseudo-Differential Input) 单端输入&差分输入输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1V),信号源到模拟输入硬件的导线较短(低于15ft),且所有的输入信号共用一个基准地线.如果信号达不到这些标准,此时应该用差分输入.对于差分输入,每一个输入信号都有自有的基准地线;由于共模噪声可以被导线所消除,从而减小了噪声误差.单端输入时,是判断信号与GND的电压差.差分输入时,是判断两个信号线的电压差.信号受干扰时,差分的两线会同时受影响,但电压差变化不大.(抗干扰性较佳)而单端输入的一线变化时,GND不变,所以电压差变化较大.(抗干扰性较差)差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好(最好相邻布线),当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。

b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。

当AD的输入信号只有一路时,为了更好地抑制共模噪声,我们可以采用差分输入方式。

这就需要我们首先要将单端变成差分,可以用运放AD8138实现。

RS232C是单端输入,这样在输入中有干扰信号加到输入中就会影响输出,造成输出信号错误;RS485是差动输入,即两个输入端的电势差作为输入,有干扰信号的话也会在作差的时候减掉了,这样可以大大提高信号的抗干扰能力!!伪差分输入(NI关于什么是伪差分输入的解释)伪差分信号连接方式减小了噪声,并允许在仪器放大器的共模电压范围内与浮动信号连接.在伪差分模式下,信号与输入的正端连接,信号的参考地与输入的负端连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因而受工艺同时也更适
合于低幅度信号的电路。目前流行的
LVDS

low voltage differential signaling
)就是指这种
小振幅差分信号技术。
水质监测
油田水处理
单端输入
,输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1 V),信号源到模拟输入硬件的导线较短(低于15 ft),且所有的输入信号共用一个基准地线.如果信号达不到这些标准,此时应该用差分输入.对于差分输入,每一个输入信号都有自有的基准地线;由于共模噪声可以被导线所消除从而减小了噪声误差.单端输入时
被耦合到两条线上,
而接收端关心的只是两信号的差值,
所以外界的共模噪声可以被完全抵
消。
b.
能有效抑制
EMI
,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相
互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.
时序定位精确,
由于差分信号的开关变化是位于两个信号的交点,
而不像普通单端信号依
靠高低两个阈值电压判断,
,
是判断信号

GND
的电压差
.
差分输入时
,
是判断两个信号线的电压差
.
信号受干扰时
,
差分的两线会同时受影响
,
但电压差变化不大
. (
抗干扰性较佳
)
而单端输入的一线变化时
, GND
不变
,
所以电压差变化较大
. (
抗干扰性较差
)
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:
a.
抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时
相关文档
最新文档