中考第三轮重难点突破教案(4)教师版
关于初中生物中考第三轮复习教案5篇

关于初中生物中考第三轮复习教案5篇关于初中生物中考第三轮复习教案5篇人类及其他生物共同居住在生物圈这个美丽家园中。
作为一名老师,通常需要准备好一份教案,教案让课堂更有效率,这里我整理了一些教案模板,希望对大家有所帮助,下面我们就来了解一下吧。
初中生物中考第三轮复习教案【篇1】大家好:我说课的内容是初三生物第八单元第二章第四节《性别和性别决定》,在这里我主要说教材分析、教学目标、重难点和教学过程。
一、说教材分析性别是一种特殊的性状,在学生中总是存在着一种神秘感,自然成为学生感兴趣的话题。
安排本节内容可以满足学生对于性别决定和性别遗传知识的需求。
另外,社会上一些人仍存在着重男轻女思想,母亲生出女孩而遭到家庭成员冷落和责备的现象并不少见。
通过本节的学习,要使学生科学地理解和正确地对待生男生女问题,希望教师在教学中渗透这一精神。
本节教学内容并不难,时间也较充裕,应该适当安排学生活动,让学生更多地通过自己的观察与思考,分析与讨论获得结论。
关于男女染色体的差别,教材编入男、女成对染色体排序图。
教师可以提出问题后安排学生仔细观察,找出男女染色体组成上的差异。
二、说教学目标知识目标:说明人的性别差异是由性染色体决定;能力目标:解释生男生女及机会均等;情感目标:能用科学态度看待生男生女问题三、说教学重难点教学重点:说明人的性别差异是由性染色体决定;教学难点:解释生男生女及机会均等;用新的课程理念,面向全体学生,培养学生终生学习的愿望和能力,倡导探究性学习,提高学生的生物科学素养,即培养普通公民必备的生物科学素养,而不是培养生物科学家的素养,以此来指导教学行为。
《性别和性别决定》属于生物的遗传和变异范畴,本节课的重点是人类性别决定的方式和生男生女的原理。
我确定教学重点的依据是:以学生为主体,把课堂与日常生活联系起来。
前几节课的学习,学生已经了解了生物的遗传和变异现象,知道了遗传的物质基础,本节课重在从人类性染色体的水平分析人类性别遗传的规律,另外基于社会上有重男轻女的思想倾向,把生男生女的责任推于女性,导致了许多悲剧的产生。
中考数学第三轮压轴题突破重难点突破4二次函数与几何函数综合题类型1探究线段数量关系的存在性

2019/7/13
最新中小学教学课件
29
谢谢欣赏!
2019/7/13
最新中小学教学课件
30
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐依下面这些条件而定。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考第三轮重难点突破教案(4) 姓名 分数公司经理让人在墙上挂上“想做就立即去做”的标语,希望以此激励员工的积极性! 过了一段时间,老板的一个朋友问他这个举措效果如何? 老板愤怒的说:“出纳拿了10万元逃走了,办公室主任和我的女秘书私奔了,几十个员工一起要求加薪!” 【运河通道1】经典压轴试题 例1、(广东省广州市)如图,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-21x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.4.解:(1)由题意得点B 的坐标为(3,1) 若直线经过点A (3,0)时,则b =23若直线经过点B (3,1)时,则b =25 若直线经过点C (0,1)时,则b =1①若直线与折线OAB 的交点在OA 上,即1<b ≤23时,如图1 此时E (2b ,0) ∴S=21OE ·CO =21×2b ×1=b ································································· 4分 ②若直线与折线OAB 的交点在BA 上,即23<b <25时,如图2 此时E (3,b -23),D (2b -2,1) ∴S=S 矩形OABC-(S △COD +S △AOE +S △BDE )=3-[21(2b -2)×1+21×3(b -23)+21(5-2b )(25-b )]=25b -b2 A DyB COExADyB C OE x图2A DyB C OE x图1∴S=⎩⎪⎨⎪⎧b (1<b ≤23)25b -b2(1<b ≤23)····································································· 8分(2)如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N ,则矩形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积 由题意知,DM ∥NE ,DN ∥ME ,∴四边形DNEM 为平行四边形 根据轴对称知,∠MED =∠NED 又∠MDE =∠NED ,∴∠MED =∠MDE∴MD =ME ,∴平行四边形DNEM 为菱形 ······················ 10分 过点D 作DH ⊥OA ,垂足为H 由题易知,tan ∠DEN =21,DH =1,∴HE =2 设菱形DNEM 的边长为a ,则在Rt △DHN 中,由勾股定理得: a2=(2-a)2+12,∴a =45 ········································································ 12分 ∴S 四边形DNEM=NE ·DH =45×1=45 ·························································· 13分 故矩形O 1A 1B 1C 1与矩形OABC 重叠部分的面积不发生变化,面积始终为45····································································································· 14分例2、(广东省广州市)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是弧 ⌒APB 上的任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C . (1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2DES=34,求△ABC 的周长.解:(1)如图,连结OA 、OB ,设OP 与AB 的交点为F ,则有OA =1CP DOBAEA DyB COEx图3B 1 A 1MO 1 C 1NH∵弦AB 垂直平分线段OP ,∴OF =21OP =21,AF =BF 在Rt △AOF 中,∵AF =22OF OA-=22211)(-=23∴AB =2AF =3 ························································································· 4分 (2)∠ACB 是定值 ······························································································· 5分理由:由(1)易知∠AOB =120°连结AD 、BD ,∵点D 为△ABC 的内心,∴∠CAB =2∠DAB ,∠CBA =2∠DBA∵∠DAB +∠DBA =21∠AOB =60°,∴∠CAB +∠CBA =120° ∴∠ACB =60°(定值) ················································································· 8分 (3)记△ABC 的周长为l ,设AC 、BC 与⊙D 的切点分别为G ,H ,连结DG ,DC ,DH则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC ∴S=S △ABD +S △ACD +S △BCD=21AB ·DE +21AC ·DG +21BC ·DH =21(AB +BC +AC )·DE =21l ·DE ∵2DE S =34,∴2·21DE DEl =34,∴l =38DE∵CG ,CH 是⊙D 的切线,∴∠GCD =21∠ACB =30° ∴在Rt △CGD 中,CG =30tan DG =33DE =3DE ,∴CH =CG =3DE 又由切线长定理可知AG =AE ,BH =BE∴l =AB +BC +AC =32+32DE =83DE ,解得DE =31··············· 13分∴△ABC 的周长为338 ············································································· 14分 例3、(广东省深圳市)如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到BDC ︵. (1)若BD ︵=CD ︵,求证:BDC ︵必经过圆心O ;(2)若AB =8,BD ︵=2CD ︵,求BC 的长. 5.解:(1)过C 作CE ⊥AB 于E ,连接CA 、CD∵∠CDA =∠BCD +∠CBD =21BDC ︵=21BmC ︵=∠CADOD C ABCPD OBAEF GH∴AC =CD ∵BD ︵=CD ︵,∴BD =CD ,∴BCD =∠CBD ∴∠CDA =2∠CBD ,∴∠CAD =2∠CBD ∵AB 是直径,∴∠ACB =90°∴∠CAD +∠CBD =90°,∴2∠CBD +∠CBD =90° ∴∠CBD =30°,∴∠CDA =60°∴△CAD 是等边三角形,∴AD =CD∴AD =BD ,∴BDC ︵必经过圆心O ····························································· 4分(2)∵AC =CD ,∴AC ︵=CD ︵∵BD ︵=2CD ︵,∴AC ︵=21BD ︵=31BDC ︵=31BmC ︵=41半圆连接CO ,则∠OPC =41×180°=45°∴CE =OE =22OC =22×4=22 ∴BE =OE +OB =22+4∴BC =2222422 )()(++=224+ ················································ 7分例4、(广东省珠海市)如图,平面直角坐标系中有一矩形ABCO (O 为原点),点A 、C 分别在x 轴、y 轴上,且C 点坐标为(0,6).将BCD 沿BD 折叠(D 点在OC 边上),使C 点落在OA 边的E 点上,并将BAE 沿BE 折叠,恰好使点A 落在BD 的点F 上.(1)直接写出∠ABE 、∠CBD 的度数,并求折痕BD 所在直线的函数解析式; (2)过F 点作FG ⊥x 轴,垂足为G ,FG 的中点为H ,若抛物线y =ax 2+bx +c 经过B 、H 、D 三点,求抛物线的函数解析式;(3)若点P 是矩形内部的点,且点P 在(2)中的抛物线上运动(不含B 、D 点),过点P 作PN ⊥BC 分别交BC 和BD 于点N 、M ,设h =PM -MN ,试求出h 与P 点横坐标x 的函数解析式,并画出该函数的简图,分别写出使PM <MN 、PM =MN 、PM >MN 成立的x 的取值范围.9.解:(1)∠ABE =∠CBD =30° ······················································································· 1分在△ABE 中,AB =6AD yBH OxM CEPF NG O DCA BE mBC =BE =30cos AB=34 CD =BC ·tan30°=34×33=4∴OD =OC -CD =6-4=2 ∴B (34,6),D (0,2)设BD 所在直线的函数解析式为y =kx +b则⎩⎨⎧34k +b =6b =2 ∴⎩⎪⎨⎪⎧k =33b =2∴BD 所在直线的函数解析式为y =33x +2 ·············································· 3分 (2)∵EF =EA =AB ·tan30°=32,∠FEG =180°-∠FEB -∠AEB =60°又∵FG ⊥OA∴FG =EF ·sin60°=3,GE =EF ·cos60°=3,OG =OA -AE -GE =3 又H 为FG 中点 ∴H (3,23) ···························································································· 4分 ∵抛物线y =ax2+bx +c 经过B (34,6)、H (3,23)、D (0,2)三点 ∴⎩⎪⎨⎪⎧48a +34+c =63a +3b +c =23c =2 ∴⎩⎪⎨⎪⎧a =61b =-33c =2∴抛物线的解析式为y =61x2-33x +2 ····················································· 5分(3)∵PM =(33x +2)-(61x2-33x +2)=-61x2+332xMN =6-(33x +2)=4-33xh =PM -MN =(-61x 2+332)-(4-33x )=-61x2+3x -4 ················ 6分由-61x2+3x -4得x 1=32,x 2=34该函数的简图如图所示: ········································ 7分 当0<x <32时,h <0,即PM <MN 当x =32时,h =0,即PM =MN当32<x <34时,h >0,即PM >MN (9)AD yBH OxM CEPF NG 32 34 4 -h O x例5、(广东省茂名市)如图,在直角坐标系xOy 中,正方形OCBA 的顶点A 、C 分别在y 轴、x 轴上,点B 坐标为(6,6),抛物线y =ax 2+bx +c 经过A 、B 两点,且3a -b =-1. (1)求a ,b ,c 的值;(2)如果动点E 、F 同时分别从点A 、点B 出发,分别沿A →B 、B →C 运动,速度都是每秒1个单位长度,当点E 到达终点B 时,点E 、F 随之停止运动.设运动时间为t 秒,△EBF 的面积为S .①试求出S 与t 之间的函数关系式,并求出S 的最大值;②当S 取得最大值时,在抛物线上是否存在点R ,使得以点E 、B 、R 、F 为顶点的四边形是平行四边形?如果存在,求出点R 的坐标;如果不存在,请说明理由.12.解:(1)由已知A (0,6)、B (6,6)在抛物线上得方程组:⎩⎪⎨⎪⎧c =636a +6b +c =63a -b =-1········································································· 1分解得:⎩⎨⎧a =-91b =32c =6·························································································· 3分(2)①运动开始t 秒时,EB =6-t ,BF =tS =21EB ·BF =21(6-t )t =-21t2+3t ··············· 4分∵S =-21t2+3t =-21(t -3)2+29∴当t =3时,S 有最大值29······························ 5分②当S 取得最大值时,由①知t =3,所以BF =3,CF =3,EB =6-3=3 若存在某点R ,使得以E 、B 、R 、F 为顶点的四边形是平行四边形, 则FR 1=EB 且FR 1∥EB ,即可得R 1为(9,3)、(3,3) ·························· 6分 或者ER 2=BF 且ER 2∥BF ,可得R 2为(3,9) ·········································· 7分再将所求得的三个点代入y =-91x2+32x +6,可知只有点(9,3)在抛物线上,因此抛物线上存在点R 1(9,3),使得四边形EBRF 为平行四边形 ·· 8分Ay C O x B EFAyCO xB EF备用图Ay COxBEF R 1(9,3)R 2(3,9) R 1(3,3)例6、(广东省湛江市)如图,在平面直角坐标系中,点B 的坐标为(-3,-4),线段OB 绕原点逆时针旋转后与x 轴的正半轴重合,点B 的对应点为点A . (1)直接写出点A 的坐标,并求出经过A 、O 、B 三点的抛物线的解析式; (2)在抛物线的对称轴上是否存在点C ,使BC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)如果点P 是抛物线上的一个动点,且在x 轴的上方,当点P 运动到什么位置时,△PAB 的面积最大?求出此时点P 的坐标和△PAB 的最大面积.15.解:(1)A (5,0) ······································································································· 1分由抛物线经过点O ,可设抛物线的解析式为y =ax2+bx ··························· 2分把A (5,0)、B (-3,-4)代入y =ax2+bx ,得:⎩⎪⎨⎪⎧25a +5b =09a -3b =-4 解得⎩⎪⎨⎪⎧a =-61b =65 ································································· 4分∴抛物线的解析式为y =-61x2+65x ·························································· 5分(2)如图①,∵y =-61x2+65x =-61( x -25)2+2425∴抛物线的对称轴是直线x =25,点O 、A 关于直线x =25对称连接AB 交直线x =25于点C ,则点C 使BC +OC 的值最小 ···················· 6分设直线AB 的解析式为y =kx +b则⎩⎪⎨⎪⎧5k +b =0-3k +b =-4 解得⎩⎪⎨⎪⎧k =21b =-25∴直线AB 的解析式为y =21x -25························ 8分把x =25代入y =21x -25,得y =-45∴点C 的坐标为(25,-45) ································ 9分(3)如图②,过点P 作y 轴的平行线交AB 于点D ,设点P 的横坐标为x , AxyBOAxyBOC图①则P (x ,-61x 2+65x ),D (x ,21x -25) ··············································· 10分 ∴S △P AB=S △P AD+S △PBD=21PD ·(x A -x B ) =21(y P -y D )(x A -x B )=21[(-61x2+65x)-(21x -25)]×[5-(-3)] =-32x2+34x +10=-32(x -1)2+332∴当x =1时,S △P AB的最大值为332···················· 12分把x =1代入y =-61x2+65x ,得y =32∴此时点P 的坐标为(1,32) ·································································· 13分例7、(广东省清远市)在⊙O 中,点P 在直径AB 上运动,但与A 、B 两点不重合,过点P 作弦CE ⊥AB ,在AB ︵上任取一点D ,直线CD 与直线AB 交于点F ,弦DE 交直线AB 于点M ,连接CM .(1)如图1,当点P 运动到与O 点重合时,求∠FDM 的度数;(2)如图2、图3,当点P 运动到与O 点不重合时,求证:FM ·OB =DF ·MC .17.(1)解:当点P 与点O 重合时(如图1)∵CE 是直径,∴∠CDE =90° ·················································· 1分 ∵∠CDE +∠FDM =180°,∴∠FDM =90° ···························· 2分(2)证明:当点P 在OA 上运动时(如图2)∵OP ⊥CE ,∴AC ︵=AE ︵=21CE ︵,CP =EP∴CM =EM ,∴∠CMP =∠EMP ∵∠DMO =∠EMP ,∴∠CMP =∠DMOAxyBO 图②P D 图1ABO (P )FD CEM 图2ABO FDCEM P 图3AB OFDCEM P ABO (P )FD CEM∴∠CMP +∠DMC =∠DMO +∠DMC∴∠DMF =∠CMO ································································ 3分∵∠D 所对的弧是CE ︵,∠COM 所对的弧是AC ︵∴∠D =∠COM ····································································· 4分∴△DFM ∽△OCM ,∴OC DF =MC FM∴FM ·OC =DF ·MC∵OB =OC ,∴FM ·OB =DF ·MC ······································· 5分 当点P 在OB 上运动时(如图3)证法一:连结AC ,AE∵OP ⊥CE ,∴BC ︵=BE ︵=21CE ︵,CP =EP∴CM =EM ,∴∠CMO =∠EMO∵∠DMF =∠EMO ,∴∠DMF =∠CMO ································· 6分∵∠CDE 所对的弧是CAE ︵,∠CAE 所对的弧是CE ︵∴∠CDE +∠CAE =180°∵∠CDE +∠FDM =180°,∴∠FDM =∠CAE∵∠CAE 所对的弧是CE ︵,∠COM 所对的弧是BC ︵∴∠CAE =∠COM∴∠FDM =∠COM ·································································· 7分∴△DFM ∽△OCM ,∴OC DF =MC FM∴FM ·OC =DF ·MC∵OB =OC ,∴FM ·OB =DF ·MC ······································· 8分证法二:∵OP ⊥CE ,∴BC ︵=BE ︵=21CE ︵,AC ︵=AE ︵=21CAE ︵,CP =EP∴CM =EM ,∴∠CMO =∠EMO∵∠DMF =∠EMO ,∴∠DMF =∠CMO ···················································· 6分 ∵∠CDE 所对的弧是CAE ︵∴∠CDE =CAE ︵度数的一半=AC ︵的度数=180°-BC ︵的度数∴∠FDM =180°-∠CDE =180°-(180°-BC ︵)=BC ︵的度数∵∠COM =BC ︵的度数∴∠FDM =∠COM ····················································································· 7分∴△DFM ∽△OCM ,∴OC DF =MC FM∴FM ·OC =DF ·MC∵OB =OC ,∴FM ·OB =DF ·MC ·························································· 8分图2ABOFDCEM P 图3AB OF D CEM P例8、(广东省河源市、梅州市)如图,直角梯形OABC 中,OC ∥AB ,C (0,3),B (4,1),以BC 为直径的圆交x 轴于E ,D 两点(D 点在E 点右方). (1)求点E 、D 的坐标;(2)求过B 、C 、D 三点的抛物线的函数关系式;(3)过B 、C 、D 三点的抛物线上是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.19.解:(1)方法1:∵B (4,1),则A (4,0),设OD =x ,则DA =4-x∵D 是以BC 为直径的圆与x 轴的交点,∴∠CDB =90° ∴∠ODC +∠BDA =90°∵∠OCD +∠ODC =90°,∴∠OCD =∠BDA∴Rt △OCD ∽Rt △ADB∴OD OC =AB AD ,即x 3=14x- ······································································ 1分 解得x 1=1,x 2=3∴D (3,0),E (1,0) ··············································································· 2分 方法2:设BC 的中点为G ,过G 作GH ⊥x 轴于H ,连接GD 、GE∵240+=2,213+=2 ∴G (2,2),∴H (2,0) ········································ 1分 ∵BC =22134)(-+=52,GH =2-0=2又DG =EG =BG =21BC =5∴HD =EH =2225-)(=1∴D (3,0),E (1,0) ··············································································· 2分 (2)设过B 、C 、D 三点的抛物线的函数关系式为y =ax2+bx +c ,则 ⎩⎪⎨⎪⎧16a +4b +c =1c =39a +3b +c =0···························································································· 3分 解得⎩⎨⎧a =21b =-25c =3····························································································· 4分 ∴所求抛物线的函数关系式为y =21x2-25x +3 ········································ 5分 OEDABCyxO E D A BCy xGH。