高考数学(文)大一轮复习检测:3.7正弦定理与余弦定理(含答案)

合集下载

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。

高考理科第一轮复习课件(3.7正弦定理和余弦定理)

高考理科第一轮复习课件(3.7正弦定理和余弦定理)

(4)余弦定理对任意三角形均成立.(
(5)正弦定理可以实现边角互化,但余弦定理不可以.(
【解析】(1)正确. A>B, a>b, a >1,
b
由正弦定理可得 a sinA >1.
b sinB
又sin B>0, ∴sin A>sin B. (2)错误.正弦定理对任意三角形均成立. (3)错误.当已知三个角时不能求三边. (4)正确.由余弦定理推导过程可知对任意三角形均适用. (5)错误.余弦定理可以实现角化边,也能实现边化角. 答案:(1)√ (2)× (3)× (4)√ (5)×
(3)①利用两角和的正弦公式化为特殊角的三角函数值; ②利用正弦定理及同角三角函数关系式求解.
【规范解答】(1)选C.由正弦定理可得,
1 2 b sinA 2 2. sinB a 1 2 又 0<B<5 , B 或 3 . 4 6 4
(2)选A.由A+C=2B且A+B+C=π得 B .
考向1 正弦定理的应用 【典例1】(1)(2013·唐山模拟)在△ABC中, A ,a 1,
6
则B=( b 2,
)3 4A 4 BC 3 或 4 4
D
5 或 6 6
(2)(2013·惠阳模拟)已知a,b,c分别是△ABC的三个内角 A,B,C所对的边,若 a 1,b 3,A C 2B, 则sin C等于( )
A 1
1 B 2
C
3 2
D
3 3
(3)(2013·西安模拟)在△ABC中,角A,B,C所对的边分 别为a,b,c. ①若 sin(A ) 2cos A, 求A的值;
6 ②若 cos A 1 , b 3c, 求sin C的值. 3

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

高考数学一轮复习---正弦定理和余弦定理(一)

高考数学一轮复习---正弦定理和余弦定理(一)

高考数学一轮复习---正弦定理和余弦定理(一)一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形:(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a +b +c sin A +sin B +sin C =a sin A . 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径). 二、常用结论汇总1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C 2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2; (4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.三、考点解析考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形例.(1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形例.(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin A sin B +sin C,则角B =________.跟踪训练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B. π6C.π4D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 考点二 判定三角形的形状例、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形变式练习1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =b a =2”,那么△ABC 的形状为________. 课后作业1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos B b,则B 的大小为( ) A .30° B .45° C .60° D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =a c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( ) A .14 B .6 C.14 D.65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( ) A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B .(1)求证:a =2b cos B ;(2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.提高训练1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B 2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13 B.7 C.37 D .62.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n C c,若sin(A -B )+sin C =2sin 2B ,则a +b =________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .。

高考数学复习、高中数学 正弦定理和余弦定理附答案解析

高考数学复习、高中数学  正弦定理和余弦定理附答案解析

并可由此计算 R、r.
5.在△ABC 中,已知 a,b 和 A 时,解的情况如下:
A 为锐角
A 为钝角或直角
图形
关系式 a=bsinA
bsinA<a<b
a≥b
a>b
解的 个数
[微点提醒]
1.由正弦定理可以变形为: (1)a:b:c=_______:_______:_______;
(2)a=2RsinA,b=2RsinB,c=__________;
2.在△ ABC 中中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cos C
.
2 3.△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 a= 5,c=2,cosA= ,则 b=
3 ( ).
A. 2 B. 3 C.2 D.3
a
b
(3)sinA= ,sinB= ,sinC=______等形式,以解决不同的三角形问题.
2R
2R
2.余弦定理可以变形为:
b2+c2-a2
cosA=
,cosB=______________,cosC=______________.
2bc
abc 1
3.
S△ABC=
4R
= (a+b+c)·r(r 2
是三角形内切圆的半径),并可由此计算
则A
.
6.△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 2bcosB=acosC+ccosA,则 B= ________.
考点 1 应用正弦、余弦定理解三角形 2
【例 1】已知△ ABC 的面积为 S ,且 BC CA CB 2S .
(1)求 B 的大小;

新高考数学理一轮总复习知能演练3.7正弦定理和余弦定理(含答案详析)

新高考数学理一轮总复习知能演练3.7正弦定理和余弦定理(含答案详析)

一、选择题1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63 D.63解析:选D.由正弦定理得15sin60°=10sin B, ∴sin B =10·sin60°15=10×3215=33. ∵a >b ,A =60°,∴B 为锐角.∴cos B =1-sin 2B = 1-(33)2=63. 2.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2c 2=2a 2+2b 2+ab ,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:选A.∵2c 2=2a 2+2b 2+ab ,∴a 2+b 2-c 2=-12ab , ∴cos C =a 2+b 2-c 22ab =-14<0,即90°<C <180°. ∴△ABC 是钝角三角形.故选A.3.(2012·高考湖南卷)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394解析:选B.由余弦定理得:(7)2=22+AB 2-2×2AB cos60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin60°=332,选B. 4.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个解析:选B.∵a sin B =102,∴a sin B <b =3<a =5, ∴符合条件的三角形有2个.5.(2012·高考陕西卷)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-12解析:选C.由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.所以选C. 二、填空题6.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.解析:由于S △ABC =3,BC =2,C =60°,∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形,∴AB =2. 答案:27.(2012·高考福建卷)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________.解析:由正弦定理得AC sin45°=3sin60°,得AC = 2. 答案: 28.已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 解析:由题意设△ABC 的三边长分别为a ,2a,2a (a >0),则最大边2a 所对的角的余弦值为:a 2+(2a )2-(2a )22a ·2a=-24. 答案:-24三、解答题9.(2012·高考辽宁卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,所以cos B =12. (2)法一:由题意知b 2=ac ,由(1)知cos B =12, 根据正弦定理得sin 2B =sin A sin C ,所以sin A sin C =1-cos 2B =34. 法二:由已知b 2=ac ,及cos B =12, 根据余弦定理得cos B =a 2+c 2-ac 2ac ,解得a =c ,所以A =C =B =60°,故sin A sin C =34. 10.(2012·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =2,cos A =-24. (1)求sin C 和b 的值;(2)求cos ⎝⎛⎭⎫2A +π3的值. 解:(1)在△ABC 中,由cos A =-24,可得sin A =144. 又由a sin A =c sin C 及a =2,c =2,可得sin C =74. 由a 2=b 2+c 2-2bc cos A ,得b 2+b -2=0,因为b >0,故解得b =1.所以sin C =74,b =1.(2)由cos A =-24,sin A =144, 得cos2A =2cos 2A -1=-34, sin2A =2sin A cos A =-74. 所以,cos ⎝⎛⎭⎫2A +π3=cos2A cos π3-sin2A sin π3=-3+218.一、选择题1.(2012·高考湖北卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D.由题意可得a >b >c ,且为连续的正整数,设c =n ,b =n +1,a =n +2(n>1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4. 2.(2013·江西六校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32, ∵0<B <π,∴角B 的值为π3或2π3. 二、填空题3.(2012·高考北京卷)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________. 解析:由正弦定理可知sin B =b sin A a =3sin π33=12, 所以∠B =π6或5π6(舍去), 所以∠C =π-∠A -∠B =π-π3-π6=π2. 答案:π24.(2013·泉州质检)在△ABC 中,B =60°,AC =3,则△ABC 周长的最大值为________. 解析:在△ABC 中,设a ,b ,c 分别是△ABC 的三个角A ,B ,C 的对边.由余弦定理得(3)2=a 2+c 2-2ac cos60°=a 2+c 2-ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22,则14(a +c )2≤3,解得a +c ≤23,故△ABC 周长的最大值为3 3.答案:3 3三、解答题5.设函数f (x )=cos(x +23π)+2cos 2x 2,x ∈R . (1)求f (x )的值域;(2)记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若f (B )=1,b =1,c =3,求a 的值.解:(1)f (x )=cos x cos 23π-sin x sin 23π+cos x +1 =-12cos x -32sin x +cos x +1 =12cos x -32sin x +1=sin(x +5π6)+1, 因此f (x )的值域为[0,2].(2)由f (B )=1得sin(B +5π6)+1=1,即sin(B +5π6)=0. 又因为0<B <π,故B =π6. 法一:由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2-3a +2=0,解得a =1或a =2.法二:由正弦定理b sin B =c sin C ,得sin C =32, 所以C =π3或C =2π3. 当C =π3时,A =π2,从而a =b 2+c 2=2; 当C =2π3时,A =π6,又B =π6,从而a =b =1. 故a 的值为1或2.。

高三一轮复习精题组正弦定理、余弦定理及解三角形(有详细答案)

高三一轮复习精题组正弦定理、余弦定理及解三角形(有详细答案)

§4.6 正弦定理、余弦定理及解三角形1. 正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3. 在△ABC 中,已知a 、b 和A 时,解的情况如下:4. 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. (3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (4)坡度:坡面与水平面所成的二面角的正切值.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ ) (3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )2. (2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2解析 如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2 (km).题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则sin B +sin C 的最大值为( )A .0B .1C.12D. 2思维启迪 (1)由sin C =23sin B 利用正弦定理得b 、c 的关系,再利用余弦定理求A . (2)要求sin B +sin C 的最大值,显然要将角B ,C 统一成一个角,故需先求角A ,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A . 答案 (1)A (2)B解析 (1)∵sin C =23sin B ,由正弦定理得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C , 根据正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°.故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.思维升华 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)解题中注意三角形内角和定理的应用及角的范围限制.(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( )A.725B .-725C .±725D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =csin C ,将8b =5c 及C =2B 代入得bsin B =85b sin 2B ,化简得1sin B =852sin B cos B ,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪 利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.思维升华 有关三角形面积问题的求解方法: (1)灵活运用正、余弦定理实现边角转化.(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形. 题型三 解三角形的实际应用例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.思维启迪 本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h .此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.思维升华 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°.由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ,由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.代数式化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 3. 合理利用换元法、代入法解决实际问题. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( )A .30°B .60°C .120°D .30°或150°答案 A解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.2. △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.3. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 4. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c (b +2c ),若a =6,cos A=78,则△ABC 的面积等于 ( )A.17B.15C.152D .3答案 C解析 ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0, 即(b +c )·(b -2c )=0,∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-(78)2=152.二、填空题6. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sinB ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.7. 在△ABC 中,若b =5,∠B =π4,tan A =2,则a =________.答案 210解析 由tan A =2得sin A =2cos A . 又sin 2A +cos 2A =1得sin A =255. ∵b =5,∠B =π4,根据正弦定理,有a sin A =bsin B ,∴a =b sin A sin B =2522=210.8. 如图,设A ,B 两点在河的两岸,一测量者在点A 的同侧的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________. 答案 50 2 m 解析 由正弦定理得AB sin ∠ACB =ACsin B,所以AB =AC ·sin ∠ACBsin B =50×2212=50 2.三、解答题9. (2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A,∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去.故c 的值为5.10.(2013·江西)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0, 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.B 组 专项能力提升 (时间:25分钟,满分:43分)1. △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1B .2sin 10°C .2cos 10°D .cos 20°答案 C解析 如图,∠ABC =20°,AB =1,∠ADC =10°, ∴∠ABD =160°.在△ABD 中,由正弦定理得AD sin 160°=ABsin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.3. (2013·浙江)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________. 答案63解析 因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B ,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63.4. (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1.由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.5. 已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x+2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π.又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π,故当2A -π3=π2时,f (x )取到最大值,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。

高三数学人教版A版数学(理)高考一轮复习试题:3.7正弦定理和余弦定理Word版含答案

高三数学人教版A版数学(理)高考一轮复习试题:3.7正弦定理和余弦定理Word版含答案

正、余弦定理掌握正、余弦定理的内容,并能解决一些简单的三角形度量问题.知识点 正弦定理和余弦定理 1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C . (2)a =2R sin_A ,b =2R sin B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).易误提醒 (1)由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解. 必记结论 三角形中的常用结论 (1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)在△ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C (A ,B ,C ≠π2).[自测练习]1.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:在△ABC 中,易知∠B =30°,由余弦定理b 2=a 2+c 2-2ac cos 30°=4.∴b =2. 答案:A2.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32 解析:在△ABC 中,根据正弦定理,得AC sin B =BCsin A, ∴AC =BC ·sin B sin A=32×2232=2 3.答案:B3.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知AC 2=AB 2+BC 2-2AB ·BC cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin 120°=12×5×3×32=1534.答案:1534考点一 利用正弦、余弦定理解三角形|1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .2 2 C .2D. 3解析:由余弦定理a 2=b 2+c 2-2bc cos A ,即4=b 2+12-6b ⇒b 2-6b +8=0⇒(b -2)(b -4)=0,由b <c ,得b =2.答案:C2.(2015·高考安徽卷)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 解析:因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin 45°=6sin 60°,解得AC =2.答案:23.(2015·高考福建卷)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 解析:因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8×sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8×cos A =52+82-2×5×8×12=49,所以BC =7.答案:7正、余弦定理的应用原则(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的运用.考点二 利用正、余弦定理判断三角形形状|(2015·沈阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. [解] (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,a 2=b 2+c 2-2bc cos A , ∴bc =-2bc cos A ,cos A =-12.又0<A <π,∴A =23π.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C , ∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32, ∴sin B sin C =14,因此sin B =sin C =12.又B 、C ∈⎝⎛⎭⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.判定三角形形状的两条途径(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·(a 2+b 2-c 2)2ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)△ABC 为等边三角形. ∵S △ABC =12bc sin A =334,即12bc sin π3=334,∴bc =3,① ∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.考点三 三角形的面积问题|(2015·高考全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.7.三角变换不等价致误【典例】 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. [解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )] =a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cosB.法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.法二:由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0,∴a 2-b 2=0或a 2+b 2-c 2=0.即a =b 或a 2+b 2=c 2. ∴△ABC 为等腰三角形或直角三角形.[易误点评] (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形. (2)代数运算中两边同除一个可能为0的式子,导致漏解. (3)结论表述不规范.[防范措施] (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子,然后进行判断.(2)在三角变换过程中,一般不要两边约去公因式,应移项提取公因式,以免漏解;在利用三角函数关系推证角的关系时,要注意利用诱导公式,不要漏掉角之间关系的某种情况.[跟踪练习] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A +tan B =2sin C cos A .(1)求角B 的大小;(2)已知a c +ca =3,求sin A sin C 的值.解:(1)tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin B cos A cos B=sin (A +B )cos A cos B =sin C cos A cos B, ∵tan A +tan B =2sin C cos A ,∴sin C cos A cos B =2sin Ccos A ,∴cos B =12,∵0<B <π,∴B =π3.(2)a c +c a =a 2+c 2ac =b 2+2ac cos B ac, ∵a c +ca =3,∴b 2+2ac cos B ac =3, 即b 2+2ac cosπ3ac =3,∴b 2ca=2,而b 2ca =sin 2B sin A sinC =sin 2π3sin A sin C =34sin A sin C, ∴sin A sin C =38.A 组 考点能力演练1.(2016·兰州一模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( )A .30°B .45°C .60°D .75°解析:因为在锐角△ABC 中,b =2a sin B ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0<A <π2,所以A =30°,故选A.答案:A2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于( )A.45 B .-45C.1517D .-1517解析:S +a 2=(b +c )2⇒a 2=b 2+c 2-2bc ⎝⎛⎭⎫14sin A -1,由余弦定理得14sin A -1=cos A ,结合sin 2A +cos 2A =1,可得cos A =-1517.答案:D3.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A.12 B .1 C. 3D .2解析:∵a 2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bc sin A =3,故选C.答案:C4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53B.107C.57D.5214 解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A ·sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57.答案:C5.(2015·唐山一模)在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:由已知条件可得图形,如图所示,设CD =a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010. 答案:B6.(2015·高考重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab,得-14=22+32-c 22×2×3,解得c =4.答案:47.(2015·高考北京卷)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.解析:由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 答案:18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.解析:∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B .由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35.答案:359.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且23a sin B =5c ,cos B =1114.(1)求角A 的大小;(2)设BC 边的中点为D ,|AD |=192,求△ABC 的面积. 解:(1)由cos B =1114得sin B =5314.又23a sin B =5c ,代入得3a =7c , 由a sin A =csin C得3sin A =7sin C , 3sin A =7sin(A +B ),3sin A =7sin A cos B +7cos A sin B , 得tan A =-3,A =2π3.(2)AB 2+BD 2-2AB ·BD cos B =194,c 2+⎝⎛⎭⎫76c 2-2c ·76c ·1114=194,c =3,则a =7. S =12ac sin B =12×3×7×5314=1534. 10.(2016·杭州模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -12c =b .(1)求角A 的大小;(2)若a =1,求△ABC 周长的取值范围.解:(1)由a cos C -12c =b 得sin A cos C -12sin C =sinB.又sin B =sin(A +C )=sin A cos C +cos A sin C , 所以12sin C =-cos A sin C .因为sin C ≠0,所以cos A =-12. 又因为0<A <π,所以A =2π3. (2)由正弦定理得b =a sin B sin A =23sin B ,c =23sin C . l =a +b +c =1+23(sin B +sin C ) =1+23[sin B +sin(A +B )] =1+23⎝⎛⎭⎫12sin B +32cos B =1+23sin ⎝⎛⎭⎫B +π3. 因为A =2π3,所以B ∈⎝⎛⎭⎫0,π3, 所以B +π3∈⎝⎛⎭⎫π3,2π3. 所以sin ⎝⎛⎭⎫B +π3∈⎝⎛⎦⎤32,1. 所以△ABC 的周长的取值范围为⎝⎛⎦⎤2,233+1. B 组 高考题型专练1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 解析:由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin 2π3=b 12,所以b =1. 答案:12.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析:由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,故a =8.答案:83.(2015·高考课标卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为1.4.(2015·高考湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C . 解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B, 所以sin B =cos A .(2)因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34. 由(1)sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°. 由cos A =sin B =32知A =30°,从而C =180°-(A +B )=30°. 综上所述,A =30°,B =120°,C =30°.5.(2015·高考浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.解:(1)由tan ⎝⎛⎭⎫π4+A =2,得 tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得 sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =b sin B,得b =3 5. 由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲 正弦定理与余弦定理, [学生用书P78])1.正弦定理和余弦定理(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin_B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.辨明两个易误点(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,可能出现一解、两解或无解,所以要注意分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.2.余弦定理的推导过程如图,设CB →=a ,CA →=b ,AB →=c . 则c =a -b ,所以|c |2=(a -b )2=a 2-2a ·b +b 2 =|a |2+|b |2-2|a ||b |cos C . 即c 2=a 2+b 2-2ab cos C . 同理可证a 2=b 2+c 2-2bc cos A . b 2=c 2+a 2-2ca cos B . 3.三角形解的判断1.教材习题改编 在△ABC 中,A =45°,C =30°,c =6,则a 等于( ) A .32 B .6 2C .2 6D .3 6B [解析] 由正弦定理得a sin A =csin C, 所以a =6sin 45°sin 30°=6×2212=6 2.2.教材习题改编 在非钝角△ABC 中,2b sin A =3a ,则B 角为( ) A .π6B .π4C .π3D .π2C [解析] 由正弦定理得b sin A =a sin B , 所以2a sin B =3a ,即sin B =32,又B 非钝角,所以B =π3,故选C. 3.教材习题改编 已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A .2π3B .3π4612A [解析] 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab=(3k )2+(5k )2-(7k )22×3k ×5k =-12,又0<C <π,所以C =2π3.4.教材习题改编 在非钝角△ABC 中,a =1,b =2,S △ABC =32,则c 等于________. [解析] 由三角形面积公式得12×1×2×sin C =32,即sin C =32,又0°<C ≤90°, 所以C =60°,由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×1×2×cos 60°=3, 所以c = 3. [答案] 3利用正、余弦定理解三角形(高频考点)[学生用书P79]利用正、余弦定理解三角形是高考的热点,三种题型在高考中时有出现,其试题为中档题.高考对正、余弦定理的考查主要有以下两个命题角度: (1)由已知求边和角;(2)解三角形与三角函数相结合.[典例引领](1)(2016·高考全国卷乙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A .2B . 3C .2D .3(2)(2016·高考全国卷丙)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )1010C .55D .31010(3)(2016·高考全国卷甲)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 (1)由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D.(2)设BC 边上的高为AD ,则BC =3AD ,DC =2AD ,所以AC=AD 2+DC 2=5AD .由正弦定理,知AC sin B =BC sin A ,即5AD 22=3AD sin A ,解得sin A =31010,故选D.(3)法一:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sin A =b sin B ,得b =a sin B sin A =2113.法二: 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A +C )=-cos A cos C +sin A ·sin C =-45×513+35×1213=1665.由正弦定理a sin A =c sin C ,得c =a sin Csin A =2013.由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113. 法三:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,由正弦定理a sin A =c sin C ,得c =a sin C sin A =2013.从而b =a cos C +c cos A =2113.法四:如图,作BD ⊥AC 于点D ,由cos C =513,a =BC =1,知CD =513,BD =1213.又cos A =45,所以tan A =34,从而AD =1613.故b =AD +DC =2113.【答案】 (1)D (2)D (3)2113利用正、余弦定理解三角形的应用(1)解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.[题点通关]角度一 由已知求边和角1.在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 为( ) A .π6B .π3C .2π3D .5π6C [解析] 由余弦定理得2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=0,即2a cos A +a =0,所以cos A =-12,A =2π3.故选C.角度二 解三角形与三角函数相结合2.(2017·安徽皖南八校联考)已知向量m =⎝⎛⎭⎫32,-sin x ,n =(1,sin x +3cos x ),x ∈R ,函数f (x )=m ·n .(1)求f (x )的最小正周期及值域;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=0,a =3,bc =2,求△ABC 的周长.[解] (1)由题知f (x )=-sin 2x -3sin x cos x +32=cos 2x -3sin x cos x +12=cos ⎝⎛⎭⎫2x +π3+1,所以f (x )的最小正周期为T =2π2=π,因为x ∈R ,所以-1≤cos ⎝⎛⎭⎫2x +π3≤1,故f (x )的值域为[0,2].(2)f (A )=cos ⎝⎛⎭⎫2A +π3+1=0,cos ⎝⎛⎭⎫2A +π3=-1,由A ∈(0,π),得A =π3,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,又a =3,bc =2,所以(b +c )2=9,b +c =3,所以△ABC 的周长为3+ 3.利用正、余弦定理判定三角形的形状[学生用书P80][典例引领]在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状. 【解】 法一:利用边的关系来判断: 由正弦定理得sin C sin B =c b,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b .又由余弦定理得cos A =b 2+c 2-a 22bc,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二:利用角的关系来判断: 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°, 所以△ABC 为等边三角形.判断三角形形状的两种途径(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形D [解析] 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), 所以b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], 所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 法二:由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0,即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.与三角形面积有关的问题[学生用书P80][典例引领](2017·唐山统考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c sin B=b cos C =3.(1)求b ;(2)若△ABC 的面积为212,求c .【解】 (1)由正弦定理得sin C sin B =sin B cos C , 又sin B ≠0,所以sin C =cos C ,C =45°. 因为b cos C =3, 所以b =3 2.(2)因为△ABC 的面积S =12ac sin B =212,c sin B =3,所以a =7.又c 2=a 2+b 2-2ab cos C =25,所以c =5.与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且(2b -c )·cos A=a cos C .(1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积. [解] (1)由(2b -c )cos A =a cos C , 得2sin B cos A =sin A cos C +sin C cos A ,即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B , 因为0<B <π,所以sin B ≠0,所以cos A =12,因为0<A <π,所以A =π3.(2)因为a =3,b =2c , 由(1)得A =π3,所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12,解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=332., [学生用书P81])——正、余弦定理的应用(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. [思维导图](1)(2)(1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .(3分) 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C ,解得tan C =2.(6分)(2)由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.(8分)因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C ,所以sin B =31010.(9分)由正弦定理得c =22b3,(10分)又因为A =π4,12bc sin A =3,所以bc =62,(11分)故b =3.(12分)(1)本题是解三角形与三角恒等变换的结合,求解中首先利用正弦定理把边的关系转化为三角函数关系,再利用恒等变换,再次应用正弦定理,求解所求问题.(2)计算准确,争取得满分①公式运用要准确,这是计算正确的前提.②算数要准确无误,尤其注意正、负号的选择,计算时要尽量利用学过的公式简化计算过程., [学生用书P321(独立成册)])1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( ) A .30° B .45°C .60°D .75°A [解析] 因为在锐角△ABC 中,b =2a sinB ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0°<A <90°,所以A =30°.2.(2017·兰州一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =3,c =2,则A =( )A .π6B .π4C .π3D .π2C [解析] 易知cos A =b 2+c 2-a 22bc =32+22-(7)22×3×2=12,又A ∈(0,π),所以A =π3,故选C.3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定C [解析] 由正弦定理得b sin B =c sin C , 所以sin B =b sin C c =40×3220=3>1. 所以角B 不存在,即满足条件的三角形不存在.4.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定B [解析] 依据题设条件的特点,由正弦定理,得sin B ·cosC +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,所以A =π2,故选B. 5.(2017·东北三校高三模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,sin C =3sin B ,且S △ABC =2,则b =( ) A .1B .2 3C .3 2D .3A [解析] 因为cos A =13,所以sin A =223. 又S △ABC =12bc sin A =2,所以bc =3.又sin C =3sin B , 所以c =3b ,所以b =1,c =3,故选A.6.(2017·大连一模)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高为( ) A .32 B .332 C .34 D . 3B [解析] 在△ABC 中,由余弦定理可得,AC 2=AB 2+BC 2-2AB ×BC ×cos B ,因为AC =7,BC =2,B =60°,所以7=AB 2+4-4×AB ×12,所以AB 2-2AB -3=0,所以AB=3,作AD ⊥BC ,垂足为D ,则在Rt △ADB 中,AD =AB ×sin 60°=332,即BC 边上的高为332. 7.(2016·高考山东卷改编)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =________.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cos A ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4. [答案] π48.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.[解析] 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c 22×2×3,解得c =4. [答案] 49.(2017·海淀期末检测)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sin A sin B +b cos 2A =2a ,则角A 的取值范围是________.[解析] 由已知及正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A ,所以sin B =2sin A ,所以b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号,因为A 为三角形的内角,且y =cos x 在(0,π)上是减函数,所以0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. [答案] ⎝⎛⎦⎤0,π6 10.(2017·广东揭阳一模)已知△ABC 中,角A 、32B 、C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________. [解析] 因为A 、32B 、C 成等差数列,所以A +C =3B , 又A +B +C =π,所以B =π4, 设角A ,B ,C 所对的边分别为a ,b ,c .由S △ABC =12ac sin B =1+2得 ac =2(2+2),由余弦定理及a 2+c 2≥2ac ,得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),所以b ≥2,所以AC 边的长的最小值为2.[答案] 211.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知c -b =2b cos A .(1)若a =26,b =3,求c ;(2)若C =π2,求角B . [解] (1)由c -b =2b cos A 及余弦定理cos A =b 2+c 2-a 22bc, 得c -b =2b ·b 2+c 2-a 22bc =b 2+c 2-a 2c,即a 2=b 2+bc , 所以(26)2=32+3c ,解得c =5.(2)因为c -b =2b cos A ,所以由正弦定理得sin C -sin B =2sin B cos A ,又C =π2,所以1-sin B =2sin B cos A , 所以1-sin B =2sin B cos ⎝⎛⎭⎫π2-B , 所以1-sin B =2sin 2B ,即(2sin B -1)(sin B +1)=0,所以sin B =12或sin B =-1(舍去), 因为0<B <π2, 所以B =π6.12.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.[解析] 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB, 所以sin ∠ADB =22. 由题意知0°<∠ADB <60°,所以∠ADB =45°,所以∠BAD =180°-45°-120°=15°.所以∠BAC =30°,∠C =30°,所以BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC sin ∠BAC, 所以AC = 6.[答案] 613.(2017·湖北三市第二次联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎫A +π3. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. [解] (1)因为a sin B =-b sin ⎝⎛⎭⎫A +π3, 所以由正弦定理得sin A =-sin ⎝⎛⎭⎫A +π3, 即sin A =-12sin A -32cos A , 化简得tan A =-33, 因为A ∈(0,π),所以A =5π6. (2)因为A =5π6, 所以sin A =12, 由S =34c 2=12bc sin A =14bc ,得b =3c , 所以a 2=b 2+c 2-2bc cos A =7c 2,则a =7c ,由正弦定理得sin C =c sin A a =714.14.(2017·河南郑州模拟)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.[解] (1)由已知得2sin 2A -2sin 2C=2⎝⎛⎭⎫34cos 2C -14sin 2C , 化简得sin A =±32, 因为A 为△ABC 的内角,所以sin A =32,故A =π3或2π3. (2)因为b ≥a ,所以A =π3. 由正弦定理得b sin B =c sin C =a sin A=2, 得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C=4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B =23sin ⎝⎛⎭⎫B -π6. 因为b ≥a , 所以π3≤B <2π3, 则π6≤B -π6<π2, 所以2b -c =23sin ⎝⎛⎭⎫B -π6∈[3,23).。

相关文档
最新文档