八年级期中数学测试卷
八年级数学期中测试卷【含答案】

八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。
()3. 对角线互相垂直平分的四边形一定是菱形。
()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。
()5. 两个相似三角形的对应边长之比等于它们的面积之比。
()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。
2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。
3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。
4. 一个圆的周长为31.4cm,则该圆的半径为______cm。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。
2022-2023学年安徽省马鞍山八中八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年安徽省马鞍山八中八年级(下)期中数学试卷1. 下列根式是最简二次根式的是( )A. B. C. D.2. 二次根式的值是( )A. 2B. 2或C. 4D.3. 已知关于x的方程是一元二次方程,则a的值是( )A. B. 2 C. 或3 D. 34. 把的根号外的适当变形后移入根号内,得( )A. B. C. D.5. 已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )A. 3B.C. 3或D. 5或6. 若,是方程的两个根,则( )A. B. C. D.7. 已知,则的值为( )A. 22B. 20C. 18D. 168. 若关于x的一元二次方程有一个根为,则方程必有一根为( )A. 2021B. 2022C. 2023D. 20249. 欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边AB上截取,则该方程的一个正根是( )A. AC的长B. AD的长C. BC的长D. CD的长10. 已知关于x的一元二次方程其中p,q为常数有两个相等的实数根,则下列结论:①1和一1都是方程的根②0可能是方程的根③可能是方程的根④1一定不是方程的根其中正确的是( )A. ①②B. ③④C. ②③D. ①④11. 若最简二次根式能与合并,则使有意义的条件为______ .12. 春节期间,某广场用彩灯带装饰了所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为______ 米.13. 已知,x、y是有理数,且,则的立方根为______.14. 若方程有实数根,则a的取值范围是______ .15. 第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有______个队参加比赛.16. 已知x是实数且满足,那么的值是______.17.中,,,高,则的周长是______.18. 如图,由四个全等的直角三角形拼成的图形,设,,则斜边BD的长是______ .19. 计算或解方程:;20. 观察下面的式子:,,…计算:______,______;猜想______用n的代数式表示;计算:…用n的代数式表示21. 已知关于x的方程求证:无论k取什么实数值,这个方程总有实根.若等腰的一边长,另两边b、c恰好是这个方程的两根,求的周长.22. 如图,有一台环卫车沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又,环卫车周围130m 以内为受噪声影响区域.学校C会受噪声影响吗?为什么?若环卫车的行驶速度为每分钟50米,环卫车噪声影响该学校持续的时间有多少分钟?23. 某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.若售价定为42元,每月可售出多少个?若书包的月销售量为300个,则每个书包的定价为多少元?当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应为多少?24. 如图①,在矩形ABCD中,,点P从点A出发,沿运动,速度为每秒2个单位长度;点Q从点A出发向点B运动,速度为每秒1个单位长度.P、Q两点同时出发,点Q运动到点B时,两点同时停止运动,设点Q的运动时间为秒连结PQ、AC、CP、点P到点C时,______;当点Q到终点时,PC的长度为______;用含t的代数式表示PD的长;当三角形CPQ的面积为9时,求t的值.答案和解析1.【答案】B【解析】解:A、原式,不符合题意;B、原式为最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意.故选:利用最简二次根式定义:被开方数不含分母;被开方数中不含能开得尽方的因数或因式判断即可.此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.【答案】A【解析】解:原式故选:直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.3.【答案】A【解析】解:关于x的方程是一元二次方程,且,解得:,故选:根据一元二次方程的定义得出且,再求出a即可.本题考查了一元二次方程的定义和绝对值,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.4.【答案】D【解析】解:,故选:根据二次根式有意义的条件可以得到,根号外的提出负号后移入根号内即可.此题考查了二次根式的性质与化简,熟练掌握二次根式性质是解本题的关键.5.【答案】D【解析】解:,因式分解得:,则或,解得,,两个根为直角三角形的两边长,若4、5均为直角边长度,则斜边长度为,若4、5有一边是斜边长度,则斜边长度为5,故选:利用因式分解法解方程求出x的值,再分情况讨论求解即可.本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.也考查了直角三角形三边关系:斜边大于直角边和勾股定理.6.【答案】A【解析】解:,是方程的两个根,,,,,故选:根据一元二次方程根与系数的关系可得,,将变形后求值即可.本题考查了一元二次方程根与系数的关系,涉及完全平方公式,熟练掌握一元二次方程根与系数的关系是解题的关键.7.【答案】A【解析】解:一定有意义,,,,整理得:,,则故选:直接利用二次根式的性质将已知化简,再将原式变形求出答案.本题考查二次根式有意义的应用,以及二次根式的性质应用,解题的关键是正确化简二次根式.8.【答案】D【解析】解:可化为:关于x的一元二次方程有一个根为,把看作是整体未知数,则,,即有一根为故选:把化为:再结合题意可得,从而可得方程的解.本题考查的是一元二次方程的根的含义,掌握“利用整体未知数求解方程的根”是解本题的关键.9.【答案】B【解析】【分析】此题考查了一元二次方程的解和一元二次方程的应用,熟练掌握完全平方公式是解本题的关键.表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边AB上截取,设,根据勾股定理得:,整理得:,则该方程的一个正根是AD的长,故选10.【答案】C【解析】解:根据题意,可得,且,,当时,,此时是方程的根,当时,,此时是方程的根,,,和不能同时是方程的根,故①④不符合题意,③选项符合题意;当时,,,当,时,是方程的根,故②符合题意,故选:根据根的判别式可得,进一步可得,可知或可能是但不能同时是方程的根;当时,可得p和q的值且符合题意,即可进行判断.本题考查了一元二次方程根的判别式与一元二次方程的解,熟练掌握一元二次方程根的判别式是解题的关键.11.【答案】【解析】解:,且最简二次根式能与合并,,解得,把代入得,,,故答案为:根据二次根式的性质,合并同类二次根式,算出x的值,代入式子,再结合分式和二次根式有意义的条件即可求解.本题主要考查二次根式,分式有意义的综合,掌握二次根式的性质,分式有意义的条件是解题的关键.12.【答案】5【解析】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,圆柱高3米,底面周长2米,,,每根柱子所用彩灯带的最短长度为5m,故答案为:要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.本题考查了平面展开-最短路线问题,掌握勾股定理的应用,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高是解决本题的关键.13.【答案】【解析】解:由题意得:,解得:,则,所以故答案是:根据二次根式有意义的条件可得,进而可得y的值,然后计算出的值,进而可得立方根.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.【答案】【解析】解:若方程为一元二次方程,则有,,解得:且,若,方程为一元一次方程,有实数根,故答案为:若方程为一元二次方程,则有,,求解,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.本题考查了一元二次方程根的判别,掌握一元二次方程的根的判别式是解题的关键.15.【答案】10【解析】解:设共有x个队参加比赛,依题意得,整理得,解得,不合题意,舍去即共有10个队参加比赛.故答案为设共有x个队参加比赛,利用比赛的总场数参赛队伍数参赛队伍数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查一元二次方程的应用.16.【答案】1【解析】解:设,则原方程化为,解得:或1,当时,,即,,此方程无解,当时,,,故答案为:设,则原方程化为,解方程求出a的值,再判断即可.本题考查了用换元法解一元二次方程,能够正确换元是解此题的关键.17.【答案】32或42【解析】解:此题应分两种情况说明:当为锐角三角形时,在中,,在中,的周长为:;当为钝角三角形时,在中,,在中,,的周长为:当为锐角三角形时,的周长为42;当为钝角三角形时,的周长为综上所述,的周长是42或故填:42或本题应分两种情况进行讨论:当为锐角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将的周长求出;当为钝角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.18.【答案】【解析】解:根据题意,,,,,,设,,,,在中,,,故答案为:根据四个全等的直角三角形拼成的图形,可知,,,设,,可用含a,b的式子表示BC,CD,再根据勾股定理即可求解.本题主要考查勾股定理与图形的变换,掌握图形特点,勾股定理是解题的关键.19.【答案】解:;,,,,,,即方程的解为:【解析】根据二次根式混合运算法则进行计算即可;用公式法解一元二次方程即可.本题主要考查了二次根式混合运算,解一元二次方程,解题的关键是熟练掌握二次根式混合运算法则和解一元二次方程的一般方法,准确计算.20.【答案】,,解:………,【解析】解:,;,;,;,,故答案为:,,;分别求出,,…的值,再求出其算术平方根即可;根据的结果进行拆项得出…,再转换成…即可求出答案.本题考查了二次根式的化简,主要考学生的计算能力,题目比较好,但有一定的难度.21.【答案】证明:方程化为一般形式为:,,而,,所以无论k取任何实数,方程总有两个实数根;解:,整理得,,,当为等腰的底边,则有,因为b、c恰是这个方程的两根,则,解得,则三角形的三边长分别为:2,2,4,,这不满足三角形三边的关系,舍去;当为等腰的腰,因为b、c恰是这个方程的两根,所以只能,则三角形三边长分别为:2,4,4,,可以构成三角形,此时三角形的周长为所以的周长为【解析】本题考查了一元二次方程为常数根的判别式当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.同时考查了分类思想的运用、等腰三角形的性质和三角形三边的关系.先把方程化为一般式:,要证明无论k取任何实数,方程总有两个实数根,即要证明;先利用因式分解法求出两根:,先分类讨论:若为底边;若为腰,分别确定b,c的值,并利用三角形三边关系验证,进而求出三角形的周长.22.【答案】解:学校C会受噪声影响.理由:如图,过点C作于D,,,,是直角三角形.,,,环卫车周围130m以内为受噪声影响区域,学校C会受噪声影响.当,时,正好影响C学校,,,环卫车的行驶速度为每分钟50米,分钟,即环卫车噪声影响该学校持续的时间有2分钟.【解析】利用勾股定理的逆定理得出是直角三角形,进而利用三角形面积得出CD的长,进而得出学校C是否会受噪声影响;利用勾股定理得出ED以及EF的长,进而得出环卫车噪声影响该学校持续的时间.本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.23.【答案】解:当售价为42元时,每月可以售出的个数为个;当书包的月销售量为300个时,每个书包的价格为:元;设销售价格应定为x元,则,解得,,当时,销售量为500个;当时,销售量为200个,因此为体现“薄利多销”的销售原则,我认为销售价格应定为50元.【解析】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量和单价表示出利润即可.由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;根据“售价+月销量减少的个数”进行解答;设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.24.【答案】解:,4;当时,;当时,;当时,;当时,,,,,,解得,舍去;当时,,,解得:;当时,,,解得:不合题意,舍去综上所述,当三角形CPQ的面积为9时或【解析】【分析】本题考查了矩形的性质和一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.点P到点C时,所走路程为,除以速度求出t的值,当点Q到终点时,P点回到CD 中点,即可求出PC;分点P在上时,时,时进行讨论;同第2问三种情况进行讨论.【解答】解:在矩形ABCD中,,,,点P到点C时,所走路程为,,当点Q到终点时,,P点回到CD中点,故答案为6s,4;见答案;见答案.。
八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。
A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。
A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。
A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。
( )2. 平行四边形的对边相等且平行。
( )3. 任何两个有理数之间都存在无数个无理数。
( )4. 二次函数的图像一定经过原点。
( )5. 对角线互相垂直的四边形一定是菱形。
( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。
2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。
3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。
4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。
5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。
四、简答题1. 解释什么是算术平方根,并给出一个例子。
2. 描述平行线的性质。
人教版八年级上册数学《期中》考试卷(可打印)

人教版八年级上册数学《期中》考试卷(可打印) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.使3x -有意义的x 的取值范围是( )A .x ≤3B .x <3C .x ≥3D .x >34.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.下列二次根式中能与23合并的是( )A .8B .13C .18D .97.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)116________.2.分解因式:22a 4a 2-+=__________.3.33x x -=-,则x 的取值范围是________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.5.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为__________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.=,D是AB边上一点(点D与A,4.如图,在ABC中,ACB90∠=,AC BCB不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;()当AD BF2∠的度数.=时,求BEF5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、()2 2a1-3、3x≤4、255、36、②.三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、22x-,12-.3、﹣1≤x<2.4、()1略;()2BEF67.5∠=.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
山东省济宁市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A. 两点之间,线段最短B. 垂线段最短C. 三角形具有稳定性D. 两直线平行,内错角相等2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A. B.C. D.3.在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A. B. C. D.4.若一个三角形三个内角度数的比为l:2:3,那么这个三角形是()A. 锐角三角形B. 等边三角形C. 钝角三角形D. 直角三角形5.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A. 8条B. 9条C. 10条D. 11条6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则么∠B的度数为()A. B. C. D.7.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. B. C. D.8.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A. B. C. D.9.如图,已知在△ABC中,艘上AB于R,PS上AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;(A)BP=CP.其中结论正确的有()A. 全部正确B. 仅①②③正确C. 仅①②正确D. 仅① 正确10.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)11.已知等腰三角形的一个角为80°,则顶角为______ .12.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件______,使得△EAB≌△BCD.13.如图,在△ABC中,AB=AC,AD BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为______ cm2.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=______.15.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为______.三、解答题(本大题共7小题,共55.0分)16.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.17.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.18.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.19.如图,已知:E是∠AOB的平分线上一点,EC OB,ED OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.20.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.21.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.22.如图,CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠a.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图l,若∠BCA=90°,∠a=90°,则BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);②如图(2),若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件______,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).答案和解析1.【答案】C【解析】解:这样做的道理是三角形具有稳定性.故选:C.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.数学要学以致用,会对生活中的一些现象用数学知识解释.2.【答案】C【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.3.【答案】A【解析】解:点P(-1,2)关于x轴对称的点的坐标为(-1,-2).故选:A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】D【解析】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°,∴k°=30°,2k°=60°,3k°=90°,所以这个三角形是直角三角形.故选D.已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.5.【答案】B【解析】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴对角线条数=12-3=9.故选B.先求出多边形的外角度数,然后即可求出边数,再利用公式(n-3)代入数据计算即可.本题主要考查了多边形的外角与对角线的性质,求出边数是解题的关键,另外熟记从多边形的一个顶点出发可作的对角线的条数公式也很重要.6.【答案】C【解析】解:∵CD=AD,AB=BD,∴∠B=∠C=∠CAD,∠ADB=∠BAD,故选C.根据等腰三角形的性质和三角形的内角和即可得到结论.此题考查了等腰三角形的性质与三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.7.【答案】D【解析】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选D.由作法易得OD=O′D′,OC=O′C′,CD=C′D′,利用SSS得到三角形全等,由全等三角形的对应角相等.本题考查的是作图-基本作图,全等三角形的判定与性质等知识,熟练掌握三角形全等的性质是正确解答本题的关键.8.【答案】D【解析】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(-1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化-平移,解题的关键是明确题意,找出所求点需要的条件.9.【答案】C解:∵PR AB,PS AC,∴∠PRA=∠PSA=90°,在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS(HL),∴AR=AS,∠PAR=∠PAS,∵∠1=∠2,∴∠PAR=∠2,∴PQ∥AB,当BP=CP时,△BPR≌△CPS,∴①②正确,③④不正确;故选:B.由HL证明Rt△APR≌Rt△APS,得出AR=AS,∠PAR=∠PAS,由已知得出∠PAR=∠2,得出PQ∥AB,当BP=CP时,△BPR≌△CPS,得出①②正确,③④不正确即可.本题考查了全等三角形的判定与性质、平行线的判定;证明三角形全等是解决问题的关键.10.【答案】B【解析】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.本题主要考查全等三角形的判定定理,关键在于熟练掌握全等三角形的判定11.【答案】80°或20°【解析】解:(1)当80°角为顶角时,其顶角为80°(2)当80°为底角时,得顶角=180°-2×80°=20°;故填80°或20°.等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.12.【答案】AE=CB【解析】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.可以根据全等三角形的不同的判定方法添加不同的条件.本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.13.【答案】9【解析】解:∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.由图,根据等腰三角形是轴对称图形知,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△CEF和△BEF的面积相等是正确解答本题的关键.14.【答案】55°【解析】解:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.15.【答案】6【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6,故答案为:6设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.此题主要考查轴对称--最短路线问题,关键是根据当点M、N在CD上时,△PMN的周长最小解答.16.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.17.【答案】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【解析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【答案】解:(1)所作图形如图所示:A′(-4,6),B′(-5,2),C′(-2,1);(2)S△ABC=3×5-×1×3-×1×4-×2×5=6.5.【解析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接,并写出A′,B′,C′的坐标;(2)用△ABC所在的矩形的面积减去三个小三角形的面积即可求解.本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.19.【答案】解:(1)∵E是∠AOB的平分线上一点,EC OB,ED OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC OB,ED OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.【解析】(1)先根据E是∠AOB的平分线上一点,EC OB,ED OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.20.【答案】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B;(3)∵由(2)知△BDE≌△CEF,∴∠BDE=∠CEF,∴∠CEF+∠DEF=∠BDE+∠B,∴∠DEF=∠B,∴AB=AC,∠A=40°,∴∠DEF=∠B==70°.【解析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B即可得出结论;(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.21.【答案】解:(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,,∴△AEC≌△CGB(ASA),∴AE=CG;(2)BE=CM.理由:∵CH HM,CD ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【解析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,熟练掌握全等三角形的判定方法是解决问题的关键.22.【答案】=;=;∠α+∠BCA=180°【解析】解:(1)①如图1中,E点在F点的左侧,∵BE CD,AF CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF,当E在F的右侧时,同理可证EF=AF-BE,∴EF=|BE-AF|;故答案为=,=.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF,当E在F的右侧时,同理可证EF=AF-BE,∴EF=|BE-AF|;故答案为∠α+∠ACB=180°.(2)EF=BE+AF.理由是:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。
八年级数学期中测试试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 已知x² + 4x + 4 = 0,则x的值为()A. 2B. -2C. 1D. -13. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 45°C. 90°D. 30°4. 若一个长方形的长是8cm,宽是5cm,则它的对角线长为()A. 12cmB. 10cmC. 13cmD. 15cm5. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a - 2 < b - 2D. a + 2 < b + 26. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 87. 若|a| = 5,则a的值为()A. ±5B. 5C. -5D. 08. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)9. 下列方程中,有实数解的是()A. x² + 3x + 2 = 0B. x² - 2x + 1 = 0C. x² + 2x + 1 = 0D. x² - 4x + 3 = 010. 若a,b,c是△ABC的三边,且a + b > c,b + c > a,a + c > b,则下列说法正确的是()A. △ABC是等边三角形B. △ABC是等腰三角形C. △ABC是直角三角形D. 以上都不对二、填空题(每题5分,共25分)11. 已知x² - 4x + 3 = 0,则x的值为________。
12. 在△ABC中,∠A = 90°,∠B = 30°,则∠C的度数为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期中测试卷
(满分100分,答卷时间120分钟)
一、选择题(本题共8小题;每小题2分,共16分)
下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填入题号前的括号内. 【 】1.下列说法不正确的是
A .1的平方根是±1
B .-1的立方根是-1
C .±2是2的平方根
D .-3是2)3(-的平方根
【 】2.在实数
π3
2203.141531640.131131113⋯⋯72
、、、、、、、中无理数有 A .2个 B .3个 C .4个 D .5个
【 】3. 下列四个图案中不是轴对称图形的是
A .
B .
C .
D .
【 】4.下列各曲线中不能表示y 是x 的函数是
A . C. D. 【 】5.一次函数32+-=x y 的图象不经过的象限是
A .第一象限
B . 第二象限
C .第三象限
D .第四象限
【 】6.如图所示,一条数轴被一滩墨迹覆盖了一部分.下列实数中,被墨迹覆盖的是
A .3
B 7
C 11
D .13
2
O x y O x
y O x y O x y 5
4
3
2
1
-1
-2
第6题
【 】7.如图,已知△ABC 中,∠ABC=45°,BD=4,CD=2,
H 是高AD 和BE 的交点,则线段AH 的长度为 A .1 B .2 C .1.5 D .2.5
【 】8.如图,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,
PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论:①GA=GP ;②::PAC PAB S S AC AB V V ;③BP 垂直平分CE ;④FP=FC ;其中正确的判断有
A.只有①②
B.只有③④
C.只有①③④
D.①②③④
二、填空题(本题共10小题;每小题2分,共20分) 不需写出解答过程,请把最后结果填在题中横线上.
9.如图,∠BAC=∠ABD ,请你添加一个条件:_______,使BC =AD (只添一个条件即可).
10.点(-2,1)点关于x 轴对称的点坐标为 . 11.函数y =1x +2
中自变量的取值范围是______ .
12.Rt △ABC 中, ∠A=90°,∠C=30°,BC=4,AB 的长是 . 13.如图,△ABC
中,AB=AC ,∠A =40o ,AB
的垂直平分线DE 交
AC 于D ,交AB 于E ,则∠DBC 的度数为 .
14.等腰三角形的两边长分别为4和9,则这个三角形的周长为______ . 15.直线l 1:y =ax 与直线l 2:y =bx +c 在同一平面直角坐标系中 的图象如图所示,则关于x 的不等式bx +c >ax 的解集为 . 16.若一个正数m 的平方根是21a -和5a -,则m = . 17.数轴上表示l 、2的对应点分别为B 、C ,点C 关于点B 的对称点
为A ,则点A 所表示的数是_____________.
18.育才中学组织初一初二学生举行社会实践活动,从学校坐车出发, 先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回, 行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要 宣传8分钟, 那么他们从B 地返回学校用的时间是________分钟.
y x
-1 -2
y =bx +c
y =ax 第15题
O 第13题
三、解答题(本题共10小题,共64分) 解答时应写出文字说明、证明过程或演算步骤. 19. 计算或化简(每题4分,共8分)
(1
)2 (2)(1-)2011-(π-3)0-| 3-2 |+(-5)2
20.求下列各式中的x :(每题4分,共8分)
(1)9252
=x (2) 027)12(3
=--x
21.(本题5分)21.如图,两条公路AB 、AC 相交于点A ,现要建个车站D ,使得D 到M 村和N 村的距离相等,并且到公路AB 、AC 的距离也相等,请用圆规和直尺在图中画出车站的位置.
22. (本题5分)已知一次函数4-=kx y ,当x =2时,y =-2.
(1)求k 的值;
(2)将该函数的图象向上平移5个单位,请画出平移后的图象,并根据图象回答:当
自变量x 为何值时平移后的一次函数值小于0?
23.(本题5分)如图,AC 和BD 相交于点O ,OA=OC ,OB=OD .
求证:DC ∥AB .
O
D
A B
C
24.(本题6分)已知2+y 与x 成正比例,且x =1时,y =-6. (1)求y 与x 的函数关系式;
(2)若点(a ,2)在(1)中求得的函数的图象上,求a 的值; (3)如果x 的取值范围是0≤x ≤1,求y 的取值范围.
25.(本题7分)
如图所示,在ABC △中,D E ,分别是AC 和AB 上的一点,BD 与CE 交于点O ,给出下列四个条件:①EBO DCO ∠=∠;②BEO CDO ∠=∠;③BE CD =;④OB OC =. (1)上述四个条件中,哪两个条件可以判定ABC △是等腰三角形(用序号写出所有的情形); (2)选择(1)小题中的一种情形,证明ABC △是等腰三角形.
C B
26.(本题5分)如图,等腰△ABC和等腰△ACD有一条公共边AC,且顶角∠BAC和顶角∠CAD都是45°.将一块三角板中用含45°角的顶点与A点重合,并将三角板绕A 点按逆时针方向旋转.
(1)当三角板旋转到如图①的位置时,三角板的两边与等腰三角形的两底边分别相交于M、N两点,求证:AM=AN;
(2)当三角板旋转到如图②的位置时,三角板的两边与等腰三角形两底边的延长线分别相交于M、N两点,(1)的结论还成立吗?请简要说明理由.
①②
27.(本题7分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。
按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函
数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种
安排方案。
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。
28.(本题8分)如图,直线1l 的解析式为2+=x y ,且与x 轴相交于点B ,直线2l 与x 轴相交于点A )0,4(-,直线1l 、2l 交于点C ,△ABC 的面积为1.
(1)求点B 的坐标;
(2)求直线错误!未找到引用源。
的解析式;
(3)在直线2l 是否存在点P ,使得ΔP AB 为等腰直角三角形?若存在,请求出点P
的坐标;若不存在,请说明理由.
(第28题)
参考答案
一、选择题(本题共8小题;每小题2分,共16分)
1.A 2.C 3.A 4.C 5.C 6.B 7.B 8.D 二、填空题(本题共10小题;每小题2分,共20分) 9.DB CA = (不唯一) 10.(-2,-1) 11.2x ≠- 12.2 13.30° 14.22
15.1x <- 16.9 17.2 18.50 三、解答题(本题共10小题,共64分)
19.(1)原式=34(2)-+-
=3-
(2)原式=11(25----+
=1+
20.(1)解: 3
5
x =±
(2)解: 2x = 21.略 22.(1)1k =,(2)画出1y x =+的图象,当1x <- 23.证明略
24.(1) 42y x =-- (2) 1a =- (3)11
24
x -
≤≤- 25.(1)①③、①④、②③、②④(选对一个给一分)
(2)略证(3分) 26.证明略 27.(1)8x+6y+5(20―x―y)=120
∴y=20―3x ∴y 与x 之间的函数关系式为y=20―3x
(2)由x≥3,y=20-3x≥3, 20―x―(20―3x)≥3可得3
253≤≤x 又∵x 为正整数 ∴ x=3,4,5 故车辆的安排有三种方案,即:
方案一:甲种3辆 乙种11辆 丙种6辆 方案二:甲种4辆 乙种8辆 丙种8辆 方案三:甲种5辆 乙种5辆 丙种10辆 (3)设此次销售利润为W 元, W=8x·12+6(20-3x)·16+5[20-x -(20-3x)]·10=-92x+1920 ∵W 随x 的增大而减小 又x=3,4,5
∴ 当x=3时,W 最大=1644(百元)=16.44万元
28.(1)解:
B 点的坐标为()2,0- (2)解:
C 点坐标为(3,1)--
2l 解析式为4y x =--
(3)1P 坐标为(-3,-1),2P 坐标为(-2,-2)。