LM331压频变换器的原理及应用

合集下载

lmv331 用法

lmv331 用法

lmv331 用法摘要:1.LMV331 的介绍2.LMV331 的结构3.LMV331 的用法4.LMV331 的优点与局限性正文:LMV331 是一种常用的电子元器件,全称为低压MOSFET 驱动器。

它是一种用于驱动和控制MOSFET(金属氧化物半导体场效应晶体管)的电子器件。

LMV331 具有结构简单、性能稳定、使用方便等优点,因此在电子设备中得到了广泛的应用。

LMV331 的结构主要包括三个部分:输入端、输出端和电源端。

其中,输入端用于接收控制信号,输出端用于驱动MOSFET,电源端则用于为LMV331 提供工作电压。

LMV331 的工作原理是:当输入端接收到控制信号时,它会根据信号的极性产生相应的输出电压,从而控制MOSFET 的开启或关闭。

LMV331 的用法主要包括以下几个步骤:1.根据电子设备的需要,选择合适的LMV331 型号。

LMV331 有多种型号,其主要区别在于工作电压、输出电流等参数。

2.将LMV331 的输入端与控制信号源相连接。

通常情况下,控制信号源可以是微控制器、信号发生器等设备。

3.将LMV331 的输出端与MOSFET 相连接。

注意,在连接时,应确保MOSFET 的G(栅极)端与LMV331 的输出端相连接,MOSFET 的D(漏极)端与LMV331 的电源端相连接。

4.为LMV331 提供适当的工作电压。

通常情况下,LMV331 的工作电压范围为3V 至30V。

5.在使用LMV331 时,应注意避免静电放电对器件造成损坏。

因此,在操作时应尽量采取防静电措施。

LMV331 的优点主要表现在:结构简单,易于使用;输出电压范围宽,可满足多种应用需求;工作稳定性好,抗干扰能力强。

然而,LMV331 也存在一定的局限性,例如:输出电流较小,不适用于大电流应用;工作温度范围较窄,可能不适用于高温环境。

总之,LMV331 是一种性能优越的低压MOSFET 驱动器,适用于多种电子设备。

LM331原理分析和调试报告

LM331原理分析和调试报告

LM331原理分析和调试报告一、LM331概述LM331是美国NS公司生产的性价比比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

采用了新的能隙基准电路,在工作温度范围内和4V电源电压范围内有极高的精度。

LM331动态范围宽,可达到100dB;线性度好,最大非线性失真小于0.01%,工频降低到0.1Hz时也能保证较好的现行;变化精度高,数字分辨率可达到12位外接电路简单,只需要介入几个外部元件就很容易构成V/F获F/V转换。

二、LM331内部结构图1 LM331内部结构由图1所示,LM331主要有输入比较器、定时比较器、R-S触发器、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管、输出驱动管等部分组成。

输出驱动管采用集电极开路形式,可以通过选择逻辑电流和外接电阻灵活改变输出脉冲的逻辑电平。

LM331可以采用双电源或单电源供电,工作电压4.0~40V,输出高达40V,而且可以有效防止Vcc短路。

三,工作原理理论分析1、V/F转换原理图如图2所示,外接电阻R、t C、定时比较器、R-S触发器、t复零晶体管等构成单稳定时电路。

图2 V/F转换原理图当输入正电压V时,输入比较器输出高电平到R-S触发器使其置i位,Q输出高电平使输出驱动管导通,Q输出电平使复零晶体管截止,引脚3输出逻辑低电平。

与此同时开关打向右边,电流源对R充电,L同时因为复零晶体管截止,电源通过R对t C充电,当t C两端充电电压t大于2V时,定时比较器输出高电平到R-S触发器使其复位,Q输出3CC低电平,输出驱动管截止,引脚3输出逻辑高电平。

同时复零晶体管导通,C通过复零晶体管迅速放电,同时电流开关打向左边,L C对L R t放电,当t C 放电电压等于i V 时,输入比较器输出高电平,再次使R-S 触发器置位,如此反复,形成自激振荡。

图3 t C 、t C 充放电和输出0f 的波形假设t C 充电时间位1t ,放电时间位2t 根据电荷平衡12()()R L L L L I V R t V R t -=又知()121o f t t =+,得 01L L R f V R I t =实际中L V 波动很小,近似等于i V ,所以01i L R f V R I t =,频率与输入电压成正比,实现了电压-频率转换。

lm331 电压比较 反转逻辑

lm331 电压比较 反转逻辑

lm331 电压比较反转逻辑下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!LM331 电压比较反转逻辑1. 简介LM331是一种常用的电压比较器,其具有反转逻辑功能,可用于电压比较和控制应用。

IC资料-精密压_频转换器 LM331_331A

IC资料-精密压_频转换器 LM331_331A

0.15
0.50
V
0.10
0.40
V
±0.05
1.0
uA
3.0
6.0
mA
4.0
8.0
mA
注 1:表中按达到的精度和温度稳定性的不同,分别有 LM331 和 LM331A 两种型号 注 2:表一和表二中所有特性均是按图 5 电路,及 4.0V≤VS≤40V 的条件下测得。(除非另 有说明)
LM331/331A
额定满量程频率
VIN=-10V
10.0
长期增益稳定性 (1000小时)
TMIN≤TA≤TMAX
超限频率(相对于标 准频率范围)
VIN=-11V
10
输入比较器
失调电压
TMIN≤TA≤TMAX
LM331 LM331A
偏置电流Βιβλιοθήκη 失效电流共模范围TMIN≤TA≤TMAX
-0.2
计时器
计时器阈值电压 (第5脚)
1.10 ±150 ±50
kHz/V ppm/℃
0.01
0.1
%/V
0.006 0.06 %/V
kHz
±0.02
%量程
%
±3
±10
±4
±14
mV
±3
±10
-80
-300
nA
±8 ±100 nA
VCC-2.0
V
0.667
±10 200 200 0.22
0.70
±100 1000 500 0.5
* VS nA V
LM331/331A
电参数(二)
Ta=25℃,除其它特殊说明外
参数
测试条件
电流源(第1脚) 输出电流 电压变化引起的变化

(频压转换电路)lm331应用

(频压转换电路)lm331应用

5.1 频率/电压变换器* 一、概述本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。

二、技术要求当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化;正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择可供选择的方案有两种,它们是:○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理LM331的管脚排列和主要性能见附录LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC )LM331用作FVC 时的原理框如图5-1-1所示.R +V CC此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:2/3V CCv ctV 0vCLp-pVCC1st图5-1-2当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

此时放电管T 截止,于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。

与此同时,电流开关S 使恒流源I 与○1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。

经过1.1R t C t 的时间,V Ct 增大到2/3V CC 时,则R 有效(R=1,S=0),Q =0,C t 、C L 再次充电。

然后,又经过1.1R t C t 的时间返回到C t 、C L 放电。

以后就重复上面的过程,于是在R L 上就得到一个直流电压V o (这与电源的整流滤波原理类似),并且V o 与输入脉冲的重复频率f i 成正比。

LM331V

LM331V

LM331V/F数据采集电路构成智能仪器模数通道一、实验目的(1)掌握V/F转换电路设计和制作,会调试V/F转换电路(2)学会将V/F转换电路组成智能仪器模数转换通道二、实验原理1. 实验电路2. 电路原理LM331V/F转换电路可作为计算机模拟电压输入通道,它将电压信号转换成脉冲频率信号,输出频率严格正比于输入电压。

通过一根I/O 口线或作为中断源,计数输入。

符合TTL标准,采用光电耦合,具有良好的抗干扰能力,适用于远距离传输。

能隙基准电路产生1.9V直流电压送到2脚,并钳位在1.9V 上。

当2脚外接RS+RS,后形成基准电流i=1.9/(RS+RS,) 。

本例i=1.9/(12k+RS,),i max=1.9/12k=158μA,i min=112 μA。

片内输入比较器的两个输入端:7脚接输入电压V IN。

6脚为阈值电压V X并与电流输出端1脚相连。

外接R L、C L电路。

片内定时比较器两个输入端:一个在片内通过R 、2R 电阻分别与V CC 、GN D 相连;获得固定的比较电压2/3V CC 。

另一个输入端5脚接R t ,、C t 相连;.获得随C t 充电状态变化的电压V 5。

V 5与2/3V CC 比较,当C t 充电较Vc>2/3VCC 时,定时比较器使片內R-S 触发器复位。

片內R-S 触发器与定时比较器和复位晶体管以及外接R t ,、C t 构成一个单稳脉冲定时器。

.定时周期T=1.1R t ×C t 。

当输入比较器的V IN >V X 时,启动单稳脉冲定时器并导通频率输出晶体管,使3脚连接的光电耦合器导通。

同时片内开关电源导通电流i 通过1脚向C L 充电,V x 逐渐升高;当V x 上升到V IN <V x 时,定时器自行复位。

3脚输出光电耦合截止电流i 关断。

此时C L 开始通过RC 放电,直到再次V IN >V x 。

重复上述循环,在3脚输出一个脉冲频率信号。

lm331工作原理

lm331工作原理

lm331工作原理LM331是一种广泛应用于电子测量和控制系统中的精密电压频率转换器。

它采用了一个非常简单但非常有效的工作原理来实现频率和电压之间的转换。

本文将介绍LM331的工作原理及其应用。

我们来了解LM331芯片的基本结构。

LM331由一个比较器、一个电压控制振荡器和一个计数器组成。

其中,比较器用于将输入电压与内部参考电压进行比较,并产生一个脉冲信号。

电压控制振荡器则根据比较器的输出调整其输出频率,而计数器则用于计数振荡器输出的脉冲信号。

通过计数器的计数结果,我们可以得到输入电压对应的频率值。

LM331的工作原理可以简单概括为如下几个步骤:1. 输入电压与参考电压比较:LM331的输入端接收到一个待转换的电压信号,该信号与芯片内部的参考电压进行比较。

比较结果将决定振荡器的输出频率。

2. 振荡器输出调整:根据比较器的输出结果,振荡器将调整自身的输出频率。

当输入电压高于参考电压时,振荡器的输出频率增加;反之,当输入电压低于参考电压时,振荡器的输出频率减小。

3. 计数器计数:振荡器输出的脉冲信号经过计数器进行计数。

计数器记录了振荡器输出的脉冲数量,从而反映出输入电压对应的频率。

4. 频率输出:计数器的计数结果可以通过芯片的输出引脚获得。

通过读取输出引脚的电压值,我们可以得到输入电压对应的频率信息。

除了基本的工作原理之外,LM331还具有一些特殊的功能和应用。

其中包括:1. 频率范围可调:LM331可以通过外部电路调整其工作频率范围,从几赫兹到几百千赫兹不等。

这使得LM331非常适用于需要测量或控制不同范围频率的应用。

2. 高精度:由于LM331采用了精密的比较器和振荡器设计,它可以实现非常高的频率和电压转换精度。

这使得LM331在需要高精度测量或控制的系统中得到广泛应用。

3. 低功耗:尽管LM331具有高精度和可调频率范围的特点,但其功耗却非常低。

这使得LM331在需要长时间运行或依靠电池供电的应用中具有优势。

lm331v-f转换电路工作原理

lm331v-f转换电路工作原理

lm331v-f转换电路工作原理
LM331V-F是一款精密电压到频率转换器芯片。

其工作原理是
将输入的电压信号转换为与输入电压成正比的频率输出信号。

具体来说,当输入电压增加时,输出频率也会相应地增加;当输入电压减小时,输出频率也会相应地减小。

LM331V-F可以
实现非常精确的电压到频率的转换,具体的转换关系由芯片内部的电压对比器和计数器电路实现。

在LM331V-F芯片内部,电压对比器将输入电压与参考电压
进行比较,根据比较结果控制计数器电路的计数方向和计数速度。

计数器电路通过计数的增加或减少来改变输出频率。

当输入电压超过参考电压时,计数器开始计数,直到达到设定的计数上限时,输出频率达到最大值。

当输入电压低于参考电压时,计数器开始反向计数,直到达到计数下限时,输出频率达到最小值。

LM331V-F芯片可以通过外部元件配置参考电压和调整计数范围,以满足不同的应用需求。

同时,它还具有内置的线性度和稳定性调整电路,可以进行精确的校准和调节。

总之,LM331V-F是一款实现精确电压到频率转换的芯片,可
以广泛应用于测量、控制和信号处理等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM331压频变换器的原理及应用1. 概述LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331的内部电路组成如图1所示。

由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。

输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。

LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。

2. 工作原理2.1 电压—频率变换器图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。

当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。

此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。

当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL 放电。

当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。

图3画出了电容Ct、Cl充放电和输出脉冲f0的波形。

设电容CL的充电时间为t1,放电时间为t2,则根据电容CL上电荷平衡的原理,我们有:(IR-VL/RL)t1=t2VL/RL从上式可得:f0=1/(t1+t2)=VL/(RLIRt1)实际上,该电路的VL在很少的范围内(大约10mV)波动,因此,可认为VL=Vt,故上式可以表示为:f0==Vt/(RLIRt1)可见,输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。

式中IR由内部基准电压源供给的1.90V参考电压和外接电阻Rs决定,IR=1.90/Rs,改变Rs的值,可调节电路的转换增益,t1由定时元件Rt和Ct决定,其关系是t1=1.1RtCt,典型值Rt=6.8kΩ,Ct=0.01μF,t1=7.5μs。

由f0=Vi/(RLIRt)可知,电阻Rs、Rl、Rt和电容Ct直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。

电容Cl对转换结果虽然没有直接的影响。

但应选择漏电流小的电容器。

电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。

2.2 频率-电压变换器由LM331构成的频率-电压转换电路如图4所示,输入脉冲fi经R1、C1组成的微分电路加到输入比较器的反相输入端。

输入比较器的同相输入端经电阻R2、R3分压而加有约2Vcc/3的直流电压,反相输入端经电阻R1加有Vcc的直流电压。

当输入脉冲的下降沿到来时,经微分电路R1、C1产生一负尖脉冲叠加到反相输入端的Vcc上,当负向尖脉冲大于Vcc/3时,输入比较器输出高电平使触发器置位,此时电流开关打向右边,电流源IR对电容CL充电,同时因复零晶体管截止而使电源Vcc通过电阻Rt对电容Ct充电。

当电容CL两端电压达到2Vcc/3时,定时比较器输出高电平使触发器复位,此时电流开关打向左边,电容CL通过电阻RL放电,同时,复零晶体管导通,定时电容Ct迅速放电,完成一次充放电过程。

此后,每当输入脉冲的下降沿到来时,电路重复上述的工作过程。

从前面的分析可知,电容CL的充电时间由定时电路Rt、Ct决定,充电电流的大小由电流源IR决定,输入脉冲的频率越高,电容CL上积累的电荷就越多输出电压(电容CL两端的电压)就越高,实现了频率-电压的变换。

按照前面推导V/F表达式的方法,可得到输出电压VO与fi的关系为:VO=2.09RlRtCtfi/Rs电容C1的选择不宜太小,要保证输入脉冲经微分后有足够的幅度来触发输入比较器,但电容C1小些有利于提高转换电路的抗干扰能力。

电阻RL和电容CL组成低通滤波器。

电容CL大些,输出电压VO的纹波会小些,电容CL小些,当输入脉冲频率变化时,输出响应会快些。

这些因素在实际运用时要综合考虑。

3. 应用图5为由两块LM331组成的遥测电路。

在人员不能进入或不易进入的场合,通过传感器将被测量转换为电压,经运算放大器放大为0~10V电压信号,由LM331进行V/F变换为脉冲信号,通过长双绞线传输到测量室,在测量室内通过光电耦合器转换为幅度稳定的脉冲电压,此脉冲电压再经LM331进行F/V变换为电压进行测量,从而可避免直接导线连接到测量室而造成的线路衰减或干扰,提高测量精度。

当前,12位以上的A/D转换器的价格仍较昂贵,用V/F变换器来代替A/D转换器,在要求速度不太高的场合是一种较好的选择。

用LM331构成的A/D变换器采集系统接口电路如图6所示。

从传感器来的毫伏级的电压信号经低温漂运算放大器INA101放大到0~10V后加到V/F变换器LM331的输入端,从频率输出端f0输出的频率信号加到单片机8031的输入端T1上。

根据分辨率的要求利用软件(限于篇幅,程序部分略)处理,最后得到A/D转换的结果。

1. 概述LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331的内部电路组成如图1所示。

由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。

输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。

LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。

2. 工作原理2.1 电压—频率变换器图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、C t和定时比较器、复零晶体管、R -S触发器等构成单稳定时电路。

当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源I R对电容C L充电。

此时由于复零晶体管截止,电源Vcc也通过电阻R t对电容C t充电。

当电容C t两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C t通过复零晶体管迅速放电;电流开关打向左边,电容C l对电阻R L放电。

当电容C L放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。

图3画出了电容C t、C l充放电和输出脉冲f0的波形。

设电容C L的充电时间为t1,放电时间为t2,则根据电容C L上电荷平衡的原理,我们有:(I R-V L/R L)t1=t2V L/R L从上式可得:f0=1/(t1+t2)=V L/(R L I R t1)实际上,该电路的VL在很少的范围内(大约10mV)波动,因此,可认为V L=V t,故上式可以表示为:f0==V t/(R L I R t1)可见,输出脉冲频率f0与输入电压V i成正比,从而实现了电压-频率变换。

式中I R由内部基准电压源供给的1.90V参考电压和外接电阻R s决定,I R=1.90/Rs,改变R s的值,可调节电路的转换增益,t1由定时元件R t和C t决定,其关系是t1=1.1R t C t,典型值R t=6.8kΩ,C t=0.01μF,t1=7.5μs。

由f0=V i/(R L I R t)可知,电阻R s、R l、R t和电容C t直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。

电容C l对转换结果虽然没有直接的影响。

但应选择漏电流小的电容器。

电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。

2.2 频率-电压变换器由LM331构成的频率-电压转换电路如图4所示,输入脉冲f i经R1、C1组成的微分电路加到输入比较器的反相输入端。

输入比较器的同相输入端经电阻R2、R3分压而加有约2Vcc/3的直流电压,反相输入端经电阻R1加有Vcc的直流电压。

当输入脉冲的下降沿到来时,经微分电路R1、C1产生一负尖脉冲叠加到反相输入端的Vcc上,当负向尖脉冲大于Vcc/3时,输入比较器输出高电平使触发器置位,此时电流开关打向右边,电流源I R对电容C L充电,同时因复零晶体管截止而使电源Vcc通过电阻R t对电容C t充电。

当电容C L两端电压达到2Vcc/3时,定时比较器输出高电平使触发器复位,此时电流开关打向左边,电容C L通过电阻R L放电,同时,复零晶体管导通,定时电容C t迅速放电,完成一次充放电过程。

此后,每当输入脉冲的下降沿到来时,电路重复上述的工作过程。

从前面的分析可知,电容C L的充电时间由定时电路R t、C t决定,充电电流的大小由电流源IR决定,输入脉冲的频率越高,电容C L上积累的电荷就越多输出电压(电容C L两端的电压)就越高,实现了频率-电压的变换。

按照前面推导V/F表达式的方法,可得到输出电压V O与f i的关系为:V O=2.09R l R t C t f i/R s电容C1的选择不宜太小,要保证输入脉冲经微分后有足够的幅度来触发输入比较器,但电容C1小些有利于提高转换电路的抗干扰能力。

电阻R L和电容C L组成低通滤波器。

相关文档
最新文档