CMA盲均衡算法设计研究

合集下载

CMA盲均衡算法设计研究(网络软件)

CMA盲均衡算法设计研究(网络软件)

CMA盲均衡算法研究姓名学号宋政育 081201531.盲均衡概述1.1 均衡器分类均衡是通信系统中的一项重要技术,不仅应用于模拟通信,也应用于数字通信。

在数字通信中,由于信道的特性变化,会造成码间干扰。

通过均衡,可以补偿信道特性的变化,减小或消除码间干扰。

均衡通常在接收机完成。

均衡器分为两种方式,一是频域均衡,二是时域均衡。

频域均衡是使整个系统的频率传递函数满足无失真传递的条件。

时域均衡是直接从时间响应出发,使整个系统的冲激响应满足无码间干扰的条件。

频域均衡的条件是比较严格的,而满足奈奎斯特整形定理的要求,即仅仅在判决点满足无码间干扰的条件相对宽松一些。

所以在数字通信中,一般采用时域均衡。

时域均衡器分为两大类,一是线性均衡器,二是非线性均衡器。

图1.1表示了均衡器的分类框图。

均衡器线性均衡器非线性均衡器判决反馈均衡器最大似然序列估计最大似然符号检测器横向滤波器格型滤波器横向信道估计横向滤波器格型滤波器图1.1 均衡器的结构分类1.2 盲均衡技术尽管理论上存在理想的基带传输特性,但是在实际应用由于中无线信道的时变特性,在抽样时刻上总是存在一定的码间干扰,从而导致系统性能的下降,误码率显著增大。

理论和实践都表明,在基带系统中插入一种滤波器能减少码间干扰的影响。

这种起补偿作用的滤波器统称为均衡器。

在实际应用中有许多问题不能用固定系数的均衡器解决,因为我们没有充足的信息去设计固定系数的数字滤波器,或设计规则会在滤波器正常运行时改变。

绝大多数这些应用都可以用特殊的智能滤波器,即常说的自适应滤波器来成功解决。

自适应滤波器显著特征是:它在工作过程中不需要用户的干预就能改变响应,进而改善性能。

系数可变的自适应均衡器可以分为两类:基于导频的估计方法和盲估计方法。

第一种方法利用数据序列中的已知数据(可以是离散的或连续的)得到导频位置处的信道响应,然后利用有关内差算法得到整个频域信道的响应,这种方法简单,运算量小,但需要发送已知的导频信息,降低了系统效率。

CMA盲均衡算法设计研究

CMA盲均衡算法设计研究

CMA盲均衡算法研究1.盲均衡概述1.1 均衡器分类均衡是通信系统中的一项重要技术,不仅应用于模拟通信,也应用于数字通信。

在数字通信中,由于信道的特性变化,会造成码间干扰。

通过均衡,可以补偿信道特性的变化,减小或消除码间干扰。

均衡通常在接收机完成。

均衡器分为两种方式,一是频域均衡,二是时域均衡。

频域均衡是使整个系统的频率传递函数满足无失真传递的条件。

时域均衡是直接从时间响应出发,使整个系统的冲激响应满足无码间干扰的条件。

频域均衡的条件是比较严格的,而满足奈奎斯特整形定理的要求,即仅仅在判决点满足无码间干扰的条件相对宽松一些。

所以在数字通信中,一般采用时域均衡。

时域均衡器分为两大类,一是线性均衡器,二是非线性均衡器。

图1.1表示了均衡器的分类框图。

图1.1 均衡器的结构分类1.2 盲均衡技术尽管理论上存在理想的基带传输特性,但是在实际应用由于中无线信道的时变特性,在抽样时刻上总是存在一定的码间干扰,从而导致系统性能的下降,误码率显著增大。

理论和实践都表明,在基带系统中插入一种滤波器能减少码间干扰的影响。

这种起补偿作用的滤波器统称为均衡器。

在实际应用中有许多问题不能用固定系数的均衡器解决,因为我们没有充足的信息去设计固定系数的数字滤波器,或设计规则会在滤波器正常运行时改变。

绝大多数这些应用都可以用特殊的智能滤波器,即常说的自适应滤波器来成功解决。

自适应滤波器显著特征是:它在工作过程中不需要用户的干预就能改变响应,进而改善性能。

系数可变的自适应均衡器可以分为两类:基于导频的估计方法和盲估计方法。

第一种方法利用数据序列中的已知数据(可以是离散的或连续的)得到导频位置处的信道响应,然后利用有关内差算法得到整个频域信道的响应,这种方法简单,运算量小,但需要发送已知的导频信息,降低了系统效率。

而盲估计和跟踪方法利用了接收数据的统计特性来实现信道的估计和跟踪,如利用子空间分解算法等,相对于基于导频的估计和跟踪算法,盲算法提高了系统效率,但极大地增加了运算量。

基于M22CMA的盲均衡算法仿真和实现

基于M22CMA的盲均衡算法仿真和实现

基于M22CMA的盲均衡算法仿真和实现杨金功;饶勇【摘要】CMA算法具有结构简单、计算复杂度小且不占用额外的信道带宽的特点,在无线通信应用中正受到越来越广泛的关注。

从CMA算法出发,推导了一种适用于复信号的M22CMA结构,使用QPSK信号对算法进行了Matlab仿真和VHDL 验证。

仿真和实验结果表明,该算法性能稳定,可用于无线信道中QPSK信号的均衡处理。

%CAM algorithm has the characteristic of simple architecture,less computing complexity and no occupation of ex-tra channel bandwidth. More and more attention has been paid to the CMA algorithm in the application of wireless communica-tion. Proceeding from the CMA algorithm,a M22CMA architecture which can be applied to complex signal is derived in this pa-per. Matlab emulation and VHDL verification for the algorithm were performed with QPSK signal. The simulation and experimen-tal results show that the performance of the algorithm is reliable,and it can be used to equalize QPSK signal in the wireless channel.【期刊名称】《现代电子技术》【年(卷),期】2014(000)019【总页数】3页(P79-81)【关键词】M22CMA;盲均衡算法;QPSK;Matlab仿真【作者】杨金功;饶勇【作者单位】陕西凌云电器集团有限公司,陕西宝鸡 721006;陕西凌云电器集团有限公司,陕西宝鸡 721006【正文语种】中文【中图分类】TN911.7-34在数字通信系统中,带限发射、通道滤波器不匹配、放大器非线性、时延与多径效应等因素综合作用,会使信号在传递过程中产生码间串扰[1]和信道间干扰,从而在接收端产生误码,导致系统性能下降。

一种新的基于统计测度的变步长CMA盲均衡算法

一种新的基于统计测度的变步长CMA盲均衡算法

一种新的基于统计测度的变步长CMA盲均衡算法
黄蕾;杨绿溪
【期刊名称】《数据采集与处理》
【年(卷),期】2003(018)001
【摘要】在常模量算法的基础上,提出了一种适合于常模信号的基于统计测度的变步长盲均衡算法.考虑到信道畸变和噪声的同时作用将使得有些观测信号值受到更大的影响,因此可以认为这些值对均衡器系数的调整从统计测度上讲是不太有利,故采用较小的步长,使得该值在整个均衡器系数的调整中贡献较小 .本文对此进行了理论解释.仿真结果表明,该算法具有较快的收敛速度,且收敛后的超量均方误差(EMSE)与CMA算法基本相同.
【总页数】4页(P62-65)
【作者】黄蕾;杨绿溪
【作者单位】东南大学无线电工程系,南京,210096;东南大学无线电工程系,南
京,210096
【正文语种】中文
【中图分类】TN911.5
【相关文献】
1.一种基于MCMA的双模切换变步长的盲均衡算法 [J], 朱行涛;刘郁林;敖卫东
2.一种基于CMA的变步长盲均衡算法研究 [J], 李茹;张涛;朱秋煜
3.一种新型变步长CMA盲均衡算法 [J], 朱振超;梁广真
4.一种新的变步长盲均衡算法研究 [J], 陈维;胡兵
5.一种新的基于CMA算法的递归步长盲均衡算法 [J], 欧阳喜;葛临东
因版权原因,仅展示原文概要,查看原文内容请购买。

盲均衡算法研究

盲均衡算法研究

盲均衡算法研究摘要如今在很多通信系统中,传统的需要训练序列的自适应均衡方法已经变的不再适用,而不需要训练序列的均衡,也就是盲均衡技术则取得了越来越广阔的应用。

本文主要研究了更具实际应用价值际的Bussgang类盲均衡算法,并以其中最为经典的常模数算法(CMA)和近年来新提出来的基于RENYI信息熵的盲均衡算法为主要研究对象进行了较为深入的理论研究和仿真分析。

文中分析论证了两种算法的理论依据,进行了相应的算法推导,最后利用计算机进行仿真并对仿真结果进行分析和比较,得到了如下结果:●在单入单出系统(SISO)中对CMA算法和RENYI熵算法进行了全面的分析和比较,验证了RENYI熵算法的快速收敛性,同时发现了该算法在鲁棒性上有待改进的地方。

●在多入多出系统(MINO)中对CMA算法和RENYI熵算法进行了新的研究。

不考虑盲分离,研究改进后的CMA算法在MIMO系统中的均衡效果,并以此为基础提出了以RENYI熵为基础的新算法MIMO-RENYI算法。

通过仿真发现该算法的具有更快的收敛速度,具有良好的研究前景。

关键词:盲均衡,Bussgang,CMA,RENYI熵Analysis of Blind EqualizationAbstractNowadays, traditional self-adaptive equalization that needs trained sequences is no longer suitable in many communication scenarios. Blind equalizations, which do not need any trained sequence, can obtain broader application. In this paper, we mainly studied Bussgand type blind equalizations, which is a very practical type of blind equalization. Two algorithms are studied during the article, one is the most famous algorithm constant modulus algorithm (CMA) and the other is RENYI’s entropy based blind equalization, which is a newly released blind equalization algorithm. Some comprehensive theoretical analysis is done in this paper, and computer simulation helps to get better comparison about these two algorithms. Finally, I get the following results:●An all aspects comparison is done between CMA and RENYI’s entropy algorithms inthe Single-Input Single-Output systems (SISO). Through simulation, we verify thefast convergence of RENYI’s entropy algorithm, and find out that it needoptimization to be more robust.●Similarly, we do the same analysis in the Multi-Input Multi-Output system (MIMO) s.Not consider the issue of blind separation; we studied the improved CMA in MIMO.What’s more, we get a new algorithm in MIMO based on RENYI’s entropy. Aftercomputer simulation we find its good convergence speed compared to MIMO-CMA,which shows a good prospect for future study.Key words: blind equalization, Bussgang, CMA, RENYI’s entropy目录摘要 (I)第一章引言 (1)研究背景 (1)盲均衡系统理论基础 (2)发射信号 (2)信道冲击响应和噪声 (3)信道输出序列 (3)均衡器抽头系数 (3)算法性能描述 (3)第二章SISO系统中的盲均衡算法 (4)2.1B USSGANG类盲均衡算法 (4)典型的B USSGANG盲均衡算法:CMA (6)2.2.1 CMA算法模型 (6)2.2.2 CMA算法仿真与仿真结果分析 (7)基于RENYI熵的盲均衡算法 (9)2.3.1 RENYI信息熵理论 (9)2.3.2 Parzen 窗估计法 (10)2.3.3 RENYI熵盲均衡算法建模 (12)2.3.4 RENYI熵盲均衡仿真与结果分析 (13)2.3.5 RENYI熵算法与CMA算法比较 (16)2.4QAM信号的盲均衡 (19)小结 (22)第三章MIMO系统中的盲均衡算法 (22)多入多出系统(MIMO)理论基础 (22)3.2MIMO盲均衡模型建立 (23)3.3MIMO-CMA算法 (25)3.3.1 MIMO-CMA算法模型建立 (25)算法仿真与结果分析 (26)3.4MIMO-RENYI算法 (28)算法模型建立 (28)3.4.2 MIMO-RENYI算法仿真与结果分析 (28)3.4.3 MIMO-CMA与MIMO-RENYI算法性能比较 (30)小结 (31)第四章结束语 (31)参考文献 (33)致谢 (34)第一章引言1.1 研究背景在现代通信系统中,由于有限带宽通信信道的失真和畸变引起的码间干扰(ISI)和信道间干扰(ICI)是影响通信质量的重要因素。

基于MIMO系统的MDCMA盲均衡算法

基于MIMO系统的MDCMA盲均衡算法
s/e ip tma e  ̄c ie y ma u t , e rs S n an n u y b ev d b ny 0 s r p e sI Ia d MUI a d r ̄ v ralip , n e o e l n u ̄ wh n o l mf d M e ny s i c s
A o i e t e e i n e r r c n t n o u u m d f d d h r d sg r o o s a t m d l s i i a g r t m o I O y t m s l o ih f rM M s se
J i ID ,MA i h Hu. u,L n z IMig
s# er r ln i ro ;b i d ̄u c r e ̄p r f n aa o i
0 引言
多输人多输出( I0 系统中, MM ) 如何分离不 同的 源信 号 以及如 何 补偿 接收 信号 畸变是 目前 的研究 热 点 。盲均 衡可 以抑制 II码 间 干扰 ) M I多 用 户 S( 和 U( 干扰 )补 偿 信 号 畸 变 。 而 且 盲 均 衡 不 需 要 训 练 序 , 列, 相对 于 自适 应 均 衡技 术 , 加 节省 资 源 , 而 提 更 从 高 了频 谱利 用率 。 目前 , 各 种 盲 算 法 中应 用 最 广 泛 的 是 G d ̄ 在 oa 提 出的恒 模算 法 ( M ) 】 C A n。但是 恒 模算 法 直 接 用 到
维普资讯
2 0 年第7 08 期
中图分类号 :N 1 T91 文献标识码 : A 文章 编号 :09—25 (0 8o —03 —0 10 52 2o )7 05 2
基 于 MI 系统 的 MD MA盲 均 衡 算 法 MO C

改进CMA盲均衡算法的研究与分析

改进CMA盲均衡算法的研究与分析
GAO Lja Z i n , HA0 Ho gi, QI e u nl AN L i 。
( .C mp n fP s rd aeM a a e n ,t eAc d myo up n o 1 o a y o o t a u t n g me t h a e f g Eq ime t mma d & Te h o o y e ig 1 1 1 ,C ia C n c n l g ,B in 0 4 6 hn ; j
维普资讯
20 0 6年
1 2月
装 备 指 挥 技 术 学 院 学 报
J u n lo h a e fEq ime tC mma d & Te h oo y o r a fteAc d my o up n o n c n lg
De e e c mb r
中图分 类号 : 1 TN 9 1 文 献标 识码 :A
St d n ay i o d f d Bl d Eq a a i n Al o i m fCMA u y a d An lss f ra Mo i e u l t g r h o i i n i o z t
3 e igAe o p c n rl e te e ig 1 2 0 C ia .B in r s a eCo t n r ,B i n 0 2 6, h n ) j oC j
A sr c :Atp e e t o sa tm o u u lo ih ( bt t a r s n ,c n tn d l sag rt m CM A) i wi ey u e s d l s d,b ti h sd s d a t— u t a ia v n a g st a h o v r e c p e sso a dt ersd a r o a g . I r e o s e d u h o v r e h tt ec n eg n es e d i lw n h e i u l r ri lr e n o d rt p e pt ec n e — e s g n ep o e s hsag rt m a es th o e oad cso - ie td e u l ai nag rt m n et e e c r c s ,t i lo i h m yb wi v rt eiin dr c e q ai t l o ih o c h c z o er rlv l sr a o a l w.S o i e lo ih i p o o e a e n t eCM A. B t h o ei ro e e e s n b yl i o o am df dag rt m s r p s db s d o h i y ist e r t— c la ay i ,i i s o e h ti h st ec a a t rsiso a tc n e g n es e da ds l rsd a l a n lss t s h w d t a t a h h r ce itc ffs o v r e c p e n ma l e iu l " e r r ti r v d t a h df d ag rt m sv l ysmu ai g t et l o ih sn a lb o .I sp o e h tt emo i e l o i i h i ai b i lt h wo ag rt ms u ig M ta . d n

基于锁相环的CMA盲均衡器设计

基于锁相环的CMA盲均衡器设计

基于锁相环的CMA盲均衡器设计作者:童本锋来源:《中国新通信》2015年第13期【摘要】论文主要系统的分析了盲均衡的基本理论、算法形式,以及锁相环的基本原理、算法形式。

重点分析了锁相环技术在常数模算法中的运用。

对常数模算法进行了理论推导,分析了常数模算法的收敛性能,通过仿真实验,指出了迭代步长、相位、对CMA算法的收敛性能的影响。

【关键字】盲均衡常模算法锁相环载波相位恢复一、引言在通信系统中,由于信道的不理想,信号在经过信道时会发生多种畸变,其中一种非常普遍的畸变就是码间干扰,会使信号相位发生偏转,很大程度上会降低数据传输的可靠性和数据传输的速率。

为了克服常数模算法由复信道引起的相位旋转,收敛速度慢及稳态误差大等缺点,提出结合锁相环的盲均衡算法。

该算法所使用的是一阶锁相环用于追踪常相位旋转,利用锁相环对相位旋转进行补偿,从而纠正常相位旋转、加快算法的收敛速度、减小稳态误差。

因此,深入研究锁相环技术在盲均衡中的运用具有非常重要的理论意义和使用价值。

二、盲均衡技术2.1 盲均衡的原理盲均衡器是一种自适应技术,它不需要训练序列就可以完成信道的均衡。

该均衡器执行数据均衡无需参考的信号,因此,这种盲均衡器被广泛使用。

但盲均衡依赖于信号的星座图的结构和统计模值的特性。

图1为盲均衡的原理图。

三、基于锁相环的常数模算法的实现及其实验结果分析3.1 常数模算法(CMA)概述常数模算法是当参数P=2时的Godard算法,是Bussgang类盲均衡算法[14]中最常用的一种。

CMA算法的优点是不需要发送训练序列,计算容易,易于实现,收敛性能好。

在实际中,常数模算法的应用非常广泛。

3.2基于锁相环的常数模算法在上节中介绍了常数模算法的推导,但是由于CMA只与幅度有关,对相位信息不敏感,从而降低了CMA的收敛速度。

因此提出了基于CMA和PLL相结合盲均衡算法[17],加快收敛速度,减小稳态均方误差及纠正相位误差。

本文是建立在信号通过信道后,通过调节CMA 盲均衡器的抽头系数找到均衡器抽头系数的最优值,使得信号稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CMA盲均衡算法研究1.盲均衡概述1.1 均衡器分类均衡是通信系统中的一项重要技术,不仅应用于模拟通信,也应用于数字通信。

在数字通信中,由于信道的特性变化,会造成码间干扰。

通过均衡,可以补偿信道特性的变化,减小或消除码间干扰。

均衡通常在接收机完成。

均衡器分为两种方式,一是频域均衡,二是时域均衡。

频域均衡是使整个系统的频率传递函数满足无失真传递的条件。

时域均衡是直接从时间响应出发,使整个系统的冲激响应满足无码间干扰的条件。

频域均衡的条件是比较严格的,而满足奈奎斯特整形定理的要求,即仅仅在判决点满足无码间干扰的条件相对宽松一些。

所以在数字通信中,一般采用时域均衡。

时域均衡器分为两大类,一是线性均衡器,二是非线性均衡器。

图1.1表示了均衡器的分类框图。

图1.1 均衡器的结构分类1.2 盲均衡技术尽管理论上存在理想的基带传输特性,但是在实际应用由于中无线信道的时变特性,在抽样时刻上总是存在一定的码间干扰,从而导致系统性能的下降,误码率显著增大。

理论和实践都表明,在基带系统中插入一种滤波器能减少码间干扰的影响。

这种起补偿作用的滤波器统称为均衡器。

在实际应用中有许多问题不能用固定系数的均衡器解决,因为我们没有充足的信息去设计固定系数的数字滤波器,或设计规则会在滤波器正常运行时改变。

绝大多数这些应用都可以用特殊的智能滤波器,即常说的自适应滤波器来成功解决。

自适应滤波器显著特征是:它在工作过程中不需要用户的干预就能改变响应,进而改善性能。

系数可变的自适应均衡器可以分为两类:基于导频的估计方法和盲估计方法。

第一种方法利用数据序列中的已知数据(可以是离散的或连续的)得到导频位置处的信道响应,然后利用有关内差算法得到整个频域信道的响应,这种方法简单,运算量小,但需要发送已知的导频信息,降低了系统效率。

而盲估计和跟踪方法利用了接收数据的统计特性来实现信道的估计和跟踪,如利用子空间分解算法等,相对于基于导频的估计和跟踪算法,盲算法提高了系统效率,但极大地增加了运算量。

盲均衡是一种在信道畸变相当严重的条件下,不借助训练序列,仅根据接受到的信号序列本身对信道进行自适应均衡的方法。

与普通的均衡器相比,盲均衡具有收敛域大,应用范围广的特点。

1.3 盲均衡算法与分类1.3.1 盲均衡概述含有盲均衡功能的接收系统如图所示。

其中信道包括收发部分的滤波器以及空间传播媒体,其时变冲激响应序列{}n h 未知。

信道输出信号形式为:,2,1,0),()()()()(±±=+*=+-=∑∞-∞=n n n n s hn n k n s h n r nk k为了保证无噪信道输出()()n u n h s n =*方差不变,通常采用自动增益控制技术,使得21k k h ∞=-∞=∑。

令{}i w 为一个理想逆滤波器的冲激响应序列,他与信道冲激响应序列{}n h 之间满足逆关系,即n i n i i w h δ∞-=-∞=∑ 这样,在发射信号通过信道传输后,首先接入这个逆滤波器,其输出为(先不考虑噪声因素):()()()()i i l i l i i l l w r n i s n l w h s n l s n δ∞∞∞∞-=-∞=-∞=-∞=-∞-=-=-=∑∑∑∑。

在实际应用中,理想逆滤波器}{i w 通常采用长度为2L+1的有限抽头,这样滤波器输出为ˆ()()Li i Ly n w s n i =-=-∑ 这就是众所周知的用横向滤波器实现逆滤波器的形式。

由于逆滤波器截断,必然会带来残余码间干扰,进一步分析可知:()()()y n s n v n =+,其中ˆˆ()[()()](),0i i i i v n w n w n s n i w i L ∞=-∞=--=∀>∑ 称为卷积噪声,也就是残余码间干扰。

以此作为误差信号去调节逆滤波器就得到盲均衡器。

1.3.2 盲均衡算法分类考虑一个有2N+1抽头的线性均衡器如下图所示。

其中Nmin i i NZn Cy -=-=∑,式中m 和n 取整数,n y 为第NT 时刻均衡器的输出参数,mi C 为第m 次高速后第i 个抽头的增益系数,T 为发送端信号的符号周期。

算法的一般形式为10()m m i i n i n C C y f Z +-=-∂,这里0∂是迭代步长,f()是起误差控制的函数,其选取关系到算法的收敛性。

图1.2 整数抽头均衡盲均衡器Sato 提出的盲均衡算法表达式为().()n n n f Z Z r sign Z =-,其中2()/||n n r E a E a =; Godard 给出的盲均衡算法表达式为2()||(||)K K n n n n K f Z Z Z Z R -=-,其中2||/||K k K n n R E a E a =; Serra 给出的盲均衡算法表达式为()||.().k n n n K n f Z Z sign Z R Z =-,其中12||/()K K n n R E a E a +=; Benvenisete-Goursat 提出的均衡算法表达式为12()||n n n n f Z K e K e e =+,其中n n n e Z a =-;以上各种算法的盲均衡器总的要求是快速跟踪信道的变化,快速收敛,且收敛以后的剩余误差要小。

2. CMA算法2.1 CMA算法的原理利用自适应滤波算法,合理的人工制造一个“期望响应”来代替缺失的“期望响应”。

其实,人工制造一个期望响应的思想,在非盲均衡器的应用中已经被采用,即训练序列,但训练序列只在初始系统训练阶段存在,一旦训练结束,训练序列不再存在,通信系统将传输用户的有用数据,期望响应也不再存在,自适应滤波器切换成一个固定系数滤波器,对于平稳信道来讲这样做是可以接受的,但对于性能不稳定的信道,接收机性能将会显著下降。

对原理加以改进,在训练序列传输结束后,通过人造一个期望响应,使得自适应滤波过程能够继续,以保证自适应均衡器跟踪信道的变换。

人造“期望响应”的方法是,在训练结束后,将均衡器输出送入判决器,判决器的输出作为期望响应,与滤波器输出相减构成误差量用于调整自适应均衡器系数。

由于判决器运算是一种非线性运算,因此训练结束后,利用人造期望响应的自适应均衡算法不再是线性自适应滤波器,而是非线性自适应滤波器。

下图表示了CMA盲均衡算法的框图。

图2.1 CMA盲均衡算法框图在通信系统中,角度调制是常用的调制形式,它包括频率调制(FM )和相位调制(PM ),这些调制信号满足包络是常数的性质,利用这个性质,构造一类盲自适应均衡算法,即CMA 算法。

传输信号满足恒模性,即22|()|s n R ,因为接收到的信号经过信道引起了畸变并且混入了干扰噪声,已不满足恒模性,当接收到的信号通过均衡器后,如果性能得到改善,误差函数会下降,理想的均衡器是误差函数下降到零。

定义使(y(n))最小,利用LMS 算法的基本思路,可以导出CAM 算法如下对于复信号和复系统,权更新算法为2.2 CMA 算法的MATLAB 程序实现先以4QAM 调制为例。

第一步:初始化。

取1000个数据,调制方式为4QAM ,从星座可知,其模为常数,步长为0.02,信道冲激响应随机生成,为复信道。

第二步:生成信道噪声。

第三步:通过CMA 均衡器处理。

第四步:计算SER 。

程序如下:% QAM的CMA算法实现% 初始化T=1000;dB_max=30;dB_inter=3;N=5;Lh=5;Ap=4;h=randn(Ap,Lh+1)+sqrt(-1)*randn(Ap,Lh+1); for i=1:Ap, h(i,:)=h(i,:)/norm(h(i,:));ends=round(rand(1,T))*2-1;s=s+sqrt(-1)*(round(rand(1,T))*2-1);SER=zeros(1,dB_max);for dB=0:dB_inter:dB_max% 产生信道噪声x=zeros(Ap,T);SNR=zeros(1,Ap);for i=1:Apx(i,:)=filter(h(i,:),1,s);vn=randn(1,T)+sqrt(-1)*randn(1,T);vn=vn/norm(vn)*10^(-dB/20)*norm(x(i,:));SNR(i)=20*log10(norm(x(i,:))/norm(vn));x(i,:)=x(i,:)+vn;end% CMA盲均衡器Lp=T-N;X=zeros((N+1)*Ap,Lp);for i=1:Lpfor j=1:ApX((j-1)*(N+1)+1:j*(N+1),i)=x(j, i+N:-1:i).';endende=zeros(1,Lp);f=zeros((N+1)*Ap,1); f(N*Ap/2+3)=1;R2=2;mu=0.001;for i=1:Lpe(i)=abs(f'*X(:,i))^2-R2;f=f-mu*2*e(i)*X(:,i)*X(:,i)'*f;endsb=f'*X;% 计算SERH=zeros((N+1)*Ap,N+Lh+1); temp=0;for j=1:Apfor i=1:N+1temp=temp+1;H(temp,i:i+Lh)=h(j,:);endendfh=f'*H;temp=0;temp=find(abs(fh)==max(abs(fh)));sb1=zeros(1,size(sb));sb1=sb./(fh(temp));sb1=sign(real(sb1))+sqrt(-1)*sign(imag(sb1));start=N+1-temp;sb2=sb1(10:length(sb1))-s(start+10:start+length(sb1)); SER(dB+1)=length(find(sb2~=0))/length(sb2) ;end% 画图if 1figure(1);subplot(221),plot(s,'o');grid,title('Transmitted symbols'); xlabel('Real'),ylabel('Image') axis([-2 2 -2 2])subplot(222),plot(x,'o');grid, title('Received samples'); xlabel('Real'), ylabel('Image')subplot(223),plot(sb,'o');grid, title('Equalized symbols'), xlabel('Real'), ylabel('Image') figure(2);plot(abs(e));grid, title('Convergence'), xlabel('n'), ylabel('Error e(n)')endfigure(3);i=0:dB_inter:dB_max;semilogy(i,SER(i+1),'gp-');grid;legend('SGDCMA');ylabel('误码率');xlabel('信噪比dB');figure(4);subplot(221),h=reshape(h,1,(Ap*(Lh+1)));ii=1:(N+1)*Ap;stem(ii,h(ii));grid,title('channel impluse response');subplot(222),ii=1:(N+1)*Ap;stem(ii,f(ii));grid,title('equalization coefficience '); 生成的星座对比图如下:从这张对比图可以看出,当采用CMA盲均衡以后,盲均衡输出汇聚到四个星座点上,这样在判决的时候将极大提高判决准确率。

相关文档
最新文档