高中数学选修4-2矩阵与变换教案 二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换

合集下载

最新-人教版高中数学高中数学选修4-2《矩阵与变换》教学思考与备考建议 精品

最新-人教版高中数学高中数学选修4-2《矩阵与变换》教学思考与备考建议 精品
' ' 在矩阵 A 对应的变换下变为点 P' ( x0 , y0 ),则有
/ x0 2 0 x0 / y 0 1 y0 ,即 0
' x0 2 x0 ' ,所以 y 0 y0
' x0 x0 2 y y' 0 0
4、教学建议
(1)重视展现基本概念、重要结论
的发生发展过程
(2)强调把矩阵看作线性变换的本质,
强调几何直观
(3)强调数学思想方法的渗透和运用
(4)处理好五大关系 基础与拓展
局部与整体

具体与抽象 操作与理解
总结与提高
三、备考建议
1.准确把握教学要求,落实基础 2.加强相关知识的联系性,强 调数学思想方法 3.严格控制本专题内容的教学 难度
《矩阵与变换》
教学思考与备考建议
一、背景分析
1、浙江省 2、其他省份
(1)广东省 (2)海南、宁夏 (3)山东省
2007、2008年考试内容分析:
省区 文理 理 选修系列4
广东
填空题
山东 文
1. 几何证明选讲 2. 不等式选讲 3. 坐标系与参数方程
1. 坐标系与参数方程 2. 几何证明选讲
理 文
与参数方程》、4-5《不等式选讲》这4个专题的
内容(考生只需选考其中两个专题)。
2008年高考江苏数学试题 在平面直角坐标系中,设椭圆 4 x 2
y 1
2
2 0 在矩阵 A 0 1 对应的变换下得到曲线 F, 求 F 的方程.
解:设 P( x0 , y 0 ) 是椭圆上任意一点,点 P( x0 , y 0 )

2019-2020年高中数学 二阶矩阵教案 苏教版选修4-2

2019-2020年高中数学 二阶矩阵教案 苏教版选修4-2

2019-2020年高中数学 二阶矩阵教案 苏教版选修4-2
教学目标:了解二阶行列式的定义,会用二阶行列式求逆矩阵和解方程组;能用变换与
映射的观点认识解线性方程组的意义;会用系数矩阵的逆矩阵求解方程组;会通过具体的系数矩阵,从几何上说明线性方程组解的存在性、唯一性。

教学重点、难点:会用二阶行列式求逆矩阵和解方程组;会用系数矩阵的逆矩阵求解方
程组
教学过程:
一、问题情境:
1、用消元法求解二元一次方程组 ,当ad -bc ≠0时,方程组的解为什么?
二、学生活动:
1、二阶行列式:
说明:
三、知识建构:
四、知识运用:
231014560x y x y +-=⎧⎨+-=⎩
例:利用行列式解方程组
51273A ⎡⎤=⎢⎥⎣⎦
例:利用行列式的方法求解矩阵的逆矩阵。

例3、利用行列式求解二元一次方程组
13422
y y x ⎧+=⎪⎨⎪=⎩例:试从几何变换的角度说明解的存在性和唯一性。

22AX B A B ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦
⎣⎦10例5:已知二元一次方程组=,=,,10试从几何变换角度研究方程组解的情况。

五、回顾反思:
知识: 思想方法:
六、作业布置:书P
七、教后反思:了解二阶行列式的定义,会用二阶行列式求逆矩阵和解方程组;能用变换
与映射的观点认识解线性方程组的意义;会用系数矩阵的逆矩阵求解方程组;会通过具体的系数矩阵,从几何上说明线性方程组解的存在性、唯一性。

教学重点、难点:会用二阶行列式求逆矩阵和解方程组;会用系数矩阵的逆矩阵求解方
程组
教学过程:。

一轮复习配套讲义:选修4-2 矩阵与变换.pdf

一轮复习配套讲义:选修4-2 矩阵与变换.pdf

选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。

苏教版高中数学选修4-2 2.1.2二阶矩阵和平面列向量的乘法_学案1

苏教版高中数学选修4-2 2.1.2二阶矩阵和平面列向量的乘法_学案1

二阶矩阵与平面列向量的乘法【学习目标】1. 掌握二阶矩阵与列向量的乘法规则, 并了解其现实背景。

2. 理解变换的含义了解矩阵与变换的联系。

【学习过程】一、课前预习:1.在某次歌唱比赛中, 甲的初赛和复赛的成绩用A=[80 90]表示, 乙的初赛和复赛成绩用B=[60 85]表示, C=0.40.6⎡⎤⎢⎥⎣⎦表示初赛和复赛成绩在比赛总分中所占的比重, 那么如何用矩阵的形式表示甲、乙的最后成绩呢?2.行矩阵和列矩阵的乘法规则3.二阶矩阵与列向量的乘法规则几何意义4.变换二、数学运用例1、计算: (1)2-⎡⎢⎣21⎤⎥⎦32⎡⎤⎢⎥-⎣⎦(2)1⎡⎢⎣1⎤⎥⎦1020⎡⎤⎢⎥⎣⎦(3)2⎡⎢⎣1⎤⎥⎦xy⎡⎤⎢⎥⎣⎦例2、求在矩阵30-⎡⎢⎣ 25⎤⎥⎦对应的变换作用下得到点(3 , 2)的平面上的点P 的坐标.例3、(1)已知变换13x x y y '⎡⎤⎡⎤⎡→=⎢⎥⎢⎥⎢'⎣⎦⎣⎦⎣ 42⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦, 试将它写成坐标变换的形式; (2)已知变换x y ⎡⎤⎢⎥⎣⎦→x y '⎡⎤⎢⎥'⎣⎦3x y y -⎡⎤=⎢⎥⎣⎦, 试将它写成矩阵乘法的形式.三、课堂练习:1、⎥⎦⎤⎢⎣⎡4321 ⎥⎦⎤⎢⎣⎡-14=2、设A =⎥⎦⎤⎢⎣⎡4321,B =⎥⎦⎤⎢⎣⎡724k ,若AB =BA ,则k = .3、在矩阵⎥⎦⎤⎢⎣⎡1201对应的变换下,点A (2,1)将会转换成 .4、已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-,则实数a 的值是四、课堂小结1. 行矩阵和列矩阵的乘法规则2. 二阶矩阵与列向量的乘法规则。

苏教版高中数学高二选修4-2二阶矩阵与平面列向量的乘法

苏教版高中数学高二选修4-2二阶矩阵与平面列向量的乘法

选修4-2矩阵与变换 2.1.2 二阶矩阵与平面列向量的乘法编写人: 编号:002学习目标1、 掌握二阶矩阵与平面列向量的乘法规则。

2、 理解矩阵对应着向量集合到向量集合的映射。

学习过程:一、预习:(一)阅读教材,解决下列问题:规定比赛的最后成绩由初赛和复赛综合裁定,其中初赛占40%,复赛占60%.则甲和乙的综合成绩分别是多少?(二)一般地,我们规定行矩阵[a 11 a 12]与列矩阵⎥⎦⎤⎢⎣⎡2111b b 的乘法规则为:二阶矩阵⎥⎦⎤⎢⎣⎡22211211a a a a 与列向量⎥⎦⎤⎢⎣⎡00y x 的乘法规则为:(三)一般地,对于 则称T 为一个变换。

简记为:或练习1、计算:(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡121011 (2)⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡1201102、已知平面上一个正方形ABCD (顺时针)的四个顶点用矩阵表示为⎥⎦⎤⎢⎣⎡d c b a 4000,求a ,b ,c ,d 的值及正方形ABCD 的面积.3、已知变换⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x y x y x y x 252,试将它写成矩阵的乘法形式.二、课堂训练:例1.计算⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x 1002思考:二阶矩阵M 与列向量的乘法⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y x M y x 和函数)(x f x →的定义有什么异同?例2.(1)已知变换⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y x y x y x 2341'',试将它写成坐标变换的形式; (2)已知变换⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y y x y x y x 3'',试将它写成矩阵乘法的形式;例3.已知变换⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x y x y x y x 252,试将它写成矩阵的乘法形式.例4. 已知矩阵[])(x f A =,[]x x B -=1,⎥⎦⎤⎢⎣⎡=a 2x C ,若A=BC ,求函数)x (f 在[1,2] 上的最小值.三、课后巩固:1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y xB 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x 2、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 3、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________ 4、设矩阵A 为二阶矩阵,且规定其元素,0=+ji ij a a i=1,2,j=1,2,且2a a 2112=-,试求A.5. 若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),求点A 的坐标.6、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.。

人教版高中选修4-2二二阶矩阵与平面向量的乘法课程设计

人教版高中选修4-2二二阶矩阵与平面向量的乘法课程设计

人教版高中选修4-2二二阶矩阵与平面向量的乘法课程设计一、教学目标通过该课程的学习,学生应该能够:1.了解矩阵与向量的基本概念,掌握矩阵和向量之间的基本运算法则;2.明白矩阵乘法的定义和运算法则,能够运用矩阵乘法解决实际问题;3.熟悉平面向量与矩阵的乘法,能够举一反三地运用到类似的计算中。

二、教学重点1.矩阵乘法;2.平面向量与矩阵的乘法。

三、教学难点1.矩阵与向量的基本运算法则;2.矩阵乘法的计算方法;3.平面向量与矩阵的乘法,特别是理解矩阵乘法运算的几何意义。

四、教学内容及时间安排本课程主要包括以下内容:1. 矩阵与向量的基本概念通过实际生活中的例子,引出矩阵和向量的基本概念,探究矩阵和向量之间的内在联系。

时间安排:1课时。

2. 矩阵和向量的基本运算法则介绍矩阵和向量之间的基本运算法则,包括加减乘除、数乘、转置等。

注重通过实际计算加深学生对这些运算法则的理解,为后续的矩阵乘法打好基础。

时间安排:2课时。

3. 矩阵乘法介绍矩阵乘法的定义和运算法则,包括矩阵乘法的代数意义和几何意义。

通过实例进行讲解,帮助学生理解矩阵乘法的本质,做到心中有数。

时间安排:2课时。

4. 平面向量与矩阵的乘法介绍平面向量与矩阵的乘法,通过实例进行讲解,让学生理解平面向量与矩阵的乘法的几何意义,加深学生对矩阵乘法运算几何意义的理解。

时间安排:2课时。

五、教学方法1.通过大量例题和实例进行讲解,注重理论与实践相结合,帮助学生加深对知识点的理解;2.给予学生一定的自主探究空间,引导学生根据所学知识独立思考和解决问题;3.使用多媒体手段辅助教学,如视频、PPT、动画等,使教学内容更加生动直观。

六、教学评估1.课堂练习:在课堂上布置一定数量的习题,力求贴近学生的实际情况,检验学生对所学知识的理解情况;2.课后作业:布置一定数量的练习题,督促学生复习和巩固所学知识;3.小组讨论:在特定的时间,对于某一个难度较高的题目,学生可结合自己的思考成果,结合小组内的思路互相讨论,探讨解决方法,既增加了思维的碰撞,同时又有效激发学生的创造能力和团队合作精神,提升学生的参与积极性。

高二数学选修4-2~2.3 变换的复合与矩阵的乘法

高二数学选修4-2~2.3 变换的复合与矩阵的乘法

分析:
3 4 后天的天气可用 1 4 即后天晴的概率为 1 13 161 3 24 288 来刻画, 2 11 127 3 24 288 ,阴的概率为 127 288 。
(1)求MN,NM (2)求 M (3)求 M
2 n
建构数学
3、三种运算律对比
例题与练习:
• 例2、已知梯形 ABCD, A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于 x轴的反射变换,再将所得图形绕原点逆时 针旋转90度, • 求连续两次变换所对应的变换矩阵M;
• 例2、已知梯形 ABCD, A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于 x轴的反射变换,再将所得图形绕原点逆时 针旋转90度, • 求连续两次变换所对应的变换矩阵M;
x x 2 x : y y y
集中记忆几种常见的平面变换:
1 0 单位矩阵E 1、恒等变换: 0 1 1 0 M 2、伸压变换: 1 沿y轴方向伸压,x轴上的点不动。 0 k
练一练 如图示:在变换T作用下,正方形ABCD变成了矩形 A′B′C′D′,其中A,B,C,D的象点分别为A′,B′,C′,D′,则 变换T对应的矩阵M为________;
161 288
注意:转移矩阵每列的元素的和应该为1,否则
做乘法时,容易出问题.
分析:
今天 明天 晴 M= 阴 晴 3 4 1 4 阴 1 3 2 3
分析:
清晨的天气预报今天阴的概率为 1 2 ,则今天晴的概率为 1 2 , 1 2 于是今天的天气可用N 来刻画,因此明天的天气可用 1 2 3 4 1 4 率为 1 1 13 13 3 2 24 ,阴的概 来刻画,即明天晴的概率为 2 1 24 11 24 3 2 11 24 。

4-2矩阵教案

4-2矩阵教案

§2.1.1矩阵的概念教学目标:知识与技能:1.掌握矩阵的概念以及基本组成的含义(行、列、元素)2.掌握零矩阵、行矩阵、列矩阵、矩阵相等的概念.3.尝试将矩阵与生活中的问题联系起来, 用矩阵表示丰富的问题,体会矩阵的现实意义.过程与方法:从具体的实例开始,通过具体的实例让学生认识到,某些几何变换可以用矩阵来表示,丰富学生对矩阵几何意义的理解,并引导学生用映射的观点来认识矩阵、解线性方程组情感、态度与价值观: 体会代数与几何的有机结合,突出数形结合的重要思想 教学重点:矩阵的概念以及基本组成的含义 教学难点:矩阵的概念以及基本组成的含义 教学过程: 一、问题情境:设O (0, 0),P (2, 3),则向量OP → = (2, 3),将OP →的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 32(1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:(2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示:A B C D E28英寸 1 3 0 1 2 30英寸 5 8 6 1 2 32英寸 2 3 5 6 0 34英寸 0 1 1 0 3 3.图——矩阵2 32 3⎣⎢⎡⎦⎥⎤80 90 86 88二、建构数学 矩阵:记号:A ,B ,C ,…或(a ij )(其中i,j 分别元素a ij所在的行和列) 要素:行——列——元素矩阵相等 行列数目相等并且对应元素相等。

特别:(1)2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵 (2)零矩阵(3)行矩阵:[a 11,a 12]列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 ,一般用 , 等表示。

(4)行向量与列向量三、教学运用例1、用矩阵表示图中的△ABC , 其中A(-1 , 0) , B(0 , 2) , C(2 , 0) .思考: 如果用矩阵M=00⎡⎢⎣ 12 32 40⎤⎥⎦表示平面中的图形, 那么该图形有什么几何特征?例2、某种水果的产地为A 1 , A 2 , 销地为B 1 , B 2 , 请用矩阵表示产地A i 运到销地B j 的水果数量(a ij ), 其中i=1 , 2 , j=1 , 2 .0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0A B C 0 3 1 3 0 0 1 0 2例3、用矩阵表示下列方程组中的未知量的系数.(1)4736x y x y +=⎧⎨-+=-⎩ (2)3212376x y z x y z ++=-⎧⎨-+=⎩例4、已知A=4x⎡⎢⎣32⎤⎥-⎦, B=1z⎡⎢⎣2y ⎤⎥-⎦, 若A=B , 试求x , y , z .四、课堂小结 五、课堂练习:1.书P 10 1 , 2 , 42.设A=2y ⎡⎢⎣ 3x ⎤⎥⎦, B=2m n x y +⎡⎢-⎣ x y m n +⎤⎥-⎦, 若A=B , 试求x , y , m , n 的值.六、回顾反思: 七、课外作业:1.用矩阵表示图中的△ABC, 其中A(2 , 3) , B(-4, 6), C(5 , -3).2.在学校组织的数学智力竞赛中, 甲、乙、丙三位同学获得的成绩分别为: 甲95分, 乙99分, 丙89分, 如果分别用1 , 2 , 3表示甲、乙、丙三位同学, 试用矩阵表示各位同学的得分情况.3.设A=1y⎡⎢⎣3x⎤⎥⎦, B=2m nx y-⎡⎢-⎣x ym n+⎤⎥+⎦, 若A=B , 试求x , y , m , n .如果分别用1 , 2 , 3 , 4表示太平洋、大西洋、印度洋、北冰洋, 试用矩阵表示各大洋的面积.5.请设计一个可用矩阵12⎡⎢⎢⎢⎣102030⎤⎥⎥⎥⎦来表示的实际问题.§2.1.2二阶矩阵与平面列向量的乘法-教学目标:知识与技能:1.掌握二阶矩阵与列向量的乘法规则, 并了解其现实背景.2.理解变换的含义, 了解变换与矩阵之间的联系.3.能够熟练进行由矩阵确定的变换过程与方法:从具体的实例开始,通过具体的实例让学生认识到,某些几何变换可以用矩阵来表示,丰富学生对矩阵几何意义的理解,并引导学生用映射的观点来认识矩阵、解线性方程组情感、态度与价值观:体会代数与几何的有机结合,突出数形结合的重要思想教学重点:二阶矩阵与列向量的乘法规则教学难点:二阶矩阵与列向量的乘法规则教学过程:一、问题情境:在某次歌唱比赛中, 甲的初赛和复赛的成绩用A=[80 90]表示, 乙的初赛和复赛成绩用B=[60 85]表示, C=0.40.6⎡⎤⎢⎥⎣⎦表示初赛和复赛成绩在比赛总分中所占的比重, 那么如何用矩阵的形式表示甲、乙的最后成绩呢?二、建构数学1.行矩阵和列矩阵的乘法规则2.二阶矩阵与列向量的乘法规则3.变换三、教学运用例1、计算: (1)2-⎡⎢⎣21⎤⎥⎦32⎡⎤⎢⎥-⎣⎦(2)1⎡⎢⎣1⎤⎥⎦1020⎡⎤⎢⎥⎣⎦(3)2⎡⎢⎣1⎤⎥⎦xy⎡⎤⎢⎥⎣⎦例2、求在矩阵3-⎡⎢⎣25⎤⎥⎦对应的变换作用下得到点(3 , 2)的平面上的点P的坐标.例3、(1)已知变换13x xy y'⎡⎤⎡⎤⎡→=⎢⎥⎢⎥⎢'⎣⎦⎣⎦⎣42⎤⎥⎦xy⎡⎤⎢⎥⎣⎦, 试将它写成坐标变换的形式;(2)已知变换xy⎡⎤⎢⎥⎣⎦→xy'⎡⎤⎢⎥'⎣⎦3x yy-⎡⎤=⎢⎥⎣⎦, 试将它写成矩阵乘法的形式.例4、求△ABC在矩阵1⎡⎢⎣21⎤⎥-⎦对应的变换作用下得到的几何图形, 其中A(1 ,2) , B(0 , 3) , C(2 , 4).例5、求直线y=2x在矩阵21⎡⎢⎣13-⎤⎥⎦作用下变换得到的图形.四、课堂小结五、课堂练习:六、回顾反思:七、课外作业:1.计算(1)57⎡⎢⎣98-⎤⎥⎦32⎡⎤⎢⎥⎣⎦(2)1⎡⎢⎣1-⎤⎥⎦41⎡⎤⎢⎥⎣⎦2. (1)已知xy⎡⎤⎢⎥⎣⎦→1xy'⎡⎤⎡=⎢⎥⎢'⎣⎦⎣32xy⎤⎡⎤⎥⎢⎥⎦⎣⎦, 试将它写成坐标变换形式;(2)已知xy⎡⎤⎢⎥⎣⎦→2345x x yy x y'+⎡⎤⎡⎤=⎢⎥⎢⎥'+⎣⎦⎣⎦, 试将它写成矩阵的乘法形式.3. (1)点A(5 , 7)在矩阵13⎡⎢⎣24⎤⎥⎦对应的变换作用下得到的点为________ ;(2)在矩阵34⎡⎢⎣15⎤⎥-⎦对应的变换作用下得到点(19 , -19)的平面上点P的坐标为.4.已知矩阵P=11203⎡⎤-⎢⎥⎢⎥⎣⎦, Q=230-⎡⎤⎢⎥⎣⎦且Px=Q , 求矩阵x .5.线段AB , A(-2 , 3) , B(1 , -4)在矩阵1⎡⎢⎣1⎤⎥⎦作用下变换成何种图形? 与原线段有何区别?6.求直线x+y=1在矩阵12⎡⎢⎣1⎤⎥-⎦作用下变换所得图形.§2.2几种常见的平面变换(1)-恒等变换、伸压变换教学目标:知识与技能:1.掌握恒等变换矩阵和伸压变换矩阵的特点.2.熟练运用恒等变换和伸压变换进行平面图形的变换过程与方法:借助立体几何图形的三视图来研究平面图形的几何变换,让学生感受具体到抽象的过程情感、态度与价值观:提供自主探索的空间,通过研究实例,学会从实际出发探究问题,总结过程,得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。

一、二阶矩阵 1.矩阵的概念
①OP → = (2, 3),将OP →的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤
2 3
⎣⎢⎡⎦⎥⎤2 3

概念一:
象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦
23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字

A

B

C…



横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:
①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。

②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。

③行矩阵:[a 11,a 12](仅有一行)
④列矩阵:⎣⎢⎡⎦
⎥⎤
a 11 a 21 (仅有一列)
⑤向量a →
=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤
⎢⎥⎣⎦
,在本书中
规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦
的形式。

练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥


⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,
2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤
=⎢⎥--⎣⎦
,若A=B ,求x,y,m,n 的值。

— 2

3

⎣⎢⎡⎦
⎥⎤80 90 86 88
23324x y x y ++⎧⎨-+⎩简记为23324m ⎡⎤⎢⎥-⎣⎦
概念二:
由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤

⎥⎣⎦
称为二阶矩阵。

a,b,c,d 称为矩阵的元素。

①零矩阵:所有元素均为0,即0000⎡⎤
⎢⎥⎣⎦
,记为0。

②二阶单位矩阵:1001⎡⎤

⎥⎣⎦
,记为E 2. 二、二阶矩阵与平面向量的乘法
定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦
的乘积为ax by A cx dy α→+⎡⎤
=⎢⎥
+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤
⎢⎥+⎣

练习2: 1.(1)⎥

⎤⎢⎣⎡⎥⎦⎤⎢
⎣⎡-131021= (2) ⎥⎦

⎢⎣⎡⎥⎦⎤⎢
⎣⎡-311021= 2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦

⎢⎣⎡y x
三、二阶矩阵与线性变换 1.旋转变换
问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。

其结果为''x x y y ⎧=-⎨=-⎩,也可以表示为''00x x y y x y ⎧=-+⋅⎨=⋅-⎩
,即''x y ⎡⎤⎢⎥⎣⎦=1001-⎡⎤⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡y x =x y -⎡⎤⎢⎥-⎣⎦怎么算出来的?
问题2. P (x,y )绕原点逆时针旋转30o 得到P ’(x ’,y ’),试完成以下任务①写出象P ’; ②写出这个旋转变换的方程组形式;③写出矩阵形式.
问题3.把问题2中的旋转30o 改为旋转 角,其结果又如何?
2.反射变换
定义:把平面上任意一点P 对应到它关于直线l 的对称点P ’
的线性变换叫做关于直线l 的反射。

研究:P (x,y )关于x 轴的反射变换下的象P ’(x ’,y ’)的坐标公式与二阶矩阵。

3.伸缩变换
定义:将每个点的横坐标变为原来的1k 倍,纵坐标变为原来的2k 倍,(1k 、2k 均不为0),这样的几何变换为伸缩变换。

试分别研究以下问题:
①.将平面内每一点的纵坐标变为原来的2倍,横坐标不变的伸缩变换的坐标公式与二阶矩阵.
②. 将每个点的横坐标变为原来的1k 倍,纵坐标变为原来的2k 倍的伸缩变换的坐标公式与二阶矩阵.
4.投影变换
定义:将平面上每个点P 对应到它在直线l 上的投影P ’(即垂足),这个变换称为关于直线l 的投影变换。

研究:P (x,y )在x 轴上的(正)投影变换的的坐标公式与二阶矩阵。

5.切变变换
定义:将每一点P (x,y )沿着与x 轴平行的方向平移ky 个单位,称为平行于x 轴的切变变换。

将每一点P (x,y )沿着与y 轴平行的方向平移kx 个单位,称为平行于y 轴的切变变换。

研究:这两个变换的坐标公式和二阶矩阵。

练习:P 10 1.2.3.4
四、简单应用
1.设矩阵A=1001-⎡⎤
⎢⎥⎣⎦
,求点P(2,2)在A 所对应的线性变换下的象。

【第一讲.作业】
1.关于x 轴的反射变换对应的二阶矩阵是
2.在直角坐标系下,将每个点绕原点逆时针旋转120o 的旋转变换对应的二阶矩阵是
3.如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是
4.平面内的一种线性变换使抛物线2
y x =的焦点变为直线y=x 上的点,则该线性变换对应的二阶矩阵可以是
5.平面上一点A 先作关于x 轴的反射变换,得到点A 1,在把A 1绕原点逆时针旋转180o
,得到
点A 2,若存在一种反射变换同样可以使A 变为A 2,则该反射变换对应的二阶矩阵是
6.P (1,2)经过平行于y 轴的切变变换后变为点P 1(1,-5),则该切变变换对应的坐标公式为
7. 设1
21x A x y ⎡⎤=⎢⎥-⎣⎦
,2242z x B x ⎡⎤-=⎢⎥-⎣⎦,且A=B.则x =
8.在平面直角坐标系中,关于直线y=-x 的正投影变换对应的矩阵为
9.在矩阵1221A -⎡⎤
=⎢⎥⎣⎦
对应的线性变换作用下,点P(2,1)的像的坐标为
10.已知点A (2,-1),B (-2,3),则向量AB →
在矩阵11202⎡⎤
⎢⎥⎢⎥-⎣⎦
对应的线性变换下得到的向量坐标为
11.向量a →
在矩阵1201A -⎡⎤=⎢⎥
⎣⎦
的作用下变为与向量11⎡⎤
⎢⎥-⎣⎦平行的单位向量,则a →= 12.已知15234A ⎡⎤-⎢⎥=⎢⎥-⎣
⎦,a →=12-⎡⎤⎢⎥⎣⎦,b →=34⎡⎤⎢⎥⎣⎦,
设a b α→→→=+,a b β→→→=-,①求A α→,A β→;
13.已知1012A ⎡⎤=⎢⎥
-⎣⎦,a →=11⎡⎤⎢⎥-⎣⎦,b →=1x ⎡⎤
⎢⎥⎣⎦
,若A a →与A b →的夹角为135o ,求x.
14.一种线性变换对应的矩阵为1010⎡⎤


-⎣⎦。

①若点A 在该线性变换作用下的像为(5,-5),求电A 的坐标;②解释该线性变换的几何意义。

15.在平面直角坐标系中,一种线性变换对应的二阶矩阵为01
102⎡⎤⎢⎥⎢⎥⎣⎦。

求①点A (1/5,3)在
该变换作用下的像;②圆2
2
1x y +=上任意一点00(,)P x y 在该变换作用下的像。

答案:1.1001⎛⎫ ⎪-⎝⎭
2. 1212⎛- ⎪⎪-⎪
⎭ 3. 360o
R 4.00a a ⎛⎫ ⎪⎝⎭ 5.1001-⎛⎫ ⎪⎝⎭6.''2x x y x y ⎧=⎨=-+⎩ 7.-1 8. 1
1221122⎛⎫- ⎪ ⎪ ⎪
- ⎪⎝⎭ 9.(0,5) 10.(2,8)
11.
,⎛ ⎝
12.718-⎛⎫ ⎪-⎝⎭、
194⎛⎫ ⎪-⎝⎭
13.x=2/3 14.(5,y) 15. 1532⎛⎫
⎪ ⎪ ⎪ ⎪⎝⎭
,2o o
x y ⎛⎫
⎪ ⎪ ⎪⎝⎭。

相关文档
最新文档