石家庄市二模文科数学试卷及答案
2024届河北省石家庄部分校中考二模数学试题含解析

2024学年河北省石家庄部分校中考二模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a22.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-3.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为25.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .106.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C .1903∠=+∠D .以上都不对7.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=18.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )A .26×105B .2.6×102C .2.6×106D .260×1049.下列命题是真命题的个数有( )①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=k x图象上的一点,则k=﹣25;④方程2x ﹣1=3x ﹣2的解,可看作直线y=2x ﹣1与直线y=3x ﹣2交点的横坐标.A .1个B .2个C .3个D .4个 10.14-的绝对值是( ) A .﹣4 B .14 C .4 D .0.4二、填空题(本大题共6个小题,每小题3分,共18分)11.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.12.如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .13.如图,在△ABC 中,点E ,F 分别是AC ,BC 的中点,若S 四边形ABFE =9,则S 三角形EFC =________.14.已知a +b =1,那么a 2-b 2+2b =________.15.已知直线y=kx (k≠0)经过点(12,﹣5),将直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为_____.16.如图,菱形ABCD 的边长为15,sin ∠BAC=,则对角线AC 的长为____.三、解答题(共8题,共72分)17.(8分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 18.(8分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD 顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A 起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D ;若第二次指针所落扇形中的数字是2,就从D 开始顺时针续跳2个边长,落到圈B ;……设游戏者从圈A 起跳.(1)嘉嘉随机转一次转盘,求落回到圈A 的概率P 1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A 的概率P 2,并指出她与嘉嘉落回到圈A 的可能性一样吗?19.(8分)如图,在三角形ABC 中,AB=6,AC=BC=5,以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,直线DF 是⊙O 的切线,D 为切点,交CB 的延长线于点E .(1)求证:DF ⊥AC ;(2)求tan ∠E 的值.20.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60m ,底座BC 与支架AC 所成的角∠ACB=75°,点A 、H 、F 在同一条直线上,支架AH 段的长为1m ,HF 段的长为1.50m ,篮板底部支架HE 的长为0.75m .求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m ;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)21.(8分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.22.(10分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?23.(12分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 试说明AC=EF ;求证:四边形ADFE 是平行四边形.24.如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且25AE cm =,手臂60AB BC cm ==,末端操作器35CD cm =,AF 直线L .当机器人运作时,45,75,60BAF ABC BCD ∠=︒∠=︒∠=︒,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解.解:A、a3•a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、3a2﹣a2=2a2,故D正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.2、B【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【题目详解】解:由旋转可知AD=BD,∵∠ACB=90°3∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=33AC=2,∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π.故选:B.【题目点拨】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.3、B【解题分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【题目详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1=61=6,y2=62=3,y3=63-=-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.4、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A ,B 、D 错误;故选C .考点:方差;加权平均数;中位数;众数.5、B【解题分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【题目详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .6、C【解题分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【题目详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1. 故选C .【题目点拨】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.7、B【解题分析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .8、C【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】260万=2600000=62.610⨯.故选C .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、C【解题分析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【题目详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=k x图象上的一点,则k=-25,是真命题; ④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C .【题目点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.10、B【解题分析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-14的相反数为14所以-14的绝对值为14. 故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.二、填空题(本大题共6个小题,每小题3分,共18分)11、SSS .【解题分析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【题目详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【题目点拨】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.12、18。
(全优试卷)河北省石家庄市高三毕业班第二次模拟考试文数试题Word版含答案

2017届石家庄市高中毕业班第二次模拟考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =ln(2)y x =-的定义域分别为M 、N ,则MN =( )A .(1,2]B .[1,2)C .(,1](2,)-∞+∞D .(2,)+∞2.若2iz i=+,则复数z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量(1,)a m =,(,1)b m =,则“1m =”是“//a b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为( ) A .72B .73C .74D .755.已知角α(0360α︒≤<︒)终边上一点的坐标为(sin150,cos150)︒︒,则α=( ) A .150︒ B .135︒C .300︒D .60︒6.函数ln ||()||x x f x x =的大致图象是( )7.如图是计算11113531++++…的值的程序框图,则图中①②处应填写的语句分别是( )A .2n n =+,16?i >B .2n n =+,16?i ≥C .1n n =+,16i >?D .1n n =+,16?i ≥8.某几何体的三视图如图所示,则其体积为( )A .34π B .24π+ C .12π+ D .324π+ 9.实数x ,y 满足1|1|12x y x +≤≤-+时,目标函数z mx y =+的最大值等于5,则实数m的值为( ) A .1-B .12-C .2D .510.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,SA =,则该三棱锥的外接球的表面积为( )A .643π B .2563π C .4363π D 11.已知动点P 在椭圆2213627x y +=上,若点A 的坐标为(3,0),点M 满足||1AM =,0PM AM ⋅=,则||PM 的最小值是( )ABC .D .312.已知函数2|2ln |,0,()21,0x x f x x x x +>⎧=⎨--+≤⎩存在互不相等实数a ,b ,c ,d ,有()()()()f a f b f c f d m ====.现给出三个结论:(1)[1,2)m ∈; (2)314[2,1)a b c d ee e ---+++∈+--,其中e 为自然对数的底数;(3)关于x 的方程()f x x m =+恰有三个不等实根. 正确结论的个数为( ) A .0个B .1个C .2个D .3个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.观察下列式子:213122+<,221151233++<,222111712344+++<,…,根据上述规律,第n 个不等式可能为 .14.已知函数()sin()f x x ωϕ=+(0ω>,0ϕπ<<)的图象如图所示,则(0)f 的值为 .15.双曲线22221x y a b-=(0a >,0b >)上一点M 关于渐进线的对称点恰为右焦点2F ,则该双曲线的离心率为 .16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a ,b ,c ,其面积S =里1()2p a b c =++.已知在ABC ∆中,6BC =,2AB AC =,则ABC ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 满足1122(1)22n n a a na n ++++=-+…,*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若2211log log n n n b a a +=⋅,12n n T b b b =+++…,求证:对任意的*n N ∈,1n T <.18.在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:CD ⊥平面ADEF ; (Ⅱ)求多面体ABCDEF 的体积.19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为40%,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 求由随机模拟的方法得到的概率值;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-20.已知圆C :222(1)x y r -+=(1r >),设A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AM ,并使弦AM 的中点恰好落在y 轴上.(Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)延长MC 交曲线E 于点N ,曲线E 在点N 处的切线与直线AM 交于点B ,试判断以点B 为圆心,线段BC 长为半径的圆与直线MN 的位置关系,并证明你的结论. 21.已知函数1()(1)1xax f x a x e +=-+-,其中0a ≥. (Ⅰ)若1a =,求函数()y f x =的图象在点(1,(1))f 处的切线方程; (Ⅱ)若0x ≥,()0f x ≤恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos a ρθ=(0a >),Q 为l 上一点,以OQ 为边作等边三角形OPQ ,且O 、P 、Q 三点按逆时针方向排列.(Ⅰ)当点Q 在l 上运动时,求点P 运动轨迹的直角坐标方程; (Ⅱ)若曲线C :222x y a +=,经过伸缩变换'2'x xy y =⎧⎨=⎩得到曲线'C ,试判断点P 的轨迹与曲线'C 是否有交点,如果有,请求出交点的直角坐标,没有则说明理由. 23.选修4-5:不等式选讲已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.2017届石家庄市高中毕业班第二次模拟考试试卷数学(文科)答案 一、选择题1-5:BAACC 6-10:BADBB 11、12:CC二、填空题13.22211121123(1)1n n n +++++<++…14.216.12三、解答题17. 解:(Ⅰ)当1n >时,1121212(1)222-1)(2)22n n nn a a na n a a n a n +-+++=-++++=-+①(②①-②得1(1)2(2)22n n n n na n n n +=---=⋅,2n n a =,当1n =时,12a =,所以2,*nn a n N =∈.(Ⅱ)因为2nn a =,2211111log log (1)1n n n b a a n n n n +===-⋅++.因此1111112231n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+, 所以n T 1<.18.(Ⅰ)证明:取AD 中点M ,连接EM ,AF =EF =DE =2,AD =4,可知EM =12AD ,∴AE ⊥DE , 又AE ⊥EC ,DEEC E = ∴AE ⊥平面CDE ,∵CD CDE ⊂平面 ,∴AE ⊥CD ,又CD ⊥AD ,AD AE A = ,∴CD ⊥平面ADEF .(Ⅱ)由(1)知 CD ⊥平面ADEF ,CD ⊂ 平面ABCD , ∴平面ABCD ⊥平面ADEF ;作EO ⊥AD,∴EO ⊥平面ABCD,EO 连接AC ,则ABCDEF C-ADEF F ABC V V V -=+111(24)4332C-ADEF ADEF V S CD ==⨯⨯+=11124332F-ABC ABC V S OE ==⨯⨯⨯=△, ∴ABCDEF V ==.19.解:(Ⅰ)上述20组随机数中恰好含有1,2,3,4中的两个数的有191 271 932 812 393 ,共5个,所以三天中恰有两天下雨的概率的近似值为51==204P .(Ⅱ)由题意可知1234535x ++++==,50+85+115+140+160=1105y =,51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx =+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份.20.解:(Ⅰ)设(,)M x y ,由题意可知,(1,0)A r -,AM 的中点(0,)2yD ,0x >, 因为(1,0)C ,(1,)2y DC =-,(,)2y DM x =. 在⊙C 中,因为CD DM ⊥,∴0DC DM ⋅=,所以204y x -=,即24y x =(0x >), 所以点M 的轨迹E 的方程为:24y x =(0x >).(Ⅱ) 设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+,2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-, 11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+, 22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =, 直线BN 的方程为2222y y x y =+,联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===, 所以点(1,2)B m -,||BC =2d ===∴B e 与直线MN 相切.21. 解:(Ⅰ)当1=a 时,xex x f -+-=)1(1)(,当1=x 时,ex f 21)(-=, 1'(1)f e=,所以所求切线方程为:131y x e e =+-.(Ⅱ)首先xe a ax a xf --++-=)1()1()(',令其为)(x g ,则xe a ax x g --+-=)12()('.1)当12≤a 即210≤≤a 时,,0)('≤x g )(x g 单调递减,即)('x f 单调递减, 0)('≤x f ,)(x f 单调递减,0)(≤x f ,所以210≤≤a 成立;2)当21>a 时,0)12()('=-+-=-xe a ax x g 解得:a x 12-=,当)12,0(a x -∈时,,0)('>x g )(x g 单调递增,即)('x f 单调递增, 0)('>x f ,)(x f 单调递增,0)(>x f ,所以21>a 不成立. 综上所述:210≤≤a . 22. 解:(Ⅰ)设点P 的坐标为(,)ρθ, 则由题意可得点Q 的坐标为(,)3πρθ+,再由点Q 的横坐标等于a ,0a >, 可得cos()3a πρθ+=,可得1cos sin 2a ρθρθ-=, 故当点Q 在l 上运动时点P的直角坐标方程为20x a --=. (Ⅱ)曲线C :222x y a +=,全优试卷'2'x x y y =⎧⎨=⎩,即'2'x x y y ⎧=⎪⎨⎪=⎩,代入22''4x y a +=,即2224x y a +=, 联立点P 的轨迹方程,消去x得270y +=,0,0a >∴∆>有交点,坐标分别为2(,),(2,0)77a a a -. 23. 解:(Ⅰ)函数3,1,()21131,11,3, 1.x x f x x x x x x x --≤-⎧⎪=+--=+-<<⎨⎪+≥⎩它的图象如图所示:函数)(x f 的图象与直线1=y 的交点为(4,1)-、(0,1),故函数)(x f 的图象和直线1=y 围成的封闭图形的面积14362m =⨯⨯=. (Ⅱ)ab b a 62=+ ,621=+∴ab 844244)21)(2(=+≥++=++ab b a a b b a , 当且仅当ab b a 4=, 可得31,32==b a 时等号成立, b a 2+∴的最小值是34。
河北省石家庄市高三复习教学质量检测(二)(文数)含参考答案

河北省石家庄市高三复习教学质量检测(二)数学(文科)本试卷共23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}{},2,1,0,1,2,|1U R A B x x ==--=≥,则U A C B =I ( )A .{}1,2B .{}1,0,1-C .{}2,1,0--D .{}2,1,0,1-- 2.在复平面中,复数()2111i ++对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“1x >”是“220x x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分也不必要条件 4.若()1sin 3πα-=,且2παπ≤≤,则cos α= ( ) A .223 B .223- C. 429- D .295.执行下面的程序框图,则输出K 的值为 ( ) A .98 B .99 C. 100 D .1016.李冶(1192--1279 ),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )A .10步,50步B .20步,60步 C. 30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是 ( ) A . 16 B .20 C. 52 D .60 8. 已知函数()sin 2cos 26f x x x π⎛⎫=++ ⎪⎝⎭,则()f x 的一个单调递减区间是( ) A .7,1212ππ⎡⎤⎢⎥⎣⎦ B .5,1212ππ⎡⎤-⎢⎥⎣⎦ C. 2,33ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦9.四棱锥P ABCD -的底面ABCD 是边长为6的正方形,且PA PB PC PD ===,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D .9410.若,x y 满足约束条件22004x y x y x y +≤⎧⎪-≤⎨⎪+≤⎩,则23y z x -=+的最小值为 ( )A .-2B .23-C. 125- D .247-11.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是( )A .(][),11,-∞-+∞UB .[]1,0- C. []0,1 D .[]1,1-12.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,过点1F 且垂直于x 轴的直线与该双曲线的左支交于A B 、两点,22AF BF 、分别交y 轴于P Q 、两点,若2PQF ∆的周长为12,则ab 取得最大值时双曲线的离心率为( ) A 2 B 3 C.233 D .322第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.设样本数据122017,,,x x x L 的方差是4,若()11,2,,2017i i y x i =-=L ,则122017,,,y y y L 的方差为 .14.等比数列{}n a 中,若152,4a a =-=-,则3a = .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若06,2,45,tan tan 1a b B A C ===>g ,1tan tan >⋅C A ,则角C 的大小为 . 16.非零向量,m n 的夹角为3π,且满足()0n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若332211y x y x y x ⋅+⋅+⋅所有可能值中的最小值为24m ,则λ= .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,若()*124,0,142,m m m S S S m m N -+=-==≥∈且. (1)求m 的值; (2)若数列{}n b 满足()*2log 2nn a b n N =∈,求数列{}n n b a ⋅+)(6的前n 项和. 18.(本小题满分12分)如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且21,32ABE BC π∠==.点F 在平面ABED 内的正投影为G ,且G 在AE 上,3FG =M 在线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求三棱锥M DEF -的体积.19.(本小题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道交强险浮动因素和浮动费率比率表浮动因素浮动比率 A 1 上一个年度未发生有责任道路交通事故 下浮10% A 2 上两个年度未发生有责任道路交通事故 下浮20% A 3 上三个及以上年度未发生有责任道路交通事故 下浮30% A 4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0% A 5 上一个年度发生两次及两次以上有责任道路交通事故上浮10% A 6上一个年度发生有责任道路交通死亡事故上浮30%同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型1A 2A 3A 4A 5A 6A数量 105520155(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值. 20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A B 、,且长轴长为8,T 为椭圆上一点,直线TA TB 、的斜率之积为34-. (1)求椭圆C 的方程;(2)设O 为原点,过点()0,2M 的动直线与椭圆C 交于P 、Q 两点,求MQ MP OQ OP ⋅+⋅的取值范围.21.(本小题满分12分)已知函数()()()ln ,01xf x m xg x x x ==>+. (1)当1m =时,求曲线)()(x g x f y ⋅=在1x =处的切线方程; (2)讨论函数()()()F x f x g x =-在()0,+∞上的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0,a β>为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos 32πρθ⎛⎫-= ⎪⎝⎭. (1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.数学(文科)参考答案1-5CDABB 6-10BBADC 11-12DC13. 4 14. 22- 15 .75︒ 16.8317.解:(Ⅰ)由已知得14m m m a S S -=-=,…………………1分 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d = ………………3分由0m S =,得()11202m m ma -+⨯=,即11a m =-, ∴()11214m a a m m =+-⨯=-=∴5m =.……………5分(Ⅱ)由(Ⅰ)知14a =-,2d =,∴26n a n =-∴23log n n b -=,得32n n b -=.………………7分∴()326222n n n n a b n n --+⋅=⨯=⨯.设数列(){}6nn ab +⋅的前n 项和为n T∴()10321222122n n n T n n ---=⨯+⨯++-⨯+⨯L ①()012121222122n n n T n n --=⨯+⨯++-⨯+⨯L ②………………8分①-②,得10212222n n n T n ----=+++-⨯L ………………10分()11212212n n n ---=-⨯-111222n n n --=--⨯∴()()11122n n T n n -*=-⋅+∈N ……………12分18.解析:(Ⅰ)证明:因为点F 在平面ABED 内的正投影为G 则,FG ABED FG GE ⊥⊥面,又因为21=BC EF =,3FG = 32GE ∴=…………………2分其中ABED 是边长为2的菱形,且3ABE π∠=122AE AG ∴==,则过G 点作//GH AD DE H 交于点,并连接FH 3,2GH GE GH AD AE =∴=,且由14CM CF =得32MF GH ==………………4分 易证 ////GH AD MF //GHFM MG FH ∴为平行四边形,即 又因为,//GM DEF GM DEF ⊄∴面面.…………………6分 (Ⅱ)由上问//GM DEF 面,则有M DEF G DEF V V --=……………8分又因为11333344G DEF F DEG DEG DAE V V FG S FG S --∆∆==⋅=⋅=……………10分34M DEF V -∴=………………12分19.解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为3160515=+. ……………………4分,设为1b ,2b ,四辆非事故车设为1a ,2a ,3a ,4a .从六辆车中随机挑选两辆车共有(1b ,2b ),(1b ,1a ),(1b ,2a ),(1b ,3a ),(1b ,4a ),(2b ,1a ),(2b ,2a ),(2b ,3a ),(2b ,4a ),(1a ,2a ),(1a ,3a ),(1a ,4a ),(2a ,3a ),(2a ,4a ),(3a ,4a ),总共15种情况。
2022年河北省石家庄市高考数学质检试卷(二)(二模)+答案解析(附后)

2022年河北省石家庄市高考数学质检试卷(二)(二模)1.已知集合,,则( )A. B.C. D.2.已知复数z满足,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知,则( )A. B. C. D.4.等差数列的前n项和记为,若,则( )A. 3033B. 4044C. 6066D. 80885.图形是信息传播、互通的重要的视觉语言《画法几何》是法国著名数学家蒙日的数学巨著,该书在投影的基础上,用“三视图”来表示三维空间中立体图形.其体来说.做一个几何的“三视图”,需要观测者分别从几何体正面、左面、上面三个不同角度观察,从正投影的角度作图.图中粗实线画出的是某三棱锥的三视图,且网格纸上小正方形的边长为1,则该三棱锥的外接球的表面积为( )A. B. C. D.6.在平行四边形ABCD中.M、N分别是AD、CD的中点,若,则( )A. B. C. D.7.已知,点P是抛物线C:上的动点,过点P向y轴作垂线,垂足记为点N,点,则的最小值是( )A. B. C. D.8.已知,,,则x、y、z的大小关系为( )A. B. C. D.9.设a,b为两条不同的直线,,为两个不同的平面,则下列结论不正确的是( )A. 若,,则B. 若,,,则C. 若,,,则D. 若,,则10.设正实数m,n满足,则下列说法正确的是( )A. 上的最小值为2B. mn的最大值为1C. 的最大值为4D. 的最小值为11.已知圆:与圆:,则下列说法正确的是( )A. 若圆与x轴相切,则B. 若,则圆与圆相离C. 若圆与圆有公共弦,则公共弦所在的直线方程为D. 直线与圆始终有两个交点12.已知函数,则下列结论正确的是( )A. 函数的一个周期为B. 函数在上单调递增C. 函数的最大值为D. 函数图象关于直线对称13.某中学高一、高二、高三年级的学生人数分别为1200、1000、800,为迎接春季运动会的到来,根据要求,按照年级人数进行分层抽样,抽选出30名志愿者,则高一年级应抽选的人数为__________.14.在的展开式中的系数为__________.15.已知函数,若存在实数,,,满足,且,则______,的取值范围是______.16.已知椭圆和双曲线有公共的焦点、,曲线和在第一象限相交于点且,若椭圆的离心率的取值范围是,则双曲线的离心率的取值范围是______.17.在中,角A,B,C的对边分别为a,b,已知,求角A的大小;请在①②两个条件任选一个,求的面积.18.设数列的前n项和为已知,求数列的通项公式;数列满足,求数列的前n项和19.北京冬奥会已于2022年2月4日至2月20日顺利举行,这是中国继北京奥运会,南京青奥会后,第三次举办的奥运赛事.为助力冬奥,进一步增强群众的法治意识,提高群众奥运法律知识水平和文明素质,让法治精神携手冬奥走进千家万户.某市有关部门在该市市民中开展了“迎接冬奥法治同行”主题法治宣传教育活动.该活动采取线上线下相结合的方式,线上有“知识大闯关”冬奥法律知识普及类趣味答题,线下有“冬奥普法”知识讲座,实现“冬奥+普法”的全新模式.其中线上“知识大闯关”答题环节共计30个题目,每个题目2分,满分60分,现在从参与作答“知识大闯关”题目的市民中随机抽取1000名市民,将他们的作答成绩分成6组:并绘制了如图所示的频率分布直方图.请估计被抽取的1000名市民作答成绩的平均数和中位数;视频率为概率.现从所有参与“知识大闯关”活动的市民中随机取20名,调查其掌握各类冬奥法律知识的情况.记k名市民的成绩在的概率为,,1,2,…,请估计这20名市民的作答成绩在的人数为多少时最大?并说明理由.20.已知点,,点A满足,点A的轨迹为曲线求曲线C的方程;若直线l:与双曲线:交于M,N两点,且为坐标原点,求点A到直线l距离的取值范围.21.如图.平行六面体的底面ABCD是矩形,P为棱上一点.且、F为CD的中点.证明:;若当直线PB与平面PCD所成的角为,且二面角的平面角为锐角时,求三棱锥的体积.22.已知函数,其中e为自然对数的底数.若,求函数的单调区间;证明:对于任意的正实数M,总存在大于M的实数a、b,使得当时,答案和解析1.【答案】D【解析】解:集合,,故选:求出集合A,B,利用交集定义能求出结果.本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:由已知可得,所以对应的点在第一象限,故选:由已知先化简复数z,进而可以求解.本题考查了复数的运算性质,考查了学生的运算能力,属于基础题.3.【答案】C【解析】解:因为,所以两边平方,可得,则故选:将已知等式两边平方,利用同角三角函数基本关系式以及二倍角的正弦公式即可求解.本题考查了同角三角函数基本关系式以及二倍角的正弦公式在三角函数求值中的应用,属于基础题.4.【答案】C【解析】解:等差数列的前n项和记为,若,则,故选:由题意,利用等差数列的性质,得出结论.本题主要考查等差数列的性质,属于基础题.5.【答案】B【解析】解:根据几何体的三视图转换为直观图为:该几何体为三棱锥;如图所示:设外接球的半径为R,所以,解得,故故选:把三视图转换为几何体的直观图,进一步求出几何体的外接球半径,最后求出球的表面积.本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的外接球的半径的求法,球的表面积公式,主要考查学生的运算能力和数学思维能力,属于基础题.6.【答案】B【解析】解:如图所示,设,且,则,又因为,所以,解得,所以故选:设,由向量的运算法则得到,根据平面向量的基本定理,列出方程求得方程组,即可求解.本题考查了平面向量的基本定理,属于基础题.7.【答案】A【解析】解:由抛物线C:知,焦点,准线方程,过点P作抛物线准线的垂线,垂足为Q,如图,由抛物线定义知,当F,P,M三点共线时,最小为故选:根据抛物线的定义所求可转化为,再由三点共线可求最小值.本题考查抛物线的几何性质,求线段长度和的最小值,属中档题.8.【答案】D【解析】【分析】本题考查三个数大小的比较,需注意对数函数和指数函数的性质的合理运用,属于基础题.利用对数函数和指数函数的性质,判断x,y,z的大小即可.【解答】解:,,,,,,,即,,故选9.【答案】ABC【解析】解:A:当时,,可以成立,本选项结论不正确;B:当时,若,,,此时,成立,因此本选项结论不正确;C:当时,若,,此时,成立,因此本选项结论不正确;D:因为,所以,,,所以,而,,所以,而,因此,所以本选项结论正确,故选:根据线面平行的判定定理和性质,结合面面平行、垂直的判定定理逐一判断即可.本题主要考查空间中的线面关系,面面关系等知识,属于基础题.10.【答案】AB【解析】解:因为正实数m,n满足,所以,当且时取等号,A正确;,当且仅当时取等号,B正确;,当且仅当时取等号,所以,C错误;,当且仅当时取等号,D错误.故选:由已知结合基本不等式及相关结论分别检验各选项即可判断.本题主要考查了基本不等式在求解最值中的应用,属于中档题.11.【答案】BD【解析】解:根据题意,依次分析选项:对于A,圆:,即,若圆与x轴相切,则,A错误;对于B,若,圆为,其圆心为,半径,圆:,其圆心为,半径,圆心距,两圆外离,B正确;对于C,若圆与圆有公共弦,联立两个圆的方程可得,即公共弦所在的直线方程为,C错误;对于D,直线,即,恒过定点,又由,则点在圆内部,故直线与圆始终有两个交点,D正确;故选:根据题意,依次分析选项是否正确,即可得答案.本题考查圆与圆位置关系的判断,涉及圆的一般方程和标准方程,属于基础题.12.【答案】ABD【解析】解:,函数的一个周期为,故A正确;当时,且单调递增,在上是增函数,当时,且单调递减,在上是增函数,则函数在上单调递增,故B正确;,的图象关于直线对称,故D正确;函数在上单调递增,图象关于直线对称,又,函数的最大值为,故C错误.故选:由周期函数的定义判断A;利用复合函数的单调性判断B;求出函数的最大值判断C,由判断本题考查三角函数的性质,考查推理论证能力及运算求解能力,是中档题.13.【答案】12【解析】【分析】本题考查了分层抽样原理应用问题,属于基础题.根据分层抽样原理,求出高一年级应抽选的人数.【解答】解:根据分层抽样原理知,抽选出30名志愿者时,高一年级应抽选的人数为:故答案为14.【答案】6【解析】【分析】本题考查了二项式定理,属于基础题.把按照二项式定理展开,可得的展开式中的系数.【解答】解:,展开式中含的项为,故它的展开式中的系数为故答案为15.【答案】【解析】解:作出函数的图象,如图,因为,所以由图可知,,即,且,,在上单调递增,,即的取值范围是故答案为:1;作出函数的图象,结合图象可知,,,之间的关系,利用此关系直接求出,再将转化为关于的二次函数求范围即可.本题考查函数的零点与方程的根的关系,考查学生的运算能力,属于中档题.16.【答案】【解析】解:在中,,由余弦定理可得,即,①而,即,②①②联立可得,即,由题意,,可得,所以,可得,可得,由双曲线的离心率的范围可得,故答案为:在三角形中,由余弦定理可得,分别由椭圆和双曲线的定义可得,,c的关系,两边同时除以c可得两个离心率的关系,再由的离心率的范围,求出的离心率的范围.本题考查椭圆和双曲线的性质的应用及余弦定理的应用,属于中档题.17.【答案】解:因为,由正弦定理得,因为,所以,所以,因为,所以,所以;若选①,由正弦定理得,,所以,由余弦定理得,解得,故的面积;若选②,由余弦定理得,,即,解得,所以的面积【解析】由已知结合三角形内角和及诱导公式进行化解,然后结合二倍角公式即可求解;若选①,由已知结合正弦定理先求出a,然后结合余弦定理可求c,再由三角形面积公式可求;若选②,由已知结合余弦定理先求出c,然后结合三角形面积公式可求.本题主要考查了正弦定理,余弦定理及三角形面积公式在求解三角形中的应用,属于中档题.18.【答案】解:当时,由,得,两式相减得,所以,又,,所以,所以数列是以1为首项,为公比的等比数列,所以;解:,则,,两式相减得,所以【解析】本题考查了数列的递推关系,错位相减法求和,属于中档题.根据与得关系,计算即可得出答案;求出数列的通项公式,再利用错位相减法即可得出答案.19.【答案】解:由频率分布直方图可知,抽取的1000名市民作答成绩的平均数为:,设1000名市民作答成绩的中位数为x,则,解得,这1000名市民作答成绩的平均数为34,中位数为设在抽取的20名市民中,作答成绩在的人数为X,X服从二项分布,由频率分布直方图可知,作答成绩在的频率为,,,,1,2, (20)设,,2, (20)若,则,,若,则,,当时,最大,所以这20名市民的作答成绩在的人数为7时最大.【解析】本题考查频率分布直方图、平均数、中位数以及n次独立重复实验及二项分布等基础知识,考查运算求解能力,是较难题.应用平均数公式来计算平均数,设出中位数,然后利用小于中位数的频率等于,列方程能求出中位数;列出k名市民的作答成绩在的的概率关于k的表达式,再利用作商法计算取最大值时k的值.20.【答案】解:设,因为,所以,化简得,即曲线C的方程为联立直线l与双曲线的方程,得,所以,设,,所以,得且,所以,,因为,所以,所以,所以,化简,得,把,代入,得,化简得,因为且,所以有且,解得,圆的圆心为,半径为1,圆心到直线l:的距离为,所以点A到直线的距离的最大值为,最小值为,所以点A到直线l的距离的取值范围为【解析】本题考查直线与双曲线的位置关系及其应用,以及与圆有关的轨迹问题,解题中需要一定的计算能力,属于中档题.设,由,得,化简即可得出答案;设,,联立直线l与双曲线的方程,结合韦达定理可得,,,由,则,进而可得,圆心到直线l:的距离为,即可得出答案.21.【答案】解:证明:取AB的中点E,连接PE,EF,,,四边形ABCD是矩形,,,F分别为AB、CD的中点,,,,平面PEF,平面PEF,;如图,以F为坐标原点,以过F与平面ABCD垂直的直线向上的方向为z轴正方向,以FC所在直线为x轴,以EF所在直线为y轴,建立空间直角坐标系,如图,则,,,,设,h为P到平面ABCD的距离,则,,,设平面PCD的法向量,则,取,则,,,,设直线PB与平面PCD所成角为,则,解得或,当时,平面PCD的法向量为,则平面PCD与平面ABCD垂直,此时二面角的平面角为直角,舍,,代入,可得,三棱锥的体积为:【解析】取AB的中点E,连接PE,EF,证明出平面PEF,由此能证明;建立空间直角坐标系,利用向量法能求出三棱锥的体积.本题考查线线垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22.【答案】解:,令,得,令,得,当时,,单调递增,当时,,单调递減,综上单调递增区间为,单调递减区间为;要证,即证,即证,即证在时成立,时,,令,当时,,所以,所以单调递增,,,,满足,由单调性可知,满足,又因为当,,所以能够同时满足,对于任意的正实数M,总存在正整数k,且满足时,使得,所以不妨取,则a,且时,,故对于任意的正实数M,总存在大于M的实数a,b,使得当时,【解析】对函数求导,利用辅助角公式合并为同名三角函数,然后求出单调区间即可;将绝对值不等式转化为,移向构造新函数,利用导数判断单调性,借助零点定理和隐零点证明新构造函数恒正,再证明结论成立即可.本题考查了函数的单调区间和不等式的恒成立问题,属于难题.。
河北省石家庄市高三毕业班模拟考试(二)数学(文)试题Word版含答案

石家庄市2018届高中毕业班模拟考试(二)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)ABCD2.)AD3.)A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.)5.)ABCD6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是()AD7.)ABCD8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为()ABCD9.纵坐标不变,)ABCD10.则()ABCD11.限内的点,则椭圆的离心率为()ABCD12.数) )AB第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13..14..15..16.棱锥外接球的表面积为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(1(218.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了10010人表示对冰球运动没有兴趣额.(1有兴趣没兴趣合计男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:0.150 0.100 0.050 0.025 0.0102.072 2.7063.841 5.024 6.63519.如图,在,底(1(2体积.20.(1(221.(1(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标,曲线方程为,直参数方程(1(2.23.选修4-5:不等式选讲.(1(2石家庄市2018届高中毕业班模拟考试(二)文科数学答案 一、选择题11、12二、填空题三、解答题17.解:(1)(2)ABCS=22a b =+所以,(b c +18.解:(1)根据已知数据得到如下列联表90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A、B 、C )10种情况,其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m)(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种, 所以至少2人对冰球有兴趣的情况有7种,19.CD ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,ABCD ,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PCD,∴PB⊥平面PCD.∵PAB,∴平面PAB⊥平面PCD. (Ⅱ)取BC的中点O,连接OP、OE.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PBC,∴PO⊥平面ABCD,∵ABCD,∴PO⊥AE.∵∠PEA=90O, ∴PE⊥AE. ∵PO∩PE=P,∴AE⊥平面POE,∴AE⊥OE.∵∠C=∠D=90O, ∴∠OEC=∠EAD,Rt EDA∆2AD =,20.解:(1(HF PH PF+(II11121(x xx-+法2:过点A,BAB 的中点,因为EMABS=21.解:(2.所以.22解:(1.(2,23.解:(1(2。
年石家庄市二模文科数学试卷及答案.doc

201X年石家庄市高中毕业班第二次模拟考试高三数学(文科)注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 }, N={5,7,8 },则A. B.C. D.=(6,7,8 }2. 复数-(i为虚数单位)在复平面内对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限3. 已知函数分别由右表给出,则的值为A. 1B.2C. 3D. 44. 若x、y满足约束条件,则z=3x-yA.最小值-8,最大值0B.最小值-4,最大值0C.有最小值-4,无最大值D.有最大值-4,无最小值5. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. 一个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 程序框图如右图,若n=5,则输出的s值为A. 30B. 50C. 62D. 669. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.0510. 已知拋物线的焦点为F,点M在该拋物线上,且在x轴上方,直线的倾斜角为600,则 |FM|=A. 4B. 6C. 8D. 1011. 已知a是实数,则函数的图象不可能是12. 已知函数则满足不等式的%的取值范围为A. B. (-3,1) C. [-3,0) D. (-3,0)第II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 双曲线的离心率为________.14. 在中,,AC=1 ,AB=,则BC的长度为________.15. 在区间[1,3]上随机选取一个数x,e x(e为自然对数的底数)的值介于e到e2之间的概率为________.16. 已知长方体ABCE-A1B1C1D1的外接球的体积为36,则该长方体的表面积的最大值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等比数列{a n}的前n项和为S n,a1=2, S1 2S2 3S3成等差数列.(I )求数列{a n}的通项公式;(II )数列是首项为-6,公差为2的等差数列,求数列{b n}的前n项和.18. (本小题满分12分)在三棱柱中,侧面为矩形,AB=1,,D为的中点,BD与交于点0,CO丄侧面(I )证明=BC AB1(II)若OC=OA,求三棱锥的体积.19. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(I )由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准〜则月均用水量的最低标准定为多少吨,请说明理由;(III)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).20. (本小题满分12分)已知点P(l,)在椭圆上,且该椭圆的离心率为.(I )求椭圆E的方程;(II)过椭圆E上一点P(x0,3)作圆的两条切线,分别交x轴于点B、C,求的面积.21. (本小题满分12分)己知函数(a<2,e为自然对数的底数).(1)若a=1,求曲线在点处的切线方程;(I I)若存在,使得.,求实数a的取值范围.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1几何证明选讲已知四边形ACBE,AB交CE于D点,(I )求证:;(II)求证:A、E、B、C四点共圆.23. (本小题满分H)分)选修4-4坐标系与参数方程在平面直角坐标系经xOy中,以0为极点,x轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C 1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C 2与曲线C 1的交点的横坐标为.(I )求曲线C 1的普通方程;(II )设A 、B 为曲线C 1与y 轴的两个交点,M 为曲线C 1上不同于A 、B 的任意一点,若直线MA 与MB 分别与x 轴交于P 、Q 两点,求证|OP| •|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数..(I )画出函数y=f(x)的图象; (II)若不等式恒成立,求实数a 的取值范围.201X 年石家庄市高中毕业班第二次模拟考试高三数学(文科答案) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1-5 CBACB 6-10 ABCBC 11-12 BD二、填空题:本大题共4小题,每小题5分,共20分. 13.54 14. 1或2 15. 1216. 72 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解:(Ⅰ)由已知21343S S S =+,211114()3(1)a a q a a q q +=+++………………….2分230q q -=,0q ∴=(舍)或13q =……………………4分1123n n a -⎛⎫∴=⋅ ⎪⎝⎭.………………………….6分(Ⅱ)由题意得:28n n b a n -=-,.........................8分11282283n n n b a n n -⎛⎫=+-=+- ⎪⎝⎭,设数列{}n b 的前n 项和为n T .⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n n 121-3n(-6+2n -8)T =+121-3…………………….10分121733n n n -⎛⎫=--+ ⎪⎝⎭. ……………………….12分18.解:(Ⅰ)因为11ABB A 是矩形,D 为1AA 中点,1AB =,1AA =2AD =, 所以在直角三角形1ABB 中,11tan 2AB AB B BB ∠==, 在直角三角形ABD中,1tan 2AD ABD AB ∠==, 所以1AB B ∠=ABD ∠,…………………2分又1190BAB AB B ∠+∠=,190BAB ABD ∠+∠=,所以在直角三角形ABO 中,故90BOA ∠=, 即1BD AB ⊥, …………………………………………………………………………4分又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥………………………6分(Ⅱ)在Rt ABD中,可求得BD =1AD AB OC OA BD ⨯====11122ABB S AB BB ∆=⋅= …………………………9分111--11332318B ABC C ABB ABB V V S OC ∆==⋅=⋅⋅= …………………………12分19.解: (Ⅰ)……………………………………………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.………………………………………………7分 (Ⅲ)这100位居民的月均用水量的平均数为1357911130.5(0.100.200.300.400.600.30.1)4444444⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯1.875= …………………12分20.解:(Ⅰ)依题意得:222221245141c e a a b c a b ⎧⎪==⎪⎪⎪=+⎨⎪⎪⎪+=⎪⎩,…………………2分解之得4,2,a c b ===∴椭圆E 的方程为2211612x y +=.………………5分 (Ⅱ)把0(,3)P x 代入2211612x y +=,求得02x =±,不妨取02x =, 易知过椭圆E 上一点0(,3)P x 作圆22(1)1x y +-=的两条切线的斜率存在, 设为k ,则切线的方程为:3(2)y k x -=-,………………7分1=,化简得23830k k -+=,则143k =243k -=.∴切线的方程为:432)3y x ±-=-,…………………9分令0y =得2B x =-2C x =-∴12732PBC S ∆=⋅=…………………12分 21.解:(Ⅰ)当1a =时,2()(1)xf x x x e =-+,切点为(1,)e , 于是有2()()xf x x x e '=+,……………2分(1)2k f e '==∴ 切线方程为2y ex e =-.………………5分(Ⅱ)()(2)x f x x x a e '=-+,令()0f x '=,得20x a =-< 或 0x =,(1)当220a --<…,即02a <…时,∴ 2(2)(4)a f a ea --=-,2(2)(4)f e a =-, 当02a <…时,有(2)(2)f f a -…若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…, 解得413a -剟, ∴ 01a 剟.……………8分∴ 2(2)(43)f e a --=+,2(2)(4)f e a =-, ∵ 22(43)(4)e a e a -+<-, ∴ (2)(2)f f >-若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…, 解得413a -剟, ∴ 403a -<….……………11分综上所述 413a -剟.………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分 22.(本小题满分10分)选修4-1几何证明选讲 证明:(Ⅰ)依题意,DE BEBE EC=,11∠=∠ ,所以DEB BEC ∆∆,………………2分 得34∠=∠, 因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆.……………………5分 (Ⅱ)因为因为EBD ACD ∆∆,所以E D B DA D C D=,即ED ADBD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆, 所以48∠=∠,………………7分因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠= 即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分 23.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=,射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x ,因为直线MA 与MB 分别与x 轴交于P 、Q 两点, 所以AM AP K K =,BM BQ K K =,………………7分 由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24. (本小题满分10分)选修4-5:不等式选讲 解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分 (Ⅱ) 由函数()y f x =与函数y ax =的图象可知, 当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分所以不等式()f x ax ≥恒成立, 则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。
【高三】河北省石家庄市高三毕业班复习质量检测(二)数学文试题(扫描版,

【高三】河北省石家庄市高三毕业班复习质量检测(二)数学文试题(扫描版,试卷说明:石家庄市高中毕业班复习教学质量测试(二)高中数学(文科答案)多项选择题:1-5CDCA6-10daccb11-12dc二。
填空题:13.614。
-15.916.__________ 3、回答问题:(回答问题根据步骤进行评分。
该答案只给出一个或两个答案。
学生可以根据标准设置除标准答案外的其他答案,并且只给出整数分)17解:(1)从正弦定理中得到2分4分6分(2)8分10分12分18解决方案:(I)据了解,在100名顾客中,有购买价格不低于100元的顾客2分3分:商场每天应准备的纪念品数量约为5分(II)将购物金额设置为元,当有顾客时,当有顾客时,当有顾客时,当有顾客时,当有顾客时,当有顾客时,。
7分,因此估计平均每日利润为。
10点、12点和19点解决方案:(1)取AB的中点Q,连接MQ和NQ,∵ an=BN∵,....... 2分∵ 飞机∵和∵,, ∵,, ∵,....... 4分,所以ab⊥ 平面mnq和Mn平面mnq⊙ ab⊥ Mn。
6点(2)将点P到平面NMA的距离设为h,∵ 是,∵ = 和∵, ∵............... 7分和∵,,, am的高度位于△ NMA分为9分、10分、12分和20分。
解决方案:(I)根据问题的含义,将移动圆中心的坐标设置为,。
2个点得到4个点(II)解1:让直线的方程为,然后,以该点为切点的切线的斜率为,其切线方程为,即通过该点的切线的方程为,让两条切线的交点在直线上,然后,那么,解决方案是,也就是说,从……的8个点到……的距离。
到直线的距离是10点。
此时,最小值为,点的坐标为12分解法2:如果设置在直线上,点在抛物线上,则以该点为切点的切线的斜率为,其切线方程为,即类似,以点为切点的方程为。
6如果设置了两条切线的平均通过点,那么这些点的坐标满足方程,也就是说,直线的方程为:。
2020年石家庄市二模文科数学试卷及答案

2020年石家庄市高中毕业班第二次模拟考试高三数学(文科)注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 }, N={5,7,8 },则A. B.C. D.=(6,7,8 }2. 复数-(i为虚数单位)在复平面内对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限3. 已知函数分别由右表给出,则的值为A. 1B.2C. 3D. 44. 若x、y满足约束条件,则z=3x-yA.最小值-8,最大值0B.最小值-4,最大值0C.有最小值-4,无最大值D.有最大值-4,无最小值5. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. 一个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 程序框图如右图,若n=5,则输出的s值为A. 30B. 50C. 62D. 669. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.0510. 已知拋物线的焦点为F,点M在该拋物线上,且在x轴上方,直线的倾斜角为600,则 |FM|=A. 4B. 6C. 8D. 1011. 已知a是实数,则函数的图象不可能是12. 已知函数则满足不等式的%的取值范围为A. B. (-3,1) C. [-3,0) D. (-3,0)第II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 双曲线的离心率为________.14. 在中,,AC=1,AB=,则BC的长度为________.15. 在区间[1,3]上随机选取一个数x,e x(e为自然对数的底数)的值介于e到e2之间的概率为________.16. 已知长方体ABCE-A1B1C1D1的外接球的体积为36,则该长方体的表面积的最大值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等比数列{an }的前n项和为Sn,a1=2, S12S23S3成等差数列.(I )求数列{an}的通项公式;(II )数列是首项为-6,公差为2的等差数列,求数列{bn}的前n项和.18. (本小题满分12分)在三棱柱中,侧面为矩形,AB=1,,D为的中点,BD与交于点0,CO丄侧面(I )证明=BC AB1(II)若OC=OA,求三棱锥的体积.19. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(I )由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准〜则月均用水量的最低标准定为多少吨,请说明理由;(III)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).20. (本小题满分12分)已知点P(l,)在椭圆上,且该椭圆的离心率为.(I )求椭圆E的方程;,3)作圆的两条切线,分别交x轴于点B、C,(II)过椭圆E上一点P(x求的面积.21. (本小题满分12分)己知函数(a<2,e为自然对数的底数).(1)若a=1,求曲线在点处的切线方程;(I I)若存在,使得.,求实数a的取值范围.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1几何证明选讲已知四边形ACBE,AB交CE于D点,(I )求证:;(II)求证:A、E、B、C四点共圆.23. (本小题满分H)分)选修4-4坐标系与参数方程在平面直角坐标系经xOy中,以0为极点,x轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为.(I )求曲线C1的普通方程;(II )设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线MA与MB分别与x轴交于P、Q两点,求证|OP| •|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲设函数..(I )画出函数y=f(x)的图象;(II)若不等式恒成立,求实数a的取值范围.2020年石家庄市高中毕业班第二次模拟考试高三数学(文科答案)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 CBACB 6-10 ABCBC 11-12 BD二、填空题:本大题共4小题,每小题5分,共20分.13. 5414. 1或2 15.1216. 72三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由已知21343S S S =+,211114()3(1)a a q a a q q +=+++………………….2分230q q -=,0q ∴=(舍)或13q =……………………4分1123n n a -⎛⎫∴=⋅ ⎪⎝⎭.………………………….6分(Ⅱ)由题意得:28n n b a n -=-,.........................8分11282283n n n b a n n -⎛⎫=+-=+- ⎪⎝⎭,设数列{}n b 的前n 项和为n T .⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n n 121-3n(-6+2n -8)T =+121-3…………………….10分121733n n n -⎛⎫=--+ ⎪⎝⎭. ……………………….12分18.解:(Ⅰ)因为11ABB A 是矩形,D 为1AA 中点,1AB =,12AA =,22AD =, 所以在直角三角形1ABB 中,112tan AB AB B BB ∠==, 在直角三角形ABD中,12tan 2AD ABD AB ∠==, 所以1AB B ∠=ABD ∠,…………………2分 又1190BAB AB B ∠+∠=o ,190BAB ABD ∠+∠=o ,所以在直角三角形ABO 中,故90BOA ∠=o ,即1BD AB ⊥, …………………………………………………………………………4分又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥………………………6分(Ⅱ)在Rt ABD V 中,可求得6BD =,213236AD AB OC OA BD ⨯⨯==== 111222ABB S AB BB ∆=⋅= …………………………9分111--11236332318B ABC C ABB ABB V V S OC ∆==⋅=⋅⋅= …………………………12分19.解: (Ⅰ)……………………………………………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为 2.5吨.………………………………………………7分 (Ⅲ)这100位居民的月均用水量的平均数为1357911130.5(0.100.200.300.400.600.30.1)4444444⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯1.875= …………………12分20.解:(Ⅰ)依题意得:222221245141c e a a b c a b ⎧⎪==⎪⎪⎪=+⎨⎪⎪⎪+=⎪⎩,…………………2分解之得4,2,a c b ===.∴椭圆E 的方程为2211612x y +=.………………5分 (Ⅱ)把0(,3)P x 代入2211612x y +=,求得02x =±,不妨取02x =, 易知过椭圆E 上一点0(,3)P x 作圆22(1)1x y +-=的两条切线的斜率存在, 设为k ,则切线的方程为:3(2)y k x -=-,………………7分1=,化简得23830k k -+=,则1k=2k =.∴切线的方程为:32)y x -=-,…………………9分 令0y =得2B x =-2C x =-∴132PBC S ∆==g …………………12分21.解:(Ⅰ)当1a =时,2()(1)x f x x x e =-+,切点为(1,)e , 于是有2()()x f x x x e '=+,……………2分 (1)2k f e '==∴ 切线方程为2y ex e =-.………………5分 (Ⅱ)()(2)x f x x x a e '=-+,令()0f x '=,得20x a =-< 或 0x =, (1)当220a --<„,即02a <„时,x 2-(2,2)a -- 2a - (2,0)a - 0 (0,2) 2 ()f x ' + 0 _ 0 + ()f x Z极大值 ] 极小值 Z∴ 2(2)(4)a f a e a --=-,2(2)(4)f e a =-, 当02a <„时,有(2)(2)f f a -…若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…,解得413a -剟, ∴ 01a 剟.……………8分x 2- (2,0)- 0(0,2) 2 ()f x ' - 0 + ()f x ] 极小值 Z ∴ 2(2)(43)f e a --=+,2(2)(4)f e a =-, ∵ 22(43)(4)e a e a -+<-, ∴ (2)(2)f f >-若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…,解得413a -剟, ∴ 403a -<„.……………11分综上所述 413a -剟.………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分 22.(本小题满分10分)选修4-1几何证明选讲证明:(Ⅰ)依题意,DE BEBE EC=,11∠=∠ , 所以DEB BEC ∆∆:,………………2分 得34∠=∠, 因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆:.……………………5分 (Ⅱ)因为因为EBD ACD ∆∆:,所以ED BD AD CD =,即ED ADBD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆:, 所以48∠=∠,………………7分因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠=即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分23.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=, 射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为,33⎛ ⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x ,因为直线MA 与MB 分别与x 轴交于P 、Q 两点, 所以AM AP K K =,BM BQ K K =,………………7分 由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24. (本小题满分10分)选修4-5:不等式选讲解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分(Ⅱ) 由函数()y f x =与函数y ax =的图象可知,当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分 所以不等式()f x ax ≥恒成立,则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年石家庄市高中毕业班第二次模拟考试高三数学(文科)注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 }, N={5,7,8 },则A. B.C. D.=(6,7,8 }2. 复数-(i为虚数单位)在复平面内对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限3. 已知函数分别由右表给出,则的值为A. 1B.2C. 3D. 44. 若x、y满足约束条件,则z=3x-yA.最小值-8,最大值0B.最小值-4,最大值0C.有最小值-4,无最大值D.有最大值-4,无最小值5. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. 一个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 程序框图如右图,若n=5,则输出的s值为A. 30B. 50C. 62D. 669. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.0510. 已知拋物线的焦点为F,点M在该拋物线上,且在x轴上方,直线的倾斜角为600,则 |FM|=A. 4B. 6C. 8D. 1011. 已知a是实数,则函数的图象不可能是12. 已知函数则满足不等式的%的取值范围为A. B. (-3,1) C. [-3,0) D. (-3,0)第II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 双曲线的离心率为________.14. 在中,,AC=1 ,AB=,则BC的长度为________.15. 在区间[1,3]上随机选取一个数x,e x(e为自然对数的底数)的值介于e到e2之间的概率为________.16. 已知长方体ABCE-A1B1C1D1的外接球的体积为36,则该长方体的表面积的最大值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等比数列{a n}的前n项和为S n,a1=2, S1 2S2 3S3成等差数列.(I )求数列{a n}的通项公式;(II )数列是首项为-6,公差为2的等差数列,求数列{b n}的前n项和.18. (本小题满分12分)在三棱柱中,侧面为矩形,AB=1,,D为的中点,BD与交于点0,CO丄侧面(I )证明=BC AB1(II)若OC=OA,求三棱锥的体积.19. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(I )由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准〜则月均用水量的最低标准定为多少吨,请说明理由;(III)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).20. (本小题满分12分)已知点P(l,)在椭圆上,且该椭圆的离心率为.(I )求椭圆E的方程;(II)过椭圆E上一点P(x0,3)作圆的两条切线,分别交x轴于点B、C,求的面积.21. (本小题满分12分)己知函数(a<2,e为自然对数的底数).(1)若a=1,求曲线在点处的切线方程;(I I)若存在,使得.,求实数a的取值范围.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1几何证明选讲已知四边形ACBE,AB交CE于D点,(I )求证:;(II)求证:A、E、B、C四点共圆.23. (本小题满分H)分)选修4-4坐标系与参数方程在平面直角坐标系经xOy中,以0为极点,x轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C 1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C 2与曲线C 1的交点的横坐标为.(I )求曲线C 1的普通方程;(II )设A 、B 为曲线C 1与y 轴的两个交点,M 为曲线C 1上不同于A 、B 的任意一点,若直线MA 与MB 分别与x 轴交于P 、Q 两点,求证|OP| •|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数..(I )画出函数y=f(x)的图象; (II)若不等式恒成立,求实数a 的取值范围.2012年石家庄市高中毕业班第二次模拟考试高三数学(文科答案) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1-5 CBACB 6-10 ABCBC 11-12 BD二、填空题:本大题共4小题,每小题5分,共20分. 13.54 14. 1或2 15. 1216. 72 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解:(Ⅰ)由已知21343S S S =+,211114()3(1)a a q a a q q +=+++………………….2分230q q -=,0q ∴=(舍)或13q =……………………4分1123n n a -⎛⎫∴=⋅ ⎪⎝⎭.………………………….6分(Ⅱ)由题意得:28n n b a n -=-,.........................8分11282283n n n b a n n -⎛⎫=+-=+- ⎪⎝⎭,设数列{}n b 的前n 项和为n T .⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n n 121-3n(-6+2n -8)T =+121-3…………………….10分121733n n n -⎛⎫=--+ ⎪⎝⎭. ……………………….12分18.解:(Ⅰ)因为11ABB A 是矩形,D 为1AA 中点,1AB =,1AA =2AD =, 所以在直角三角形1ABB 中,11tan 2AB AB B BB ∠==, 在直角三角形ABD中,1tan 2AD ABD AB ∠==, 所以1AB B ∠=ABD ∠,…………………2分又1190BAB AB B ∠+∠=,190BAB ABD ∠+∠=,所以在直角三角形ABO 中,故90BOA ∠=, 即1BD AB ⊥, …………………………………………………………………………4分又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥………………………6分(Ⅱ)在Rt ABD中,可求得BD =1AD AB OC OA BD ⨯====11122ABB S AB BB ∆=⋅= …………………………9分111--11332318B ABC C ABB ABB V V S OC ∆==⋅=⋅⋅= …………………………12分19.解: (Ⅰ)……………………………………………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.………………………………………………7分 (Ⅲ)这100位居民的月均用水量的平均数为1357911130.5(0.100.200.300.400.600.30.1)4444444⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯1.875= …………………12分20.解:(Ⅰ)依题意得:222221245141c e a a b c a b ⎧⎪==⎪⎪⎪=+⎨⎪⎪⎪+=⎪⎩,…………………2分解之得4,2,a c b ===∴椭圆E 的方程为2211612x y +=.………………5分 (Ⅱ)把0(,3)P x 代入2211612x y +=,求得02x =±,不妨取02x =, 易知过椭圆E 上一点0(,3)P x 作圆22(1)1x y +-=的两条切线的斜率存在, 设为k ,则切线的方程为:3(2)y k x -=-,………………7分1=,化简得23830k k -+=,则143k =243k -=.∴切线的方程为:432)3y x ±-=-,…………………9分令0y =得2B x =-2C x =-∴12732PBC S ∆=⋅=…………………12分 21.解:(Ⅰ)当1a =时,2()(1)xf x x x e =-+,切点为(1,)e , 于是有2()()xf x x x e '=+,……………2分(1)2k f e '==∴ 切线方程为2y ex e =-.………………5分(Ⅱ)()(2)x f x x x a e '=-+,令()0f x '=,得20x a =-< 或 0x =,(1)当220a --<…,即02a <…时,∴ 2(2)(4)a f a ea --=-,2(2)(4)f e a =-, 当02a <…时,有(2)(2)f f a -…若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…, 解得413a -剟, ∴ 01a 剟.……………8分∴ 2(2)(43)f e a --=+,2(2)(4)f e a =-, ∵ 22(43)(4)e a e a -+<-, ∴ (2)(2)f f >-若存在[2,2]x ∈-使得22()3f x a e …,只须222(4)3e a a e -…, 解得413a -剟, ∴ 403a -<….……………11分综上所述 413a -剟.………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分 22.(本小题满分10分)选修4-1几何证明选讲 证明:(Ⅰ)依题意,DE BEBE EC=,11∠=∠ ,所以DEB BEC ∆∆,………………2分 得34∠=∠, 因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆.……………………5分 (Ⅱ)因为因为EBD ACD ∆∆,所以E D B DA D C D=,即ED ADBD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆, 所以48∠=∠,………………7分因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠= 即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分 23.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=,射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x ,因为直线MA 与MB 分别与x 轴交于P 、Q 两点, 所以AM AP K K =,BM BQ K K =,………………7分 由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24. (本小题满分10分)选修4-5:不等式选讲 解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分 (Ⅱ) 由函数()y f x =与函数y ax =的图象可知, 当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分所以不等式()f x ax ≥恒成立, 则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。