高中物理-气体的性质知识点汇总
高中物理气体知识点总结

高中物理气体知识点总结一、气体的性质1. 气体的无定形:气体没有固定的形状和体积,能够自由流动。
2. 气体的可压缩性:由于气体分子之间的间距较大,气体易受到外界压力的影响而发生压缩或膨胀。
3. 气体的弹性:气体分子之间存在相互作用力,当气体受到外力作用时,能够产生弹性形变。
二、气体的状态方程1. 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
2. 理想气体状态方程的应用:可以用于计算气体的压强、体积、物质的量和温度之间的关系,也适用于气体的混合、稀释等情况。
三、气体的压强1. 气体的压强定义:单位面积上气体分子对容器壁的撞击力。
2. 压强的计算公式:P = F/A,其中P为压强,F为气体分子对容器壁的撞击力,A为单位面积。
3. 压强的单位:国际单位制中,压强的单位为帕斯卡(Pa)。
4. 大气压:大气对地面单位面积上的压强,标准大气压为101325Pa。
四、气体的温度1. 气体的温度定义:气体分子的平均动能的度量。
2. 温度的单位:国际单位制中,温度的单位为开尔文(K)。
3. 摄氏度和开尔文度的转换:T(K) = t(℃) + 273.15。
五、气体的分子速率与平均动能1. 气体分子速率的分布:气体分子的速率服从麦克斯韦速率分布定律,速率越高的分子数目越少。
2. 平均动能与温度的关系:气体的平均动能与温度成正比,温度越高,气体分子的平均动能越大。
六、理想气体的压强与温度的关系1. Gay-Lussac定律:在等体积条件下,理想气体的压强与温度成正比,P1/T1 = P2/T2。
2. Charles定律:在等压条件下,理想气体的体积与温度成正比,V1/T1 = V2/T2。
3. 综合气体状态方程和Gay-Lussac定律、Charles定律,可以得到压强、体积和温度之间的关系。
七、气体的扩散和扩散速率1. 气体的扩散:气体分子由高浓度区域向低浓度区域的自由运动过程。
高中物理热学理想气体必考知识点归纳

(每日一练)高中物理热学理想气体必考知识点归纳单选题1、氧气分子在0℃和100℃下的速率分布如图所示,纵轴表示对应速率下的氧气分子数目ΔN占氧气分子总数N的百分比,如图,由图线信息可得()A.温度升高使得每一个氧气分子的速率都增大B.同一温度下,速率大的氧气分子所占比例大C.温度升高使得速率较小的氧气分子所占比例变小D.温度越高,一定速率范围内的氧气分子所占比例越小答案:C解析:A.图中100℃的曲线较0℃的曲线整体右移,所以温度升高使得氧气分子的平均速率增大,故A错误;B.根据曲线的单峰性可知,在同一温度下,中等速率大小的氧气分子所占的比例大,故B错误;C.100℃的曲线在速率较小处相比0℃的曲线相同速率处来得低,所以温度升高使得速率较小的氧气分子所占的比例变小,故C正确;D.从两曲线可以看出,温度越高,速率约在450m/s以下的氧气分子占比下降而该速率以上的氧气分子占比上升,故D错误。
故选C。
2、一定质量的理想气体,从状态a开始,经历ab,bc,cd,da四个过程又回到状态a,其体积V与热力学温度T的关系图像如下图所示,cd的延长线经过坐标原点O,ab、bc分别与横轴、纵轴平行,e是Ob与da的交点,下列说法正确的是()A.气体从状态d到状态a是压强增大B.气体从状态b到状态c是气体对外做功同时吸热C.气体从状态a到状态b过程中吸热D.气体从状态c到状态d是等容变化答案:C解析:A.根据pVT=C可知V T = C p坐标原点O与ad上各点的连线斜率与压强成反比,由图可知,气体从状态d到状态a是压强减小,A错误;B.由图可知,气体从状态b到状态c等温变化,气体内能不变,同时体积变小,外界对气体做功,由热力学第一定律可知,气体放出热量,B错误;C.气体从状态a到状态b过程中,根据图像可知为等容变化,气体不做功,但温度升高内能增大,根据热力学第一定律可知,气体吸收热量,C正确;D.根据VT=C可知,由于cd的延长线经过坐标原点O,则气体从状态c到状态d是等压变化,D错误。
高中物理必备知识点 气体的等容变化和等压变化

(℃)在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。
一、气体的等容变化:1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。
2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273.或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比. 3、公式:常量==1122T pT p4、查理定律的微观解释:一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。
这与查理定律的结论一致。
二、气体的等压变化:1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系.2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273.或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比. 3、公式:常量==1122T V T V 4、盖·吕萨克定律的微观解释:一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度(T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小三、气态方程一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
nR T V p T V p ==111222 n 为气体的摩尔数,R 为普适气体恒量063.上海市南汇区2008年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。
高中物理 第一章气体的pVT性质

第一章 气体的PVT 性质主要内容1. 理想气体状态方程及微观模型2. Daltonp 定律与Amagat 定律3. 实际气体的PVT 性质4. 范德华方程5. 实际气体的液化与临界性质重点1. 重点掌握理想气体状态方程及微观模型2. 重点掌握Daltonp 定律与Amagat 定律3. 重点掌握实际气体的液化与临界性质难点1. 理想气体模型及其理论解释2. 实际气体的液化与临界性质教学方式1. 采用CAI 课件与黑板讲授相结合的教学方式2. 合理运用问题教学或项目教学的教学方法教学过程一、理想气体状态方程17世纪中期,为了寻找气体的状态方程,通过大量实验得出:状态方程: pV =nRT (其中压力越低越符合条件)R =0lim m p pV R T p T→=↓↑ R=8.314J/K ⋅mol 理想气体定义与模型定义:在任何温度及任何压力下都能严格服从上面的状态方程的气体就定义为理想气体。
上式就称为理想气体的状态方程。
模型:分子为质点,无体积;分子间无相互作用力。
二、Daltonp 定律与Amagat 定律1. Daltonp 定律与分压力混合气体的总压力等于混合气体中各组分气体在与混合气体有相同温度和相同体积条件下单独存在时所产生的压力之和(只适用于理想气体)。
B Bp p =∑ B B p y p =(适用于任何气体)分压力B p 是它的摩尔分数B y 与混合气体的总压力p 之积。
2. Amagat 定律混合气体的总压力等于混合气体中各组分气体在与混合气体有相同温度和相同体积条件下单独存在时所产生的压力之和(只适用于理想气体)。
BB V V =∑ (只适用于理想气体)//B B B V y nRT p n RT p ==(只适用于理想气体)三、实际气体的PVT 性质,///m m m m idV V Z pV nRT pV RT RT p V ==== m V 实际气体在某一确定状态下的摩尔体积,m id V 代表与实际有相同温度和相同压力的理想气体的摩尔体积用大小相等分子间的引力与斥力作比理想气体易压缩同温同压下,实际气体比理想气体难压缩同温同压下,实际气体111=<>Z四、范德华方程RT b V V a p m m=-+))((2 22()()n a p V nb nRT V+-= 五、实际气体的液化与临界性质 1. c T T >,任何p 均不液化同一温度,p ↑,偏离↑ 同一压力,T ↓,偏离↑ 2. c T T <3. c T T =,临界点定义 临界温度c T临界压力c P临界摩尔体积c V。
高一化学第八章知识点梳理

高一化学第八章知识点梳理化学作为一门自然科学,研究的是物质的组成、性质、结构及其变化规律。
高中化学课程的学习是为了帮助学生建立基本的化学知识体系和思维方式,为他们以后的学习和工作打下坚实的基础。
在高一年级的化学教学中,第八章是一个重要的内容。
本文将对高一化学第八章的知识点进行梳理。
第一节:气体的概念和性质1. 气体的定义:气体是一种没有一定体积和形状,并且具有可塑性、可压缩性和扩散性的物质。
2. 气体的物理性质:气体具有压强、温度、体积和容器等特性,可以通过压强-体积定律、查理定律、玻意耳-马略特定律等关系进行描述。
3. 气体的化学性质:气体具有惰性、活泼和吸附等性质,可以通过氧化性、可燃性和化学反应等进行描述。
第二节:理想气体与实际气体1. 理想气体:理想气体是指在一定温度和压强下,不考虑其分子间相互作用力的气体。
理想气体的行为符合理想气体状态方程和理想气体定律。
2. 理想气体状态方程:PV=nRT。
其中,P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
3. 实际气体与理想气体的差异:实际气体在高压和低温条件下会出现分子间的相互作用力,这种作用力会使气体的体积比理想气体小,压强比理想气体大。
第三节:气体分子运动论1. 分子运动的特点:气体分子具有无规则的热运动,具有高速和碰撞运动,并且分子之间不断进行碰撞。
2. 碰撞理论:碰撞理论是研究气体分子之间碰撞行为的理论。
根据碰撞理论,气体的压强与分子数、分子质量和分子速率有关。
3. 分子间相互作用力:分子间相互作用力包括吸引力和斥力。
吸引力是分子间吸引力,斥力是分子间排斥力。
根据分子间相互作用力的不同,可以将气体分子分为惰性气体和活泼气体。
第四节:气体的溶解度1. 溶解度的定义:溶解度是指单位质量溶剂中最多可以溶解多少量溶质。
溶解度与溶剂和溶质的属性有关。
2. 溶解度的影响因素:溶解度受温度、压强和溶质浓度等因素的影响。
高中物理化学知识点

高中物理化学知识点高中物理化学知识点一、物理性质1、有色气体:F2(淡黄绿色)2(黄绿色)、Cl 、Br2(g)(红棕色)2(g)、I (紫红色)、NO2 (红棕色)3(淡蓝色)、O ,其余均为无色气体。
其它物质的颜色见会考手册的颜色表。
;有臭2、有刺激性气味的气体:HF、HCl、HBr、HI、NH3、SO2、NO2、F2、Cl2、Br2(g)鸡蛋气味的气体:H2S。
3、熔沸点、状态:① 同族金属从上到下熔沸点减小,同族非金属从上到下熔沸点增大。
② 同族非金属元素的氢化物熔沸点从上到下增大,含氢键的NH3、H2O、HF 反常。
③ 常温下呈气态的有机物:碳原子数小于等于 4 的烃、一氯甲烷、甲醛。
④ 熔沸点比较规律:原子晶体离子晶体分子晶体,金属晶体不一定。
⑤ 原子晶体熔化只破坏共价键,离子晶体熔化只破坏离子键,分子晶体熔化只破坏分子间作用力。
⑥ 常温下呈液态的单质有Br2、Hg;呈气态的单质有H2、O2、O3、N2、F2、Cl2;常温呈液态的无机化合物主要有H2O、H2O2、硫酸、硝酸。
⑦ 同类有机物一般碳原子数越大,熔沸点越高,支链越多,熔沸点越低。
同分异构体之间:正异新,邻间对。
⑧ 比较熔沸点注意常温下状态,固态液态气态。
如:白磷二硫化碳干冰。
⑨ 易升华的物质:碘的单质、干冰,还有红磷也能升华(隔绝空气情况下),但冷却后变成白磷,氯化铝也可;三氯化铁在100 度左右即可升华。
⑩易液化的气体:NH3、Cl2 ,NH3 可用作致冷剂。
4、溶解性① 常见气体溶解性由大到小:NH3、HCl、SO2、H2S、Cl2、CO2。
极易溶于水在空气中易形成白雾的气体,能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。
极易溶于水的气体尾气吸收时要用防倒吸装置。
② 溶于水的有机物:低级醇、醛、酸、葡萄糖、果糖、蔗糖、淀粉、氨基酸。
苯酚微溶。
高中物理理想气体经典总结讲解学习

高中物理理想气体经典总结知识要点:一、 基础知识1、气体的状态:气体状态,指的是某一定量的气体作为一个热力学系统在不受外界影响的条件下,宏观性质不随时间变化的状态,这种状态通常称为热力学平衡态,简称平衡态。
所说的不受外界影响是指系统和外界没有做功和热传递的相互作用,这种热力学平衡,是一种动态平衡,系统的性质不随时间变化,但在微观上分子仍永不住息地做热运动,而分子热运动的平均效果不变。
2、气体的状态参量:(1)气体的体积(V )① 由于气体分子间距离较大,相互作用力很小,气体向各个方向做直线运动直到与其它分子碰撞或与器壁碰撞才改变运动方向,所以它能充满所能达到的空间,因此气体的体积是指气体所充满的容器的容积。
(注意:气体的体积并不是所有气体分子的体积之和)② 体积的单位:米3(m 3) 分米3(dm 3) 厘米3(cm 3) 升(l ) 毫升(ml )(2)气体的温度(T )① 意义:宏观上表示物体的冷热程度,微观上标志物体分子热运动的激烈程度,是气体分子的平均动能大小的标志。
② 温度的单位:国际单位制中,温度以热力学温度开尔文(K )为单位。
常用单位为摄氏温度。
摄氏度(℃)为单位。
二者的关系:T=t+273(3)气体的压强(P )① 意义:气体对器壁单位面积上的压力。
② 产生:由于气体内大量分子做无规则运动过程中,对容器壁频繁撞击的结果。
③单位:国际单位:帕期卡(Pa )常用单位:标准大气压(atm ),毫米汞柱(mmHg )换算关系:1atm=760mmHg=1.013×105Pa1mmHg=133.3Pa3、气体的状态变化:一定质量的气体处于一定的平衡状态时,有一组确定的状态参量值。
当气体的状态发生变化时,一般说来,三个参量都会发生变化,但在一定条件下,可以有一个参量保持不变,另外两个参量同时改变。
只有一个参量发生变化的状态变化过程是不存在的。
4、气体的三个实验定律(1)等温变化过程——玻意耳定律① 内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比。
高中物理选修3-3“气体”知识点总结

高中物理选修3-3“气体”知识点总结
1、气体实验定律
①玻意耳定律:pV C =(C 为常量)→等温变化
微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这
适用条件:压强不太大,温度不太低 图象表达:1p V
-
②查理定律:p C T =(C 为常量)→等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情
适用条件:温度不太低,压强不太大 图象表达:p V -
③盖吕萨克定律:V C T =(C 为常量)→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变
适用条件:压强不太大,温度不太低 图象表达:V T -
2、理想气体
宏观上:严格遵守三个实验定律的气体,在常温常压下实验
气体可以看成理想气体
微观上:分子间的作用力可以忽略不计,故一定质量的理想 气体的内能只与温度有关,与体积无关 理想气体的方程:pV C T
= 3、气体压强的微观解释
大量分子频繁的撞击器壁的结果
影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)
V V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。