1、数的整除

合集下载

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

第一章数的整除1.1 整数和整除的意义1、在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2、在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3、零和正整数统称为自然数4、正整数、负整数和零统称为整数5、整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a1.2 因数和倍数1、如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数2、倍数和因数是相互依存的3、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3 能被2, 5整除的数1、个位数字是0,2,4,6,8的数都能被2整除2、整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3、在正整数中(除1外),与奇数相邻的两个数是偶数4、在正整数中,与偶数相邻的两个数是奇数5、个位数字是0,5的数都能被5整除6、0是偶数1.4 素数、合数与分解素因数1、只含有因数1及本身的整数叫做素数或质数2、除了1及本身还有别的因数,这样的数叫做合数3、1既不是素数也不是合数4、奇数和偶数统称为正整数,素数、合数和1统称为正整数5、每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6、把一个合数用素因数相乘的形式表示出来,叫做分解素因数7、分解素因数方法:树枝分解法、短除法1.5 公因数与最大公因数1、几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2、如果两个整数只有公因数1,那么称这两个数互素数3、把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4、如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5、如果两个数是互素数,那么这两个数的最大公因数是11.6 公倍数与最小公倍数1、几个数公有的倍数,叫做这几个数的公倍数2、几个数中最小的公因数,叫做这几个数的最小公倍数3、求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4、如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积试试你的身手!一:填空题(每空1分,共22分)1.3.6÷2=1.8,(能,不能)说2整除2.8。

数的整除特征(一)教案

数的整除特征(一)教案

数的整除特征(一)新课引入:数的整除问题是整数的内容中最基本的问题。

常见数的整除特征如下:(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!如121,1375。

(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

如312。

新课讲授:例1.在能被2,3,5整除。

能被2,3,5和5整除的数的特征是个位上的数字必须是0,里填能被3+9+0的和能被3整除,那有几种呢?填1,4,7.符合条件的有2190,2490,2790。

第1讲 数的整除(1)

第1讲   数的整除(1)

第一讲数的整除(1)【知识梳理】1、整除的定义:对于整数a和不为零的整数b,如果a除以b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记做b a。

a就是b的倍数,b是a的因数(或因数)。

2、一些数的整除特征:①被2整除的特征:数的个位上是0、2、4、6、8(即是偶数);②被3、9整除的特征:数的各数位上的数字和是3或9的倍数;③被5整除的特征:数的个位上是0、5;④被4、25整除的特征:数的末两位是4或25的倍数;⑤被8、125整除的特征:数的末三位是8或125的倍数;⑥被11整除的特征:数的奇数位上的数字和与偶数位上的数字和,两者的差是11的倍数。

【例题精讲】例1、按要求写出符合要求的数:一个四位数467□。

(1)要使它是2的倍数,这个数可能是();(2)要使它是5的倍数,这个数可能是();(3)要使它既含有因数2,又含有因数5,这个数是()。

分析:个位上是0、2、4、6、8的数是2的倍数数;个位上是0或5的数是5的倍数;个位上是0的数,能同时被2和5整除。

解答:(1)这个数可能是4670、4672、4674、4676、4678。

(2)这个数可能是4670、4675。

(3)这个数是4670。

例2、判断47382能否被3或9整除?分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。

47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。

解答:47382能被3整除,不能被9整除。

例3、判断:1864能否被4整除?分析:能被4整除的数的特点是这个数的末两位是4的倍数, 1864的末两位是64,64是4的倍数。

能被125整除的数的特点是这个数的末三位是125的倍数,29375的末三位是375,375是125的倍数。

解答:1864能被4整除,29375能被125整除。

例4、29372能否被8整除?分析:能被125整除的数的特点是这个数的末三位是8的倍数,29372的末三位是372,372不是8的倍数。

数论1—数的整除

数论1—数的整除

第一讲——数的整除基本概念自然数:像“0、1、2、3、4、……”这样的数叫做自然数。

整数:像“—1、—2、0、1、2……”这样的数叫做整数。

除尽:两个数的商不是无限小数。

比如5÷2=2.5整除:两个数的商是整数。

除尽和整除不一样一、整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b┾a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

注:因数和倍数只在非零自然数范围内研究。

零是任何数的倍数。

二、数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

三、数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

1.数的整除性

1.数的整除性

数的整除性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。

例2从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

例3六位数是6的倍数,这样的六位数有多少个?例4要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?1、能被3整除的最小三位数是(),能被5整除的最大三位数是()2,又能被3整除,而且还是5的倍数的最小三位数是()3、在自然数中,()既不是质也不是合。

既是奇数又是质数的最小的数是(),()既是质数又是合数。

4、用三个一位质数组成能同时被3和5整除的三位数,最大的是(),最小的数是()。

4、自然数a除以自然数b,商是15,那么a和b的最大公约数是()。

5、三个质数的最小公倍数是42,这三个质数是()。

6、100以内同时能被3和7整除的最大奇数是(),最大偶数是()。

1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。

数的整除性质技巧

数的整除性质技巧

数的整除性质技巧1.数的整除性质:1)若a整除b,b整除c,则a整除c。

(传递性)2)若a整除b且a整除c,则a整除b+c。

3)若a和b是正整数,且a整除b,那么a≤b。

4) 若a整除b,且c是任意整数,则a整除bc。

2.奇偶性质:1)若数a的个位数是偶数,则a整除22)若一个数是奇数,那么它的倍数一定是奇数。

3)若一个数是偶数,那么它的倍数一定是偶数。

3.除法性质:1) 若b整除a,且c是任意整数,则b整除ac。

2)若b整除a且b≠0,那么a除以b的商和余数唯一确定。

4.数位和性质:1)若数a的数位和是n,则a整除n。

2)若数a的数位和是9的倍数,那么a也是9的倍数。

3)若数a的数位和是3的倍数,那么a也是3的倍数。

5.数和运算性质:1)若a整除c且b整除c,则a+b整除c。

2)若a整除c且b整除c,则a-b整除c。

3)若a和b都整除c,则a+b也整除c。

4) 若a整除c且b整除c,则ax + by也整除c,其中x和y是任意整数。

6.乘法性质:1)若数a整除c且数b整除c,则a×b整除c。

2) 若数a整除bc且a和b互质,那么a整除c。

3)若数a整除b且数b整除a,则a和b的最大公约数等于其中的较小数。

7.倍数性质:1)若a整除b,并且b是a的倍数,那么a整除b的任意倍数。

2)一个数是另一个数的倍数时,它们的公倍数一定也是这个数的倍数。

8.整除和余数的关系:1)如果数a是数b的整数倍,那么a和b的余数相同。

2)如果数a和b除以数c的余数相同,那么a-b是c的倍数。

以上是一些常用的数的整除性质技巧,通过灵活运用这些技巧可以在解题过程中减少计算量,提高解题效率。

在实际运用中,我们可以根据题目的要求和条件选择相应的技巧,以求解问题。

同时,深入理解这些性质背后的原理,能够更好地理解数的整除关系,为数的整除性质的使用提供更大的帮助。

1.数的整除

1.数的整除

目录1.等差数列2.数的整除(一)3.数的整除(二)4.质数与合数5.奇数与偶数6.长方体和正方体的认识7.长方体和正方体的表面枳8.长方体和正方体的体积9.分数的意义和性质10.期中考试11.分数的加、减法12.分数加、减法应用题13.最大公因数和最小公倍数14.最大公因数和最小公倍数的应用15.最简分数的个数及其和16.分数大小的比较17.分、小数的互化18.分数串19.排列与组合20.期末考试2015年(春季)yanghoupei编第 1 讲等差数列知识要点:1.等差数列:如果一个数列从第二项开始,每一项与它前面一项的差都相等,就叫做等差数列;第一个数叫首项,最后一个数叫末项,这个相等的差叫公差,数的个数叫项。

2. 总和=(首项+末项)×项数÷ 2 项数=(末项-首项)÷公差+1首项=末项-公差×(项数-1) 末项=首项+公差×(项数-1)公差=(末项-首项)÷(项数-1)例1.求下面各数列的总和:(1) 1+2+3+……+35+36 (2) 21+22+23+……+49+50(3)计算:3+8+13+18+23+……+2003+2008例2.求数列4、10、16、22、……前50个数的和。

例3.一个等差数列从小到大共100项,末项是2003,公差是3,求这个等差数列的总和。

例4.一堆木料有18层,最上一层是1根,往下每一层都比上一层多1根,这堆木料共有多少根?例5.某学生看一本故事书,第一天看了8页,以后每天都比前一天多看3页,刚好7天看完,这本故事书共有多少页?练习题:1.计算下面各题:(1)1+2+3+……+99 (2)31+32+33+……+77+78(3) 3+8+13+18+……+198+2032.求数列1、5、9、13、17、21……前50个数的和。

3.一个等差数列从小到大共30项,已知末项是124,公差是4,求总和。

数的整除(一)

数的整除(一)

数的整除特性(一)【知识要点】在自然数范围内,如果数a除以数b商是整数没有余数,我们就说数a能被数b整除。

如果数a能被数b整除,那么数a叫做数b的倍数,数b叫做数a的约数。

能被2整除数的特征,个位是02468的数能被2整除。

能被5整除数的特征,个位是0或5的数能被5整除。

能被3(或9)整除数的特征,个位数字之和能被3(或9)整除,这个数就能被3(或9)整除。

能被4(或25)整除数的特征,一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

能被8(或125)整除数的特征,一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

如果要判断A能否被B整除(B的数值较大),我们可以把B分解为C×D(B=C×D),A如果能被C整除,也能被D整除,那么A能被B整除。

【典型例题】例1、四位数7A2B能被2.3.5整除,这个四位数是多少?练1、.一个五位数6A58B,既能被3整除,有含有因数5,同时又是2的倍数,这样的五位数有哪几个?例2、有一个三位数8A7能被9整除,这个数是多少?练2. 有一个四位数7AA1能被9整除,A代表什么数?这个四位数是多少?例3.把2000个苹果平均分成四堆(或25堆),能否正好分完?例4.一个五位数865□□能分别被3,4,5,整除,这样的五位数中最小的一个是多少?练4、在568后补上三个数字,组成一个六为数,使它分别能被3,4,5,整除,且使该数尽可能小?练4、在865后面补上三个数字,组成一个六位数,使它能分别被3.4.5.整除,且使这个数值尽可能的小。

例5、.一个三位数5A6,它能同时被4和9整除,这个三位数是多少?例6、在97538()()的()中填上什么数字,就能被15整除?填上什么数字就能被45整除?练6、87654321AB这个十位数能被36整除,那么这个数个位上的数最小是几?【课堂练习】1.按要求填空。

在1278,4632,5468,119375,37625,93648,87615,1548764中,能被9整除的数有(),能被4整除的数有(),能被25整除的数有(),能被8整除的数有(),能被125整除的数有()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除
一、数的整除
1.内容要目
数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

2.基本要求
(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。

(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。

3.重点和难点
重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。

难点是求两个正整数的最小公倍数。

一.知识梳理
1.数的整除
整数a除以整数b,如果除得的商正好是整数,余数为0,那么称a能被b整除,b能整除a
2.因数和倍数
在正整数范围内,如果数a能被数b整除,那么a就叫做b的倍数,b 就叫做a的因数。

一个正整数的因数是有限的,其中最小的一个因数是1,最大的一个因数是它本身
3.能被2、5整除的正整数的特征
个位数字是0、2、4、6、8的数都能被2整除;个位数字是0或5的数都能被5整除,个位数字是0的数能同时被2和5整除
4.奇数和偶数
能被2整除的整数为偶数,不能被2整除的整数为奇数
5.素数和合数
一个正整数,如果只有1和它本身两个因数,这样的数叫做素数(或质数);
一个正整数,如果除了1和它本身还有别的因数,这样的数叫做合数1既不是素数也不是合数
正整数按照含因数的个数分类,可以分为素数、合数和1
6.分解素因数
每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。

把一个合数用素因数相乘的形式表示出来,
叫做分解素因数
7.公因数和最大公因数
几个数公有的因数,叫做这几个数的公因数,其中最大的一个,称为这几个数的最大公因数。

几个数的最大公因数必须包含它们全部公有的因数。

8.两个数互素
若两个数的公因数只有1,则称这两个数互素;1和任何数都互素
9.公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做它们的最小公倍数
三.例题选讲
1.填空
(1)在5和25中,能被整除,是的倍数,是的因数
(2)在15、36、45、60、135、96、120、180、570、588这十个数中,能被2整除的数是
能被5整除的数是
能同时被2和5整除的数是
(3)最小的自然数是,最大的负偶数是,最小的正奇数
是,
(4)三个连续奇数的和是87,这三个连续奇数分别是
(5)最小的素数是,最小的合数是,既不是素数也不是合数,20以内的所有素数是
(6)素数是奇数,奇数是素数,(填“一定”,“不一定”,“一定不”)
2.用短除法把下列各数分解素因数
(1)48 (2)180 (3)245
3.用短除法求下列各组数的最大公因数和最小公倍数
(1)20和30 (2)48和72 (3)18、45和120
4.已知甲、乙、丙三个数的和等于235,甲数比乙数大80,丙数比甲数小90,求这三个数的最大公因数和最小公倍数
5.已知A=2×3×m,B=2×3×7×m,那么当m等于多少时,A、B两数的最大公因数是30?
四.作业
必做题:
1.选择题
(1)下列算式中,表示整除的算式是()
A.2÷0.4=5 B.15÷5=3 C.7÷2=3……1 D.0.06÷0.3=0.2(2)下列说法正确的是()
A.没有最小的素数B.两个奇数的和是奇数,偶数的和是偶数C.能同时被2、5整除的数的末尾是0 D.9和12的最大公因数是9 (3)下列说法正确的是()
A.奇数不可能被2整除B.2是最小的合数C.6的因数是2、3 D.1、2、3组成的三位数能被3整除也能被9整除
(4)下列说法不正确的是()
A.1既不是素数,也不是合数B.0和正整数为自然数
C.30是能同时能被2、3、5整除的最小两位数
D.48是6和8的最小公倍数
2.分解素因数:30
3.求下列各组数的最大公因数和最小公倍数
(1)14和15 (2)28和7 (3)12、18和30
选做题:《基本要求》P5B组
反思:
学生对于知识的淡忘比较严重,课堂复习时,效果不是很好.要加强知识的巩固练习。

相关文档
最新文档