云南省昆明市九年级上学期数学12月月考试卷

合集下载

2022-2023学年云南省昆明市盘龙区九年级上学期期末数学试卷+答案解析(附后)

2022-2023学年云南省昆明市盘龙区九年级上学期期末数学试卷+答案解析(附后)

2022-2023学年云南省昆明市盘龙区九年级上学期期末数学试卷1. 下列事件为必然事件的是( )A. 打开电视,正在播放云南卫视B. 一个盒子中装有5个黄球和2个红球,从中摸出一个球是黄球C. 任意一个三角形的内角和是D. 一个图形旋转后所得的图形与原图形全等2. 某学校兴趣小组设计了几个环保图形标志,下列图标是中心对称图形的是( )A. B. C. D.3. 抛物线的顶点坐标是( )A. B.C. D.4. 如图,四边形ABCD是的内接四边形,若,则的度数为( )A. B.C. D.5. 下列关于二次函数的图象和性质的叙述中,正确的是( )A. 开口向下B. 与x轴的交点坐标为和C. 对称轴是直线D. 与y轴的交点坐标为6. 如图,正六边形ABCDEF内接于,若的半径为6,则正六边形的周长为( )A. 36B. 18C.D.7. 若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是( )A. B.C. 且D. 且8. 二次函数的图象平移或翻折后经过点,则下列4种方法中错误的是( )A. 向右平移2个单位长度B. 向右平移1个单位长度,再向下平移2个单位长度C. 向下平移4个单位长度D. 沿x轴翻折,再向上平移4个单位长度9. 如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图是圆心角为的扇形,则它的母线长为( )A. 24cmB. 12cmC. 10cmD. 6cm10. 某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施,假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,衬衫的单价降了x元,那么下面所列的方程正确的是( )A. B.C. D.11. 如图,在中,,将绕点C顺时针旋转得到,使点B 的对应点D恰好落在AB边上,AC、ED交于点若,则的度数是( )A. B.C. D.12. 二次函数的部分图象如图所示,其对称轴为直线,且与x轴的一个交点坐标为下列结论:①;②;③;④;⑤关于x的一元二次方程有两个相等的实数根.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个13. 点关于原点的对称点为点B,则点B的坐标为__________.14. “头盔是生命之盔”,质检部门对某工厂生产的头盔质量进行抽查,抽查结果如表:抽查的头盔数n10020030050080010003000合格的头盔数m951942894797699602880合格头盔的频率估计从这批头盔中,任意抽取的一个头盔是合格产品的概率是__________精确到15. 若,是方程的两个实数根,则的值为__________.16. 已知的直径,AB是的弦,,垂足为M,,则AC的长为__________.17. 解方程:;18. 如图,在平面直角坐标系中,的三个顶点都在格点上,点A的坐标,请解答下列问题:画出关于原点对称的,并写出点的坐标;画出绕原点O顺时针旋转后得到的,并写出点的坐标.19. 2022年8月8日日,云南省第十六届运动会在玉溪市举行,为全面发挥省运会在我省体育事业发展中的引领和示范作用,本届省运会进行了多项改革创新.其中大众组与上届相比,保留轮滑和棋牌项目,新增了工间操和射弩等项目.某体育兴趣小组收集到了工间操、射弩、轮滑、棋牌四个比赛项目规则的相关知识,并制成编号为A、B、C、D的4张卡片如图,除编号和内容外,卡片无其他差异,并将它们背面朝上洗匀后放在桌子上.A:工间操B:射弩C:轮滑D:棋牌从中随机抽取一张,抽到“射弩”的概率为______;若甲同学从4张卡片中随机抽取1张不放回,乙同学再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述卡片上的相关比赛规则知识,请用列表或画树状图的方法求甲、乙两人都抽到讲述本届运动会新增项目的有关比赛规则的概率.20. “杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;按照中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.21. 如图,是的内接三角形,直径,,过点A的切线交OC的延长线于点求AD的长;求图中阴影部分面积.22. 【材料阅读】先阅读理解下面的例题,再按要求解答下列问题:我们知道,所以代数式的最小值为0,可以用公式来求一些多项式的最小值.例题:求代数式的最小值.解:代数式的最小值为请应用上述思想方法,解决下列问题:【类比探究】的最小值为______;【举一反三】代数式有最______填“大”或“小”值为______;【灵活运用】某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙墙的长度为,另外三面用栅栏围成,中间再用栅栏把它分成两个面积为的矩形.已知栅栏的总长度为24m,则可设较小矩形的宽为xm,较大矩形的宽为如图当x为多少时,矩形养殖场的总面积最大?最大值为多少?23. 如图,PA为的切线,A为切点,过点A作,垂足为点C,交于点B,延长BO与PA的延长线交于点求证:PB是的切线;若,,求DP的长.24. 如图,已知抛物线与x轴交于,两点,与y轴交于点且有求抛物线解析式;点P在抛物线的对称轴上,使得是以AC为底的等腰三角形,求出点P的坐标;在的条件下,若点Q在抛物线的对称轴上,并且有,直接写出点Q的坐标.答案和解析1.【答案】D【解析】解:“打开电视,正在播放云南卫视”是随机事件;“一个盒子中装有5个黄球和2个红球,从中摸出一个球是黄球”是随机事件;“任意一个三角形的内角和是”是不可能事件;“一个图形旋转后所得的图形与原图形全等”是必然事件;故选2.【答案】D【解析】解:中心对称图形是旋转能完全重合的图形,故D选项符合题意;故选3.【答案】C【解析】解:抛物线的顶点坐标是;故选4.【答案】C【解析】解:四边形ABCD是的内接四边形,,;故选5.【答案】B【解析】解:化简二次函数:,,二次函数的图象开口方向向上,故A错误;当时,,解得,即与x轴的交点坐标为和,故B正确;对称轴是直线,故C错误;当时,,故D错误;故选6.【答案】A【解析】解:连接OB,OC,是正六边形,,正六边形ABCDEF的周长为故选7.【答案】A【解析】解:关于x的一元二次方程有两个不相等的实数根,则根的判别式,解得,,故选8.【答案】B【解析】解:二次函数的图象向右平移2个单位长度得,,当时,,图象过;B.二次函数的图象向右平移1个单位长度,再向下平移2个单位长度得,,当时,,图象不经过;C.二次函数的图象向下平移4个单位长度得,,当时,,图象经过;D.二次函数的图象沿x轴翻折,再向上平移4个单位长度得,,当时,,图象经过;故选9.【答案】A【解析】解:设母线的长为R,由题意得,,解得,母线的长为24cm,故选10.【答案】B【解析】解:设衬衫的单价降了x元.根据题意,得故选11.【答案】B【解析】解:绕点C顺时针旋转得到,,,,,,,12.【答案】C【解析】解:图象的对称轴为直线,,即,故②正确;函数图象与y轴的交点在y轴负半轴,故①错误;当时,,故③正确;函数与x轴的一个交点坐标为,对称轴为直线,与x轴的另一个交点坐标为,,,故④正确;函数图象与x轴有两个交点有两个不相等实数根,故⑤错误;综上:②③④正确.故选13.【答案】【解析】解:点关于原点的对称点为点B为故答案为:14.【答案】【解析】解:利用频率估计概率,根据表格任意抽取的一个头盔是合格产品的概率是故答案为:15.【答案】1【解析】解:,是方程的两个实数根,则,,则故答案为:16.【答案】或【解析】解:如图,连接,,,,,,、D在弦AB的哪一侧位置不确定,求弦AC的长需分如图两种情况.当点C的位置如图①时,在中,当点C的位置如图②时,在中,17.【答案】解:,,,,,,, .,,或,,【解析】见答案.18.【答案】解:如图所示,即为所求,;如图所示,即为所求, .【解析】见答案.19.【答案】解:;列表分析如下:甲A B C D乙ABCD共有12种等可能的结果,其中他们两人都抽到讲述本届运动会新增项目的有2种情况,分别是,,甲、乙两人都抽到讲述本届运动会新增项目的有关比赛规则的概率:,即 .【解析】见答案.20.【答案】解:设亩产量的平均增长率为x,依题意得:,解得:,不合题意,舍去答:亩产量的平均增长率为公斤,他们的目标能实现.【解析】见答案.21.【答案】解:是的直径,,,,,,是的切线,,,.【解析】见答案.22.【答案】解:【类比探究】【举一反三】大,【灵活运用】矩形养殖场的总面积是,根据题意知:较大矩形的宽为2xm,长为,墙的长度为15m,,根据题意得:,,当时,y取最大值,最大值为48,答:当时,矩形养殖场的总面积最大,最大值为【解析】见答案.23.【答案】证明:连接OA,,,,是的切线,,在与中,,,,,是半径,是的切线.解:,,在中,,、PB为的切线,,在中,,即,,,【解析】见答案.24.【答案】解:,,将点,代入,得,解得,,抛物线的对称轴为直线,设,,,是以AC为底的等腰三角形,,,解得,点坐标为或 .【解析】见答案.,,,,是等腰三角形,的角平分线为PO,,如图1,当Q点在x轴下方时,过C点作交抛物线的对称轴为Q点,连接AQ,,设直线AP的解析式为,,解得,.,设直线CQ的解析式为,,,,,,是等腰直角三角形,,,,.如图2,当Q点在x轴上方时,,以P为圆心CP为半径作圆,当Q点在圆P上时,,此时,,综上所述:Q点坐标为或 .。

2022-2023学年云南省昆明市五华区九年级数学第一学期期末学业质量监测模拟试题含解析

2022-2023学年云南省昆明市五华区九年级数学第一学期期末学业质量监测模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.将函数22y x =的图象向左平移1个单位,再向下平移3个单位,可得到的抛物线是:( ) A .22(1)3y x =-- B .2y 2(x 1)3=-+ C .22(1)3y x =+- D .2y 2(x 1)3=++2.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) A .95分,95分B .95分,90分C .90分,95分D .95分,85分3.Rt ABC ∆中,90C ∠=︒,1AC =,2BC =,sin A 的值为( ) A .12B .55C .255D .24.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是( )A .B .C .D .5.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A .7000(1+x 2)=23170 B .7000+7000(1+x )+7000(1+x )2=23170 C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=23176.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是 A .当AC=BD 时,四边形ABCD 是矩形B .当AB=AD ,CB=CD 时,四边形ABCD 是菱形C .当AB=AD=BC 时,四边形ABCD 是菱形 D .当AC=BD ,AD=AB 时,四边形ABCD 是正方形7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A .25B .72C .75D .908.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .199.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a ,则a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x -+=的实数解的概率为( ).A .17B .27C .37D .4710.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( ) A .相离B .相切C .相交D .相交或相切二、填空题(每小题3分,共24分)11.在平面直角坐标系中,已知点36, ()(9)3A B --,-,,以原点O 为位似中心,相似比为1: 3.把ABO 缩小,则点, A B 的对应点', 'A B 的坐标分别是_____,_____.12.如图,为了测量水塘边A 、B 两点之间的距离,在可以看到的A 、B 的点E 处,取AE 、BE 延长线上的C 、D 两点,使得CD ∥AB ,若测得CD =5m ,AD =15m ,ED =3m ,则A 、B 两点间的距离为_____m .13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米). 14.如图,C ,D 是抛物线y =56(x +1)2﹣5上两点,抛物线的顶点为E ,CD ∥x 轴,四边形ABCD 为正方形,AB 边经过点E ,则正方形ABCD 的边长为_____.15.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为_________16.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.17.分解因式:x 3﹣16x =______.183x -有意义,那么x 的取值范围是_________. 三、解答题(共66分)19.(10分)已知:平行四边形ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根. (1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,那么▱ABCD 的周长是多少?20.(6分)在一个不透明的口袋中装有3张相同的纸牌,它们分别标有数字3,﹣1,2,随机摸出一张纸牌不放回,记录其标有的数字为x ,再随机摸取一张纸牌,记录其标有的数字为y ,这样就确定点P 的一个坐标为(x ,y ) (1)用列表或画树状图的方法写出点P 的所有可能坐标; (2)写出点P 落在双曲线3y x=-上的概率. 21.(6分)解分式方程:22111x x x -=--. 22.(8分)如图,在ABC ∆中,点D 在边AB 上,且BD DC AC ==,已知108ACE ∠=︒,2BC =. (1)求B 的度数;(2)我们把有一个内角等于36︒的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比512. ①写出图中所有的黄金三角形,选一个说明理由; ②求AD 的长.23.(8分)先化简,再求值:22321122x x xx x--+⎛⎫-÷⎪--⎝⎭,然后从0,1,2三个数中选择一个恰当的数代入求值.24.(8分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.25.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x 轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.(1)求线段AB的长度:(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为12AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.26.(10分)专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x元(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.(1)写出y与x之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.参考答案一、选择题(每小题3分,共30分) 1、C【分析】先根据“左加右减”的原则求出函数y=-1x 2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式.【详解】解:由“左加右减”的原则可知,将函数22y x =的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键. 2、A【详解】这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95, 故选A. 3、C【分析】根据勾股定理求出斜边AB 的值,在利用余弦的定义直接计算即可. 【详解】在Rt △ACB 中,∠C =90°,AC =1,BC =2,∴AB =,∴sin A =BC AB =, 故选:C . 【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义. 4、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A 、由图形顺时针旋转90°,可得出;故本选项不符合题意; B 、由图形逆时针旋转90°,可得出;故本选项不符合题意;C、不能由如图图形经过旋转或平移得到;故本选项符合题意;D、由图形顺时针旋转180°,而得出;故本选项不符合题意;故选:C.【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.5、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.6、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.7、C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+13×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+13(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.8、D【解析】试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.9、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩①②解①得,2x>-,解②得,34 x>-.∴34 x>-.∵a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,∴0,1,2,3a=.方程23120x x -+=, 解得11x =,22x =.∵a 不是方程232x x -+的解, ∴0a =或3.∴满足条件的a 的值为1,2(2个). ∴概率为27.故选B . 10、D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm. 圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D. 【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.二、填空题(每小题3分,共24分)11、 (-1,2)或(1,-2); (-3,-1)或(3,1)【分析】利用以原点为位似中心,相似比为k ,位似图形对应点的坐标的比等于k 或−k ,分别把A,B 点的横纵坐标分别乘以13或−13即可得到点B ′的坐标. 【详解】∵以原点O 为位似中心,相似比为13,把△ABO 缩小, ∴()36A -,的对应点A ′的坐标是(-1,2)或(1,-2),点B (−9,−3)的对应点B ′的坐标是(−3,−1)或(3,1), 故答案为: (-1,2)或(1,-2);(-3,-1)或(3,1). 【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k . 12、20m【详解】∵CD ∥AB , ∴△ABE ∽△DCE ,∴AB AECD DE=, ∵AD=15m ,ED=3m , ∴AE=AD-ED=12m , 又∵CD=5m, ∴1253AB =, ∴3AB=60, ∴AB=20m. 故答案为20m. 13、10【解析】将一般式转化为顶点式,依据自变量的变化范围求解即可. 【详解】解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10. 【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值. 14、245【分析】首先设AB =CD =AD =BC =a ,再根据抛物线解析式可得E 点坐标,表示出C 点横坐标和纵坐标,进而可得方程2524a ﹣5﹣a =﹣5,再解即可.【详解】设AB =CD =AD =BC =a , ∵抛物线y =56(x +1)2﹣5, ∴顶点E (﹣1,﹣5),对称轴为直线x =﹣1,∴C 的横坐标为2a ﹣1,D 的横坐标为﹣1﹣2a, ∵点C 在抛物线y =56(x +1)2﹣5上,∴C 点纵坐标为56(2a ﹣1+1)2﹣5=2524a ﹣5,∵E 点坐标为(﹣1,﹣5), ∴B 点纵坐标为﹣5, ∵BC =a ,∴2524a ﹣5﹣a =﹣5,解得:a 1=245,a 2=0(不合题意,舍去), 故答案为:245.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、正方形的性质. 15、27【详解】解:根据一元二次方程根与系数的关系,可知1x +2x =5,1x ·2x =-1,因此可知2212x x +=212()x x +-212x x =25+2=27.故答案为27. 【点睛】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:12bx x a +=-,12c x x a⋅=,确定系数a ,b ,c 的值代入求解,然后再通过完全平方式变形解答即可. 16、1【解析】∵点P (m ,﹣2)与点Q (3,n )关于原点对称, ∴m=﹣3,n=2,则(m+n )2018=(﹣3+2)2018=1, 故答案为1. 17、x (x +4)(x –4).【解析】先提取x ,再把x 2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可. 解:原式=x (x2﹣16)=x (x+4)(x ﹣4), 故答案为x (x+4)(x ﹣4). 18、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.有意义,则1-x≥0, 解得:x≤1. 故答案为:x≤1. 【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题(共66分)19、(1)当m 为1时,四边形ABCD 是菱形,边长是12;(2)▱ABCD 的周长是1. 【分析】(1)根据菱形的性质可得出AB =AD ,结合根的判别式,即可得出关于m 的一元二次方程,解之即可得出m 的值,将其代入原方程,解之即可得出菱形的边长;(2)将x =2代入原方程可求出m 的值,将m 的值代入原方程结合根与系数的关系可求出方程的另一根AD 的长,再根据平行四边形的周长公式即可求出▱ABCD 的周长.【详解】解:(1)∵四边形ABCD 是菱形,∴AB =AD .又∵AB 、AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根, ∴△=(﹣m )2﹣4×(2m ﹣14)=(m ﹣1)2=0, ∴m =1,∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2﹣x+14=0,即(x ﹣12)2=0, 解得:x 1=x 2=12, ∴菱形ABCD 的边长是12. (2)把x =2代入原方程,得:4﹣2m+2m ﹣14=0, 解得:m =52. 将m =52代入原方程,得:x 2﹣52x+1=0, ∴方程的另一根AD =1÷2=12, ∴▱ABCD 的周长是2×(2+12)=1. 【点睛】本题考查了根与系数的关系、根的判别式、平行四边形的性质以及菱形的判定与性质,解题的关键是:(1)根据菱形的性质结合根的判别式,找出关于m 的一元二次方程;(2)根据根与系数的关系结合方程的一根求出方程的另一根.20、(1)(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),表格见解析;(2)13. 【分析】(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)可求得所确定的点P 落在双曲线y =﹣3x上的情况,然后利用概率公式求解即可求得答案.【详解】(1)列表得:则可能出现的结果共有6个,为(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),它们出现的可能性相等;(2)∵满足点P(x ,y)落在双曲线y =﹣3x上的结果有2个,为(3,﹣1),(﹣1,3), ∴点P 落在双曲线3y x =-上的概率=26=13 【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21、分式方程无解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x (x +1)﹣x 2+1=2,去括号得:x 2+x ﹣x 2+1=2,解得:x =1,经检验x =1是增根,分式方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22、(1)36︒;(2)①有三个:,,BDC ADC BAC ∆∆∆,理由见解析;②35【分析】(1)设B x ∠=,根据题意得到,2DCB x CDA A x ∠=∠=∠=,由三角形的外角性质,即可求出x 的值,从而得到答案;(2)①根据黄金三角形的定义,即可得到答案;②由①可知,BAC ∆是黄金三角形,则根据比例关系,求出51BD AC ==,然后求出AD 的长度. 【详解】解:(1)BD DC AC ==, 则,B DCB CDA A ∠=∠∠=∠,设B x ∠=,则,2DCB x CDA A x ∠=∠=∠=,又108ACE ∠=︒,108B A ︒∴∠+∠=,2108x x ∴+=,解得:36x ︒=,36B ︒∴∠=;(2)①有三个:,,BDC ADC BAC ∆∆∆,36DB DC B ︒=∠=DBC ∴∆是黄金三角形;或,18036CD CA ACD CDA A =∠=︒-∠-∠=︒,CDA ∆∴是黄金三角形;或108ACE ︒∠=,72ACB ︒∴∠=,又272A x ∠==︒,A ACB ∴∠=∠,BA BC ∴=,BAC ∆∴是黄金三角形;②∵BAC ∆是黄金三角形,AC BC ∴= 2BC =,1AC ∴=,2,1BA BC BD AC ====,21)3AD BA BD ∴=-=-=-【点睛】本题考查了等腰三角形的性质以及黄金三角形的定义,三角形的内角和定理以及三角形的外角性质,解题的关键是熟练掌握等腰三角形的性质,三角形的外角性质.23、11x -,-1. 【解析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后选择使原式有意义的数值代入化简后的结果进行计算即可. 【详解】原式()2x 12x 3x 2x 2x 2x 2---⎛⎫=-÷ ⎪---⎝⎭ =()2x 1x 2x 2x 1--⋅-- 1x 1=-, 由x-2≠0且(x-1)2≠0可得x ≠2且x ≠1,所以x=0,当x 0=时,原式1=-.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解题的关键.24、(1)x 1=2,x 212=;(2)x 1 =1或x 2 =2. 【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x 后,求出方程的解即可;【详解】解:(1)2x 2﹣7x +2=1,(x ﹣2)(2x ﹣1)=1,∴x ﹣2=1或2x ﹣1=1,∴x 1=2,x 212=; (2)x 2﹣2x =1,x (x ﹣2)=1,x 1 =1 或,x 2 =2.【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.25、(1)1;(2)245;(3)存在,所求点M 的坐标为M 1(4,11),M 2(﹣4,5),M 3(2,﹣3),M 4(1,3). 【分析】(1)利用因式分解法解方程x 2﹣14x +48=0,求出x 的值,可得到A 、B 两点的坐标,在Rt △AOB 中利用勾股定理求出AB 即可.(2)证明四边形PEOF 是矩形,推出EF =OP ,根据垂线段最短解决问题即可.(3)分两种情况进行讨论:①当点P与点B重合时,先求出BM的解析式为y=34x+8,设M(x,34x+8),再根据BM=5列出方程(34x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点P与点A重合时,先求出AM的解析式为y=34x﹣92,设M(x,34x﹣92),再根据AM=5列出方程(34x﹣92)2+(x﹣6)2=52,解方程即可求出M的坐标.【详解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB=22OA OB+=2268+=1.(2)如图,连接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF是矩形,∴EF=OP,根据垂线段最短可知当OP⊥AB时,OP的值最小,此时OP=OB OAAB⋅=245,∴EF的最小值为245.(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为12AB长.∵AC=BC=12AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点P与点B或点A重合.分两种情况:①当点P与点B重合时,易求BM的解析式为y=34x+8,设M(x,34x+8),∵B(0,8),BM=5,∴(34x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点P与点A重合时,易求AM的解析式为y=34x﹣92,设M(x,34x﹣92),∵A(6,0),AM=5,∴(34x﹣92)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【点睛】本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.26、(1)y=-11x2+1411x-41111;(2)销售价应定为61元/盒.(3)不可能达到11111元.理由见解析【分析】(1)根据题意用x表示销售商品的件数,则利润等于单价利润乘以件数.(2)根据此种礼盒获得8111元的利润列出一元二次方程求解,再进行取舍即可;(3)得出相应的一元二次方程,判断出所列方程是否有解即可.【详解】解:(1)y=(x-41)[511-11(x-51)],整理,得y=-11x2+1411x-41111;(2)由题意得y=8111,即-11x2+1411x-41111=8111,化简,得x2-141x+4811=1.解得,x1=61,x2=81(不符合题意,舍去).∴x=61.答:销售价应定为61元/盒.(3)不可能达到11111元.理由如下:当y=11111时,得-11x2+1411x-41111=11111.化简,得x2-141x+5111=1.△=(-141)2-4×1×5111<1,原方程无实数解.∴该专卖店每月销售此种礼盒的利润不可能达到11111元.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、销售量之间的数量关系.。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

云南省昆明市五华区华山中学2024-2025学年九年级上学期9月月考数学试题

云南省昆明市五华区华山中学2024-2025学年九年级上学期9月月考数学试题

云南省昆明市五华区华山中学2024-2025学年九年级上学期9月月考数学试题一、单选题1.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )A .①②③B .①②④C .①③④D .②③④ 2.下列二次根式中,是最简二次根式的是( )A B C D 3.一元二次方程23640x x -+=根的情况是( )A .有两个相等的实数根B .无实数根C .有两个不相等的实数根D .无法确定4.要得到22y x =+的图象,只需将2y x =( ) A .向上平移2个单位B .向下平移2个单位C .向左平移2个单位D .向右平移2个单位5.对甲、乙、丙、丁四名射击选手选行射击测试,每人射击10次,平均成绩均为9.5环,方差如表所示:则四名选手中成绩最稳定的是( )A .甲B .乙C .两D .丁6.关于抛物线y =3x 2,下列说法正确的是( )A .开口向下B .顶点坐标为(0,3)C .对称轴为y 轴D .当x <0时,函数y 随x 的增大而增大 7.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1C .6,8,11D .5,12,23 8.如图,在ABC V 中,52B ∠=︒,分别以点A ,C 为圆心,,BC AB 长为半径画弧,两弧在直线BC 上方交于点D ,连接,AD CD ,则D ∠的度数是( )A .32︒B .38︒C .48︒D .52︒9.某种商品原价每件40元,经两次降价,现售价每件32.4元,设该种商品平均每次降价的百分率为x ,则可列方程为( )A .()4012324.x -=B .()2324140.x -= C .()240132.4x -= D .()32.41240x -= 10.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知8cm AB =,10cm BC =,则EC 的长为( )A .3cmB .4cmC .3.5cmD .5cm11.已知点(),b k 在第四象限,则一次函数y kx b =+的图象大致是( )A .B .C .D .12.如图,在ABC V 中,50B ∠=︒,将ABC V 绕点A 逆时针旋转得到ADE V ,点D 恰好落在BC 的延长线上,则旋转角的度数为( )A .90︒B .80︒C .70︒D .60︒13.明朝科学家徐光启在《农政全书》中用图画描绘了“筒车”(一种水利灌溉工具)的工作原理.如图2,筒车盛水桶的运行轨道是以轴心O 为圆心的圆.已知圆心O 在水面上方,且O e 被水面截得弦AB 长为8米,O e 半径长为6米,若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .2米B .4米C .(6-米D .(6+米 14.已知点1(2,)y -,2(1,)y -,3(5,)y 都在函数2(3)1y x =-+的图象上,则( )A . 312y y y <<B . 231y y y <<C . 123y y y <<D . 321y y y << 15.如图,ABC V 的顶点均在⊙O 上,4,30AB C =∠=︒,则⊙O 的半径为( )A .1B .2 CD .4二、填空题16.已知:点(2025,1)A -与点(,)B a b 关于原点O 成中心对称,则a b +=.17.一元二次方程2230x x -+=的两根分别为1x 和2x ,则12122x x x x +-为.18.将抛物线2y x =向上平移3个单位,向右移动1个单位,所得抛物线的解析式是19.如图,AB 是半圆O 的直径、C 、D 在半圆O 上.若28CAB ∠=︒,则A D C ∠的度数为.三、解答题20.解方程:(1)2410x x --=(2)()2346x x x -=-21.正方形网格中(网格中的每个小正方形边长是1),ABC V 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出ABC V 绕点A 逆时针旋转90°的11AB C △,再作出11AB C △关于原点O 成中心对称的22A B C 1△.(2)点1B 的坐标为 ,点2C 的坐标为 .22.如图,已知二次函数y=x 2+bx+c 过点A (1,0),C (0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为10,请直接写出点P 的坐标.23.社区利用一块矩形空地ABCD 建了一个小型停车场,其布局如图所示,已知52m AD =,28m AB =,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x 米的道路.已知铺花砖的面积为2640m .求道路的宽是多少米?24.某农户准备在一个大棚里种植甲、乙两种水果.实际种植中,甲种水果的种植费用y (元)与种植面积()2m x 的函数关系如图所示,乙种水果的种植费用为每平方米20元.(1)求y 与x 的函数关系式;(2)甲、乙两种水果种植面积共2600m ,其中,甲种水果的种植面积x 满足200350x <≤,怎样分配甲、乙两种水果种植面积才能使种植费用最少?最少种植费用是多少?25.,在Rt ABC △中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作AF BC ∥交BE 的延长线于点F ..(1)求证:四边形ADCF 是菱形;(2)若6AC =,10AB =,求菱形ADCF 的面积.26.赵州桥是一座位于河北省石家庄市赵县城南汶河之上的石拱桥(如图1),因赵县古称赵州而的得名.赵州桥始建于硝代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.现有一座仿赵州桥建造的圆拱桥,已知在某个时间段这座桥的水面跨度是16米(即16AB =米,如图2),拱顶到水面的距离4米(即AB 弧的中点C 到AB 的距离CD 等于4米).(1)在图2中画出线段CD (要求:尺规作图,不写作法,保留作图痕迹);(2)问一艘宽12米,水面以上高1.87米的货轮能否顺利通过?27.如图,抛物线2y x bx c =-++与x 轴交于点A ,B ,对称轴为直线1x =,与y 轴交于点()0,5,直线1y x =-与抛物线交于C ,D 两点.(1)求抛物线的解析式.(2)连接AC 、CB 、DB 、DA ,求四边形ACBD 的面积.(3)若点E 为直线CD 上方的抛物线上的一个动点(不与点C ,D 重合),将直线CD 上方的抛物线部分关于直线CD 对称形成爱心图案,动点E 关于直线CD 对称的点为F ,求EF 的取值范围.。

云南省昆明市西山区昆明市第五中学2023-2024学年九年级上学期期末数学试题

云南省昆明市西山区昆明市第五中学2023-2024学年九年级上学期期末数学试题

云南省昆明市西山区昆明市第五中学2023-2024学年九年级
上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
A.B.C.
D.
2244
11
A.B.C.D.
二、填空题
k
三、解答题
20.选择适当的方法解下列方程: (1)22410x x ++=; (2)(21)3(21)x x x -=-
21.如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).
(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;
(3)求出(2)中C 点旋转到C 2点所经过的路径长(记过保留根号和π).
22.如图,在△ABC 中,AC ⊥BC ,D 是BC 延长线上的一点,E 是AC 上的一点,连接ED ,∠A=∠D .
(1)求证:△ABC ∽△DEC ;
(2)若AC=3,AE=1,BC=4,求DE 的长.
m
27.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、
()2,0B ,交y 轴于点()06C ,
,在y 轴上有一点()0,2E -,连接AE .
(1)求二次函数的表达式;
(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE V 面积的最大值;
(3)抛物线对称轴上是否存在点P ,使AEP △为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在,请说明理由.。

2023-2024学年云南省昆明市五华区云南大学附属中学九年级上学期期中化学试题

2023-2024学年云南省昆明市五华区云南大学附属中学九年级上学期期中化学试题

2023-2024学年云南省昆明市五华区云南大学附属中学九年级上学期期中化学试题1.《天工开物》是中国古代一部综合性的科技著作,其中记载的下列造物过程中涉及化学变化的是A.粮食酿酒B.棉线织布C.楠木制舟D.沙里淘金2.医用酒精能有效杀灭体外的多种病毒。

酒精运输车须张贴的标识是A.易燃固体B.易燃液体C.腐蚀品D.有毒气体3.水蒸发为水蒸气,所占体积变大是因为A.分子体积变大B.分子数目变多C.分子在不断运动D.分子间隔变大4.下列物质属于纯净物的是A.液态氧B.空气C.果汁D.海水5.下列符号既能表示元素,又能表示原子,还能表示物质的是A.O B.H C.Na D.6. 2023年环境保护日的主题是“建设人与自然和谐共生的现代化”,下列说法不正确的是A.工业用水重复利用可有效节约水资源B.水体污染不会影响渔业生产C.空气质量指数越小,表示空气质量越好D.化学实验的剩余药品应放入指定容器内7.正确的实验操作是获得实验成功的重要保证。

下列实验操作正确的是A.用橡胶塞塞住试管B.向酒精灯中添加酒精C.吸取少量液体D.闻药品气味8.化学家对空气成分的认识经过了漫长的时间。

卡文迪许利用电火花除去空气中的氧气和氧气后,仍残余1%的气体,其中主要含A.水蒸气B.二氧化碳C.稀有气体D.其他气体和茶质9.化学是一门实用的、富于创造性的中心学科。

下列关于化学的说法错误的是A.化学只研究自然界已经存在的物质B.化学是在分子、原子层次上研究物质的性质、组成、结构与变化规律的科学C.利用化学生产化肥和农药,以增加粮食的产量D.绿色化学使更多的化学生产工艺和产品向着环境友好的方向发展10.世界上的万物都是由元素组成的。

与元素的化学性质关系最密切的是A.元素的相对原子质量B.原子的核电荷数C.原子的核外电子数D.原子的最外层电子数11.下列实验现象的描述正确的是A.铁丝在氧气中剧烈燃烧,火星四射,生成四氧化三铁B.镁条在空气中燃烧发出耀眼白光,产生大量白烟C.木炭在氧气中燃烧发出白光,生成黑色固体D.硫在空气中燃烧产生明亮的蓝紫色火焰12.物质的性质决定其用途。

云南省曲靖市麒麟区四中2024-2025学年九年级上学期第一次月考数学试卷(含答案)

云南省曲靖市麒麟区四中2024-2025学年九年级上学期第一次月考数学试卷(含答案)

区四中教育集团九年级2024-2025学年数学第一次月考考试试卷满分:100分 考试时间:120分钟一、单选题(每题3分,共36分)1.下列是一元二次方程的是( )A. B.C. D.2.若函数是关于的二次函数,则的值是( )A.1B. C. D.或3.已知是方程的一个根,则的值为( )A.1B. C.2D.4.用配方法解一元二次方程,将其化成的形式,则变形正确的是( )A. B.C. D.5.已知,是抛物线上的两点,则,的大小关系为()A. B. C. D.不能确定6.若、是方程的两个根,则( )A.2026B.2027C.2024D.20287.函数与(且)在同一平面直角坐标系内的图象大致是()A. B. C. D.8.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动、某款燃油汽车今年2月份售价为23万元,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是,则所列方程正确的是( )A. B.C.D.20ax bx c ++=22x x -=22(2)x x x -=-2210x x+=|3|(1)3a y a x x +=+-+x a 5-1-5-1-2x =-220x bx +-=b 1-2-2850x x -+=2()x a b +=2(4)11x +=2(4)21x -=2(8)11x -=2(4)11x -=()11,A y -()22,B y 2(2)3(0)y a x a =++<1y 2y 12y y =12y y >12y y <a b 2220260x x +-=2a 3ab ++=2y ax b =+y ax b =+0a ≠0b ≠x 18.63(1)23x +=218.63(1)23x -=23(12)18.63x -=223(1)18.63x -=9.在平面直角坐标系中,对于二次函数,下列说法中错误的是( )A.的最大值是1B.图象的顶点坐标为,对称轴为直线C.它的图象可以由向右平移两个单位长度,再向上平移1个单位长度得到D.当时,随的增大而减小.10.等腰三角形的一边长是3,另两边的长是关于的方程的两个根,则的值为( )A.3B.4C.3或4D.711.童装专卖店销售一种童装,若这种童装每天获利(元)与销售单价(元)满足关系,若要想获得最大利润,则销售单价为( )A.25元B.20元C.30元D.40元12.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示下列结论:①;②方程的两个根是,;③;④当时,的度值范围是;⑤当时,随的增大而增大.其中正确的个数是()A.4B.3C.2D.1二.填空题(共4个小题,每小题2分,共8分)13.将抛物线的图象向上平移3个单位,再向左平移2个单位的抛物线为______.14.若是一元二次方程的一个根,则的值是______.15.若关于的一元二次方程有实数根,则的取值范围是______.16.已知二次函数,当时,则函数值的取值范围是______.三、简答题(共56分)17、(本题满分6分)解下列方程:22(2)1y x =--+y (2,1)2x =22y x =-2x <y x x 240x x k -+=k y x 250500y x x =-+-x 2(0)y ax bx c a =++≠1x =x (1,0)-24ac b <20ax bx c ++=11x =-23x =30a c +>0y >x 14x -<<0x <y x 232y x =-a 2230x x +-=224a a +x 2(21)690k x x --+=k 2(1)4y x =+-22x -≤≤y(1)(2)18、(本题满分6分)已知关于的方程.若方程有一个根为2,求的值及该方程的另一个根.19、(本题满分7分)如图所示,二次函数的图象经过、、三点.(1)由图象可知,不等式的解集为______;(2)结合二次函数的图象,写出方程的解;20、(本题满分7分)如图,用长的篱笆围花圃,一面利用墙(墙的最大可用长度为)围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在上用其他材料造了宽为的两个小门.(1)设花圃的宽为,请你用含的代数式表示的长;(2)若此时花圃的面积为,求此时花圃的宽.21、(本题满分7分)如图,已知二次函数的图象经过、两点.22(2)3(2)x x -=-223x x +=x 250x ax a +--=a 2y ax bx c =++(1,0)-(3,0)(0,3)-23ax bx c x ++>-2y ax bx c =++20ax bx c ++=22m 14m BC 1m AB m x x BC 245m 212y x bx c =-++(2,0)A (0,6)B -(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与轴交于点,连接、,求的面积.22、(本题满分7分)已知关于的一元二次方程(1)求证:方程总有两个不相等的实数根(2)若方程的两个实数根都是整数,求整数的值.23、(本题满分8分)毛泽东故居景区有一商店销售一种纪念品,这种商品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于20元/件,市场调查发现,该商品每天的销售量(件)与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润(元)与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.(本题满分8分)如图,已知抛物线与轴交于、两点,与轴相交于点,直线经过点,与轴交于点.备用图(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点,使的周长最小,求点的坐标;(3)点是(1)中抛物线上的一个动点,设点的横坐标为,是否存在是以为底的等腰三角形?若存在,求点坐标,若不存在,请说明理由.x C BA BC ABC △x 2(22)20(0)mx m m m +-+-=≠m y x y x x W x x (1,0)A -(3,0)B y C 23y x =-+C x D Q ACQ △Q P P (03)t t <<PCD △CD P区四中集团九年级2024-2025学年数学第一次月考参考答案一、单选题(每题3分,共36分)1、B2、B3、A4、D5、B6、C7、A8、D9、D 10、C 11、A 12、B 二.填空题(共4个小题,每小题2分,共8分)13、 14、6 15、且 16、三、简答题(共56分)17、(1)解:(2)解:,18、(本题满分6分)解:将代入方程得:,解得:,,解得,方程的另一个根是19、(1)或(2)二次函数的图象与轴交于点、方程的解为:,20、(1)设宽为则长(2)由题意可得:解得:;当时,,不符合题意舍去当时,,满足题意23(2)1y x =++1k ≤12k ≠4y 5-≤≤22(2)3(2)0x x ---=(2)(243)0x x --+=(2)(21)0x x --=1212,2x x ∴==2(1)4x +=12x ∴+=±11x ∴=23x =-2x =250x ax a +--=4250a a +--=1a =12x x a +=- 221x ∴+=-23x =-∴1a =3-0x <3x > 2y ax bx c =++x (1,0)-(3,0)∴20a bx c ++=11x =-23x =AB mx 2232(243)AD BC x x m ==-+=-(2232)45x x -+=13x =25x =∴3AB =1514BC =>5AB =9BC =答:花圃的长为9米,宽为5米.21、【解析】(1)把、代入得:,解得,这个二次函数的解析式为.(2)该抛物线对称轴为直线,点的坐标为,,22、证明:(1)关于的一元二次方程,且,方程总有两个不相等的实数根(2)由(1)知,,,,,方程的两个实数根都是整数,,,23、【解析】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为200,(2,0)A (0,6)B -212y x bx c =-++2206b c c -++=⎧⎨=-⎩46b c =⎧⎨=-⎩∴21462y x x =-+- 44122x =-=⎛⎫⨯- ⎪⎝⎭∴C (4,0)422AC OC OA ∴=-=-=112622ABC S AC OB ∆∴=⨯⨯=⨯⨯6= x 2(22)20(0)mx m x m m +-+-=≠0m ∴≠22(22)4(2)4m m m m ∆=---=2844840m m m -+-+=>∴4∆=2222m x m-±∴=11x ∴=2221m x m m-==- 1m ∴=±2±y x y kx b =+(12,28)(15,25)12281525k b k b +=⎧⎨+=⎩140k b =-⎧⎨=⎩y x 40(1020)y x x =-+≤≤(10)W x y=-(10)(40)x x =--+250400x x =-+-2(25)225x =--+10a =-< ∴25x <W x 1020x ≤≤ ∴20x =W答:每件销售价为20元时,每天的销售利润最大,最大利润是200元.24.(1)设抛物线的表达式为:由一次函数的表达式知,点、的坐标分别为:、,将点的坐标代入抛物线表达式得:,则,即抛物线的表达式为:①;(2)如图,点关于抛物线对称轴的对称点为点,连接交抛物线对称轴于点,则此时,的周长最小,理由:的周长为最小,由点、的坐标得,直线的表达式为:,由抛物线的表达式知,其对称轴为,当时,,即点(3)存在,理由:取的中点,过点作直线交轴于点,交抛物线于点,则点为所求点,()2(1)(3)23 y a x x a x x=+-=--C D(0,3)3,0 2⎛⎫ ⎪⎝⎭C33a=-1a=-223y x x=-++A B BC Q ACQ△ACQ△AC CQ AQ AC BQ CQ=++=++AC BC=+B C BC3y x=-+1x=1x=32y x=-+=(1,2)QCD33,42T⎛⎫⎪⎝⎭T TR CD⊥x R P P则直线的表达式为:②,联立①②得:,解得:(舍去负值),即点的坐标为:.TP 133242y x ⎛⎫=-+ ⎪⎝⎭213323242x x x ⎛⎫-++=-+ ⎪⎝⎭x =P。

云南省昆明市五华区重点中学2023-2024学年九年级上学期12月月考数学试题(无答案)

云南省昆明市五华区重点中学2023-2024学年九年级上学期12月月考数学试题(无答案)

五华区重点中学2023学年秋季学期12月学习效果跟踪与反馈初三年级数学试卷(本试卷共27小题,共7页;考试用时120分钟,满分100分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、考场号、座位号在答题卡上填写清楚.2.试题所有的答案请用黑色碳素笔填写在答题卡相应位置上,答在试卷上的答案无效.3.考生必须按规定的方法和要求答题,不按要求答题所造成的后果由本人自负.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作元,那么支出5元记作()A .元B .0元C .元D .元2.今年暑期档电影中,《封神:朝歌风云》以现代电影工业为载体,通过“十年磨一剑”的韧性,逼真重构了波澜壮阔的殷商神话史诗,吸引众多影迷纷纷走入影院打卡.据了解《封神:朝歌风云》上映首日的票房约为440000000元,数字440000000用科学记数法表示为()A .B .C .D .3.如图,,射线AE 交CD 于点F ,若,则的度数是()A .B .C .D .4.如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .正三棱柱D .正三棱锥5.下列运算正确的是()A .B .C .D .6.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.这组数据的中位数和众数分别是( )A .4,5B .5,4C .5,5D .5,65+5-5+10+94.410⨯844.010⨯90.4410⨯84.410⨯//AB CD 1115∠=︒2∠55︒65︒75︒85︒236a a a ⋅=()325a a =22(2)2a a =32a a a÷=7.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .8.点在反比例函数的图象上,则下列各点在此函数图象上的是( )A .B .C .D .9.按一定规律排列的单项式:,,,,,…,第8个单项式是()A .B .C .D .10.为了测量水池的宽AB ,在水池外找一点P ,点C ,D 分别为PA ,PB 的中点,测得,则水池的宽AB 为( )A .B .C .D .11.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍.设每套《水浒传》连环画的价格为x 元,根据题意可列方程为( )A .B .C .D .12.如图,OA ,OB 是的两条半径,点C 在上,若.则的度数为( )A .B .C .D .13.已知一个圆锥的侧面展开泈是圆心角为的扇形,若这个圆锥的底面半径长是6,则这个圆锥的母线长为()A .3B .6C .9D .12(1,4)-k y x =(4,1)-1,14⎛⎫- ⎪⎝⎭(4,1)--1,24⎛⎫ ⎪⎝⎭23b -225a b 427a b 629a b 8211a b -81417a b -14217a b 71415a b -14215a b 8m CD =16m 14m 12m 10m48003600260x x ⨯=+48003600260x x =⨯+48003600260x x ⨯=+48003600260x x =⨯+O O 80AOB ∠=︒C ∠30︒40︒50︒60︒240︒14.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .B .C .D .15.如图,动点P 在线段AB (不与点A ,B 重合),,分别以AB ,AP ,BP 为直径作半圆,记图中所示的阴影部分面积为y ,线段AP 的长为x .当点P 从点A 移动到点B 时,y 随x 的变化而变化,则表示y 与x 之间关系的图象大致是( )A .B .C .D .二、填空题(本大题共4小题,每小题2分,共8分)16.在函数x 的取值范围是__________.17.一个多边形的内角和是,这个多边形的边数是__________.18.分解因式:__________.19.如果方程的解是,,则方程的解为__________.三、解答题(本大题共8小题,共62分)20.(本小题满分6分)446+-=004446++=46+=1446-=1AB =y =720︒29xy x -=20x mx n +-=11x =23x =2(23)(23)0x m x n -+--=计算:.21.(本小题满分6分)端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分678910人数12a b 2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是__________,七年级活动成绩的众数为__________分;(2)__________,__________;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.22.(本小题满分7分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.(1)张华用“微信”支付的概率是__________;(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”“银行卡”、“现金”分别用字母“A ”“B ”“C ”“D ”代替)23.(本小题满分7分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6∶4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一幅对联,对联的长为,宽为.若要求装裱后的长是装裱后的宽的4倍;求边的宽和天头长.)10411|3|1454-⎛⎫-+--+︒+ ⎪⎝⎭a =b =110100cm 27cm24.(本小题满分8分)如图,平行四边形ABCD 的两条对角线相交于点O ,过点O 作,垂足为E ,已知,.(1)求证:四边形ABCD 是菱形;(2)若,求线段OE 的长.25.(本小题满分8分)冬天是吃羊肉的好时节,白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,羊肉就是各大超市的畅销品.某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.(1)羊腿和羊排的售价分别是每斤多少元?(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,每斤羊排可盈利8元,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?26.(本小题满分8分)如图,AB 为的直径,C 为上一点,点D 为BC 的中点,连接AD ,过点D 作,交AC 的延长线于点E.OE AB ⊥DBA DBC ∠=∠5AB =4sin 5ADB ∠=O O DE AC ⊥(1)求证:DE 是的切线;(2)延长ED 交AB 的延长线于点F ,若,,求的半径和DE 的长.27.(本小题满分12分)数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化.中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合.作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”请结合所学的数学知识解决下列问题.已知二次函数.(1)若,求顶点坐标、对称轴、该函数与x 轴的交点坐标;(2)求证:该二次函数图像与x 轴有两个交点;(3)当该二次函数图像与x 轴两交点的横坐标都为正整数时,求整数m的值.O 2BF =4DF =O 2(1)21y m x mx m =--++2m =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省昆明市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A . 4B . 3C . 2D . 12. (2分)如图,锐角△ABC中,BE , CD是高,它们相交于O ,则图中与△BOD相似的三角形有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2017九上·巫溪期末) 下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2017九上·黑龙江开学考) 如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A .B .C . 1D .5. (2分)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A . 4B . 3C . 2D . 16. (2分)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A .B .C .D .7. (2分) (2017八下·简阳期中) 如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y= 的图象上,那么()A . y1<y2<y3B . y1<y3<y2C . y2<y1<y3D . y3<y2<y18. (2分) (2017八下·东台期中) 如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A .B . 3C . 4D . 2二、填空题 (共8题;共13分)9. (1分)方程x2=6x的根是________.10. (1分) (2019九上·句容期末) 已知x=-1是关于x的一元二次方程x2+ax+b=0的一个实数根,则代数式2019-a+b的值为________.11. (2分)如图,点A的坐标为(2,0),点B在直线y=x上,当线段AB最短时,点B的坐标为________.12. (2分)一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,则∠ACB的度数为________.13. (2分)如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1 ,以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2 ,再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3 ,…,依次进行下去,则点B6的坐标是________14. (2分) (2017八下·苏州期中) 如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为________.15. (1分) (2015八上·大石桥期末) 如图,AB∥CF,E为DF中点,AB=20,CF=15,则BD=________.16. (2分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、解答题 (共8题;共61分)17. (10分) (2016九上·仙游期末) 解方程 :2x2-x-1=0。

18. (5分) (2019九上·灌阳期中) 已知三个顶点的坐标分别 .(1)画出;(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△ ;(3)写出点A的对应点的坐标19. (2分)(2017·蜀山模拟) 每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.20. (10分) (2019九上·孝南月考) 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系y=﹣2x+80.(1)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?21. (2分) (2018九上·丰台期末) 在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN 于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)22. (15分)(2017·孝义模拟) 综合与实践在数学活动课上,老师给出如下问题,让同学们展开探究活动:问题情境:如图(1),在△ABC中,∠ACB=90°,AC=BC=a,点D为AB上一点(0<AD< AB),将线段CD绕点C逆时针旋转90°,得到的对应线段为CE,过点E作EF∥AB,交BC于点F.请你根据上述条件,提出恰当的数学问题并解答.解决问题:下面是学习小组提出的三个问题,请你解答这些问题:(1)“兴趣”小组提出的问题是:求证:AD=EF.(2)“实践”小组提出的问题是:如图(2),若将△ACD沿AB的垂直平分线对折,得到△BCG,连接EG,则线段EG与EF有怎样的数量关系?请说明理由.(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长EF与AC交于点H,连接HD,FG.求证:四边形DGFH是矩形.提出问题:(4)完成上述问题的探究后,老师让同学们结合图(3),提一个与四边形DGFH有关的问题.“智慧”小组提出的问题是:当AD为何值时,四边形DGFH的面积最大?请你参照智慧小组的做法,再提出一个与四边形DGFH有关的数学问题(提出问题即可,不要求进行解答,但所提问题必须有效)你提出的问题是:________23. (15分)(2020·陕西模拟) 如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.24. (2分) (2019九上·盐城月考) 如图①,已知线段和直线,用直尺和圆规在上作出所有的点,使得,如图②,小明的作图方法如下:第一步:分别以点,为圆心,长为半径作弧,两弧在上方交于点;第二步:连接,;第三步:以为圆心,长为半径作,交于,;所以图中,即为所求的点.(1)在图②中,连接,,说明;(2)如图③,用直尺和圆规在矩形内作出所有的点,使得(不写作法,保留作图痕迹).(3)已知矩形,,,为边上的点,若满足的点恰有两个,求的取值范围.(4)已知矩形,,,为矩形内一点,且,若点绕点逆时针旋转到点,求的最小值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共13分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共61分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、24-3、24-4、。

相关文档
最新文档