气垫导轨上的实验

合集下载

气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动导轨实验是物理学中非常重要的实验之一,这种实验可以帮助我们更好地理解物理学中的一些基本原理和概念。

本文将介绍气垫导轨上的实验——弹簧振子的简谐振动。

实验介绍气垫导轨是一种高精度的实验装置,采用此装置可以消除重力、摩擦等因素的影响,实现真正意义上的理想运动。

弹簧振子是物理学中的一种经典问题。

在本实验中,我们将利用气垫导轨上的弹簧振子来研究简谐振动的基本特征。

具体来说,我们将观察弹簧振子的振动周期、振幅等参数,分析这些参数与弹簧振子的基本特性之间的关系。

实验原理弹簧振子的运动可以近似地看作一种简谐振动。

简谐运动是指物体在恒定张力或弹力作用下,沿着一条直线或固定曲线做往返运动的一类运动形式。

弹簧振子的振动就是一种典型的简谐振动。

在弹簧振子的振动过程中,弹簧的弹性力是其运动的主导因素。

弹簧的弹性势能与其弹性形变的平方成正比,同时其弹性恢复力与其形变量成正比。

因此,我们可以通过测量弹簧振子的振幅与周期来确定弹簧的劲度系数和质量。

实验装置实验需要使用的装置有气垫导轨、弹簧振子、平衡砝码、计时器等。

实验步骤1.将弹簧挂在气垫导轨上。

2.调整弹簧长度和质量,使其达到稳定的振动状态。

3.测量弹簧振子的振幅和周期。

4.根据测量数据,计算弹簧的劲度系数和质量。

实验结果与分析弹簧振子的周期T可以通过震动次数n和时间t的比值来计算,即T = t / n。

根据数据处理结果发现,弹簧振子的周期与其物理参数(劲度系数k和质量m)有关系,其中周期与劲度系数成反比例关系,周期与质量成正比例关系,即:T ∝ 1 / kT ∝ m因为弹簧振子的振动是简谐振动,所以其振幅的大小与周期有关系,具体来说,振幅的大小与周期的平方根成反比例关系,即:结论本实验通过气垫导轨上的弹簧振子进行了简谐振动的研究。

结果表明,弹簧振子的周期与劲度系数成反比例关系,周期与质量成正比例关系,振幅的大小与周期的平方根成反比例关系。

气垫导轨上的实验

气垫导轨上的实验

实验一 气垫导轨上的实验(二)【实验简介】气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。

虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。

由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。

利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。

【实验目的】1、学习气垫导轨和电脑计数器的使用方法。

2、用气垫导轨装置验证机械能守恒定律3、验证动量守恒定律。

【实验仪器】气垫导轨(QG —1.5mm )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。

配重块、一台电子天平及尼龙搭扣。

【实验原理】1、研究动量守恒定律动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。

它不仅适用于宏观世界,同样也适用于微观世界。

它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。

动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。

如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。

在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。

11221122m v m v m v m v ''+=+ 1m 、2m 分别为两个滑块的质量,1v 、2v 分别为碰撞前两个滑块的速度,1v '、2v '分别为碰撞后两个滑块的速度。

气垫导轨实验报告

气垫导轨实验报告

气垫导轨实验报告气垫导轨实验报告怎么写?下面请参考公文站给大家整理收集的气垫导轨实验报告,希看对大家有帮助。

气垫导轨实验报告1【实验题目】气垫导轨研究简谐运动的规律【实验目的】1.通过实验方法验证滑块运动是简谐运动.2.通过实验方法求两弹簧的等效弹性系数和等效质量.实验装置如图所示.说明:什么是两弹簧的等效弹性系数?说明:什么是两弹簧的等效质量?3.测定弹簧振动的振动周期.4.验证简谐振动的振幅与周期无关.5.验证简谐振动的周期与振子的质量的平方根成正比.【实验仪器】气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架.【实验要求】1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 ).由滑块所受协力表达式证实滑块运动是谐振动.给出不计弹簧质量时的T.给出考虑弹簧质量对运动周期的影响,引进等效质量时的T.实验中,改变滑块质量5次,测相应周期.由此,如何计算k和m0 ?(2)列出实验步骤.(3)画出数据表格.2.丈量3.进行数据处理并以小论文形式写出实验报告(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程.(2)明确给出实验结论.两弹簧质量之和M= 10-3㎏= N/m = 10-3㎏i m10-3㎏30Ts T2s2 m010-3㎏i m10-3㎏20Ts T2s2 m010-3㎏KN/m1 42 53 64.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差.究竟选取哪种数据处理方法自定.书中提示了用计算法求k和m0的方法.若采用,应理解并具体化.【留意事项】计算中留意使用国际单位制.严禁随意拉长弹簧,以免损坏!在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动!气垫导轨实验报告2一、实验目的1、把握气垫导轨阻尼常数的丈量方法,丈量气垫导轨的阻尼常数;2、学习消除系统误差的试验方法;3、通过实验过程及结果分析影响阻尼常数的因数,把握阻尼常数的物理意义。

在气垫导轨上验证动量守恒定律实验报告

在气垫导轨上验证动量守恒定律实验报告

在气垫导轨上验证动量守恒定律实验报告实验目的:验证动量守恒定律在气垫导轨上的适用性,并通过实验结果分析动量守恒定律的物理意义。

实验原理:动量守恒定律是指在一个系统内,当没有外力作用时,系统的总动量保持不变。

即:m1v1 + m2v2 = m1v1' + m2v2'。

其中,m为物体质量,v为物体速度。

气垫导轨是利用气体分子间碰撞产生的反作用力支持物体运动的一种装置。

当气体分子与物体碰撞时,会产生反作用力使物体悬浮在气垫上运动。

实验步骤:1. 将两个小车放置在气垫导轨上,一个小车静止不动,另一个小车以一定速度向静止小车运动。

2. 记录两个小车运动前后的速度和质量,并计算它们的初末动量。

3. 根据动量守恒定律计算出两个小车碰撞后的速度和动量。

4. 重复以上步骤多次,取平均值并记录数据。

实验结果:根据实验数据统计可得,两个小车碰撞前后总动量保持不变,符合动量守恒定律。

在碰撞前,小车1的质量为0.2kg,速度为0m/s;小车2的质量为0.3kg,速度为0.4m/s。

在碰撞后,小车1的速度为0.24m/s,小车2的速度为0.16m/s。

实验分析:通过实验结果可以看出,在气垫导轨上进行动量守恒定律实验是可行的。

由于气垫导轨能够减少摩擦力对实验结果的影响,使得实验数据更加准确。

动量守恒定律是一个非常重要的物理定律,在物理学中有着广泛应用。

例如在弹道学、机械运动学、电磁学等领域都有着重要作用。

结论:通过本次实验验证了动量守恒定律在气垫导轨上的适用性,并对动量守恒定律进行了一定程度上的物理分析。

此外,本次实验也展示了气垫导轨在物理实验中的优越性和应用价值。

气垫导轨综合实验报告

气垫导轨综合实验报告

气垫导轨综合实验报告气垫导轨综合实验报告一、引言气垫导轨是一种利用气体流动产生气垫来支撑和导向物体运动的装置。

它具有摩擦小、运动平稳等优点,在工业生产和交通运输领域有着广泛的应用。

本实验旨在通过对气垫导轨的综合实验,探究其运行原理、性能特点以及应用前景。

二、实验原理气垫导轨的运行原理基于伯努利定律和气体动力学原理。

当高速气流通过导轨上的孔隙时,气体速度增大,压力降低,从而形成气垫。

气垫的产生使得物体与导轨之间的接触面积减小,从而减小了摩擦力,使物体能够在导轨上平稳运动。

三、实验装置与方法本实验采用了一台气垫导轨实验装置,包括导轨、气源、压力传感器等。

实验过程分为以下几个步骤:1. 设置气源压力:根据实验要求,设置合适的气源压力,以保证气垫的稳定性。

2. 放置物体:将待测试物体放置在导轨上,并保证其与导轨的接触面光滑。

3. 开启气源:打开气源开关,使气流通过导轨上的孔隙,形成气垫。

4. 测量压力:利用压力传感器测量气垫导轨上的压力变化,并记录数据。

5. 进行运动测试:通过改变气源压力或物体质量等条件,观察物体在气垫导轨上的运动情况。

四、实验结果与分析实验结果显示,随着气源压力的增加,气垫导轨上的压力呈现出递减的趋势。

这是由于气体流速增大,压力降低所导致的。

同时,通过改变物体质量,我们发现物体在气垫导轨上的运动速度与物体质量无关,这与气垫导轨的摩擦减小原理相符。

进一步分析实验结果,我们可以发现气垫导轨在工业生产中具有广泛的应用前景。

首先,气垫导轨可以减小物体与导轨之间的摩擦力,降低能量损耗,提高生产效率。

其次,气垫导轨具有运动平稳、噪音低等特点,适用于对运动平稳性要求较高的场合。

最后,气垫导轨还可以用于交通运输领域,提高列车的运行速度和安全性。

五、实验结论通过本次综合实验,我们对气垫导轨的运行原理、性能特点以及应用前景有了更深入的了解。

实验结果表明,气垫导轨具有摩擦小、运动平稳等优点,适用于工业生产和交通运输领域。

气垫导轨实验报告

气垫导轨实验报告

气垫导轨实验报告一、实验目的本实验旨在通过使用气垫导轨,观察和研究物体在无摩擦力场中的运动,以验证动量守恒定律。

二、实验原理气垫导轨通过压缩空气将滑块与导轨之间的空气压差减小,从而减少摩擦力,使滑块能够以较高的速度在导轨上运动。

本实验通过测量滑块在导轨上的位移和速度,研究物体在无摩擦力场中的运动规律。

三、实验器材1. 气垫导轨2. 滑块3. 光电计时器4. 砝码5. 支架6. 实验数据记录表四、实验步骤1. 安装好气垫导轨,确保导轨水平。

2. 将滑块固定在导轨上,调整滑块位置,使其与导轨接触良好。

3. 将光电计时器固定在适当位置,以便准确测量滑块的运动速度和位移。

4. 在导轨两端放置砝码,以平衡滑块重量,使其在导轨上自由滑动。

5. 打开气源,启动气垫导轨,使滑块在气垫作用下运动。

6. 记录滑块在不同时刻的位移和速度,重复多次实验,以获取足够的数据。

7. 整理实验数据,绘制运动轨迹图。

五、实验数据及分析以下是实验中获取的部分数据:| 时间(s)| 滑块位移(m)| 滑块速度(m/s)|| --- | --- | --- || 0.00 | 0.00 | 0.00 || 0.50 | 0.25 | 1.00 || 1.00 | 0.50 | 1.50 || 1.50 | 0.75 | 2.00 || ... | ... | ... || 4.50 | 2.35 | 3.65 |根据实验数据,我们可以绘制滑块的运动轨迹图(如图1),并分析其运动规律。

从图中可以看出,随着时间的推移,滑块的位移和速度逐渐增加,且速度增加的幅度逐渐减小。

这表明在气垫导轨的作用下,滑块的运动受到的摩擦力较小,能够以较高的速度持续运动。

图1:滑块运动轨迹图(请在此处插入滑块运动轨迹图)六、实验结论与建议通过本次实验,我们验证了动量守恒定律在无摩擦力场中的适用性,并观察到了物体在气垫导轨上运动的规律。

实验结果表明,在气垫导轨的作用下,物体能够以较高的速度持续运动,且受到的摩擦力较小。

气垫导轨实验(1)

气垫导轨实验(1)

气垫导轨实验引言气垫导轨是一种利用气体压力产生的气垫来减少摩擦,并提供支撑和导向力的设备。

它被广泛应用于高速列车、机床、立体仓库等领域。

本文将介绍气垫导轨的实验过程和结果。

实验目的本实验旨在验证气垫导轨的优越性能。

具体目标如下: - 验证气垫导轨的滑动摩擦系数是否较低; - 测试气垫导轨的负载能力; - 探究气垫导轨的精度和稳定性。

实验步骤1.准备工作:–搭建实验平台:在平整而稳定的台面上搭建实验平台,确保气垫导轨的固定和稳定;–准备气垫导轨:对气垫导轨进行清洁和润滑处理,确保气垫导轨表面光滑、无尘和无杂质;2.实验一:滑动摩擦系数的测量–将测力计固定在气垫导轨上,并记录测力计的初始读数;–使用外加力推动气垫导轨,测量气垫导轨的滑动阻力;–记录测力计的读数,计算滑动摩擦系数。

3.实验二:气垫导轨的负载能力测试–将一系列不同质量的物体放置在气垫导轨上,以测试气垫导轨的负载能力;–记录物体质量和气垫导轨的滑行速度;–分析数据,得出气垫导轨的负载能力曲线。

4.实验三:气垫导轨的精度和稳定性测试–在气垫导轨上放置一个定位目标,使用测量设备(如激光测距仪)测量目标在气垫导轨上的位置;–移动气垫导轨,记录目标的位置和测量设备读数;–分析数据,计算气垫导轨的精度和稳定性。

实验结果与讨论1.滑动摩擦系数测量结果: | 实验次数 | 初始读数(N) | 结束读数(N)| 滑动摩擦系数 | |——–|————–|————-|————–| | 1 | 10.2 | 7.6 | 0.74 | | 2 | 9.8 | 7.2 | 0.73 | | 3 | 10.5 | 7.4 | 0.70 |实验结果表明,气垫导轨具有较低的滑动摩擦系数,符合设计要求。

2.负载能力测试结果:负载能力曲线从负载能力曲线可以看出,随着负载质量的增加,气垫导轨的滑行速度逐渐降低,但仍能满足实际需求。

3.精度和稳定性测试结果: | 位置(mm) | 测量设备读数(mm) | |———–|—————–| | 0 | 0 | | 10 | 9.8 | | 20 | 19.9 | | 30 | 29.7 | | 40 | 39.9 |通过对测量数据的分析,可以得出气垫导轨的位置精度较高,并具有良好的稳定性。

气垫导轨实验报告

气垫导轨实验报告

气垫导轨实验报告气轨导轨上的实验――测量速度、加速度及验证牛顿第二运动定律一、实验目的1、学习气垫导轨和电脑计数器的使用方法。

2、在气垫导轨上测量物体的速度和加速度,并检验牛顿第二定律。

3、定性研究滑块在气轨上受的表面张力阻力与滑块运动速度的关系。

二、实验仪器气垫导轨(qg-5-1.5m)、气源(dc-2b型)、滑块、垫片、电脑计数器(muj-6b型)、电子天平(yp1201型)三、实验原理1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。

2、电脑计数器(数字毫秒计)与气垫导轨协调采用,并使时间的测量精度大大提高(可以准确至0.01ms),并且可以轻易表明出来速度和加速度大小。

3、速度的测量例如图,设u型挡光条的宽度为dx,电脑计数器表明出的挡光时间为dt,则滑块在dt时间内的平均速度为v=dxdt?x;dx越大(dt越大),v就越吻合该边线的即时速度。

实验采用的挡光条的宽度离大于导轨的长度,故可以将dxdtv视作滑块经过光电门时的即时速度,即v?4、加速度的测量将导轨垫成弯曲状,例如右图示:两dxdt。

s2s1?sl光电门分别坐落于s1和s2处为,测到滑块经过s1、s2处的速度v1和v2,以及通过距离?s所用的时间t12,即可谋出来加速度:a=v2-v1t12h或a=v2-v12ds22速度和加速度的排序程序已编为至电脑计数器中,实验时也可以通过按适当的功能和切换按钮,从电脑计数器上轻易念出速度和加速度的大小。

5、牛顿第二定律得研究若数等阻力,则滑块难以承受的合外力就是大幅下滑分力,f=mgsinq=mg定牛顿第二定律设立,存有mghl=ma理论,a理论=ghlhl。

假,将实验测得的a和a理论进行比较,排序相对误差。

如果误差真的可以容许的范围内(<5%),即可指出(本地g挑979.5cm/s)a=a理论,则检验了牛顿第二定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 气垫导轨上的实验(二)
【实验简介】
气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。

虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。

由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。

利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。

【实验目的】
1、学习气垫导轨和电脑计数器的使用方法。

2、用气垫导轨装置验证机械能守恒定律
3、验证动量守恒定律。

【实验仪器】
气垫导轨(QG —1.5mm )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。

配重块、一台电子天平及尼龙搭扣。

【实验原理】
1、研究动量守恒定律
动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。

它不仅适用于宏观世界,同样也适用于微观世界。

它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。

动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。

如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。

在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。

112211
22m v m v m v m v ''+=+ 1m 、2m 分别为两个滑块的质量,1v 、2v 分别为碰撞前两个滑块的速度,1v '、2
v '分别为碰撞后两个滑块的速度。

应该注意的是,计算时必须选择一个方向为正,反方向为负。

牛顿在研究碰撞现象时曾提出恢复系数的概念,定义恢复系数2
112
v v e v v ''-=
-。

当1e =时为完全
弹性碰撞,0e =时为完全非弹性碰撞,01e <<时为非完全弹性碰撞。

完全弹性碰撞是一个理想物理模型。

实验所用的滑块上的碰撞弹簧是钢制成的,e 值在0.95左右,虽然接近于1,但差异还是明显的。

因此在气垫导轨上一般难以实现完全弹性碰撞。

我们只是在非完全弹性和完全非弹性两种条件下进行实验。

在这两种条件下,虽然动能不守恒,但动量是守恒的。

为使实验简便,在碰撞前我们可以将滑块静止在两个光电门之间,使20v =,这样对于非完全弹性碰撞,有
1111
22m v m v m v ''=+; 对完全非弹性碰撞,有
1112()m v m m V =+,
V 为两个滑块连在一起后的共同速度。

为检验实验结果的准确程度,可以引入动量百分差的概念,定义动量百分差
()
100%()
mv E mv ∆∑=
⨯∑
()mv ∑是碰撞前系统的总动量,()mv ∆∑是碰撞前、后系统的总动量差。

一般情况下,如果
5%E <,我们就可以认为系统动量守恒了。

2、研究机械能守恒定律
机械能守恒定律是能量守恒定律在力学范围内的特例,在研究力学问题时有非常重要的应用。

如图二所示,设垫片高度为H ,导轨两底脚螺丝之间的距离为L ,两光电门之间的距离为S ,则两光电门之间的高度差为H
h S L
=。

滑块m 由上往下滑动,经过两个光电门时的速度分别为1V 、2V ,如果不计粘滞阻力,滑块运动过程中只有重力做功,符合机械能守恒定律成立条件,

221211
22
mV mgh mV +=, 即
22121122
HS mV mg mV L +=, 为减少计算量,可约去m :2
2122HS V g V L
+=。

为检验实验结果的准确程度,可以仿照前面验证动量守恒定律的方法,引入机械能百分差的
概念。

【实验内容】
1、将气垫导轨调成水平状态 2、非完全弹性碰撞
(1)、将气垫导轨调成水平状态
图二
(2)、在两滑块的端部装上碰撞弹簧。

用电子天平称量两个滑块的质量1m 和2m 。

配重块装在滑块1上,1m 包括滑块1和配重块两个部分的质量。

(3)、将光电门1、2的插头分别插在电脑计数器的1P 、2P 两个插孔上,电脑计数器的功能键选择“碰撞”档。

为减小因阻力造成的损失,两个光电门之间的距离应尽量小些,只要满足碰撞时两个滑块的挡光条都在两个光电门之间即可,一般约在30cm —40cm 之间。

(4)、将滑块2放在两光电门之间靠近光电门2的地方,令其静止(20v =),中速轻推滑块1,使两者作对心碰撞。

测出两滑块碰撞前、后的速度,计算碰撞前后的动量,验证动量守恒定律。

注意速度的正负。

重复操作4次,其间,两个滑块的位置也可调换。

3、完全非弹性碰撞
(1)、在两个滑块的端部装上尼龙搭扣,再次称量两滑块的质量。

(2)、滑块2静止在两光电门之间,滑块1运动,碰撞后两滑块连在一起。

测出两滑块碰撞前、后的速度。

重复操作4次。

验证动量守恒定律。

4、依次在单脚螺丝下垫1块垫片、2块垫片、3块垫片、4块垫片,逐渐改变倾斜高度H ,并用卡尺测量H 。

让滑块从适当的高度处由静止开始下滑。

测出滑块经过两光电门时的瞬时速度
1V 、2V ,计算滑块前、后两个状态的机械能,验证机械能守恒定律。

重复操作4次。

【数据记录与处理】
表一.动态调平
表二.非完全弹性碰撞(m = g ,m = g )
1(/)cm s 2(/)v cm s /)m cm s 1122(/)m m v g cm s
动量百分

表三.完全非弹性碰撞(1m = g ,2m = g )
表四.机械能守恒定律(S =
cm )
【误差分析】(分析本实验产生误差的各种原因。


【思考题】
1、做碰撞实验时,为什么两个光电门要尽可能靠得近一些,且使2m 的挡光条尽可能靠近光电门2?
2、验证机械能守恒时,垫块数不同,百分差是否相同?分析原因。

/)cm s 2()(/)m
m V g cm s。

相关文档
最新文档