对口单招数学试卷
2023年高职单独招生考试数学试卷(答案) (4)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若O 为⊿ABC 的内心,且满足(OB -OC )•(OB +OC -2OA )=0()A.等腰三角形B.正三角形C.直角三角形D.以上都不对2.设有如下三个命题()甲:m∩l =A,m、l ⊂,m、l ⊄;乙:直线m、l 中至少有一条与平面相交;丙:平面与平面相交。
当甲成立时,乙是丙的条件。
A.充分而不必要B.必要而不充分C.充分必要D.既不充分又不必要3.⊿ABC 中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C 的大小为()A.6πB.65πC.6π或65πD.3π或32π4.等体积的球和正方体,它们的表面积的大小关系是()A.S 球>S 正方体B.S 球<S 正方体C.S 球=S 正方体D.S 球=2S 正方体5.若连结双曲线22a x -22by =1与其共轭双曲线的四个顶点构成面积为S 1的四边形,连结四个焦点构成面积为S 2的四边形,则21S S 的最大值为()A.4B.2C.21D.416.若干个正方体形状的积木按如图所示摆成塔形,上面正方体中下底的四个顶点是下面相邻正方体中上底各边的中点,最下面的正方体的棱长为1,平放在桌面上,如果所有正方体能直接看到的表面积超过7,则正方体的个数至少是()A.2B.3C.4D.67.关于x 的不等式0ax b ->的解集为(1,)+∞,则关于x 的不等式02ax bx +>-的解集为()A.()2,1-B.(,1)(2,)-∞-⋃+∞C.(1,2)D.(,2)(1,)-∞-⋃+∞8.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则()A.1AB CC =B.AB=BC C.145CBC ∠=︒D.145BDB ∠=︒9.已知集合{}{}0,2,1,1,0,1,2A B ==-,则A B ⋂=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}10.圆224230x y x y ++-+=的圆心坐标为()A.(4,-2)B.(2,1)C.(-2,1)D.(2,1)二、填空题:(本题共3小题,每小题10分)1、已知双曲线(a>0,b>0)的两个焦点为、,点P 是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_______.2、记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(1)当2000≤≤x 时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大?求出最大值.(精确到1辆/小时)2.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N 参考答案:一、选择题1-5题答案:ACABC 6-10题答案:BBCAC 二、填空题1.∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,…①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,…②①②联解,得,可得,∴双曲线的,结合,得离心率故答案为:2.根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B ,所以A﹣B.故答案为:.三、解答题1.(1)解:因为当20020≤≤x 时,车流速度是车流密度x 的一次函数,故设b kx v +=则⎩⎨⎧+=+=bk b k 20602000⎪⎪⎩⎪⎪⎨⎧=-=∴320031b k 320031+-=∴x v 故⎪⎩⎪⎨⎧≤≤+-<≤=20020,320031200,60)(x x x x v (2)由(1)得⎪⎩⎪⎨⎧≤≤-<≤=20020,)200(31200,60)(x x x x x x f 当200<≤x 时,)(x f 为增函数,1200)(<x f 当20020≤≤x 时,310000)100(31)200(31)(2+--=-=x x x x f 当100=x 时,最大值3333=即当车流密度为100辆/千米时,车流量可以达到最大,最大约为3333辆/小时)(x g 的减区间为)0,(-∞2.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。
2023年对口单独招生考试数学试卷(答案)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1、下列计算正确的是()A .(a3)2=a9B .log36-log32=1C .12a -·12a =0D .log3(-4)2=2log3(-4)2、三个数a =0.62,b =log20.3,c =30.2之间的大小关系是()A .a<c<bB .a<b<cC .b<a<cD .b<c<a3、8log 15.021+-⎪⎭⎫⎝⎛的值为()A .12 B.72C .16 D.374、下列各式成立的是()A.()52522n m n m +=+B .(b a)2=12a 12b C.()()316255-=- D.31339=5、设2a =5b =m ,且1a +1b =3,则m 等于()A.310B .12C.20D.156、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx7、已知平面向量,则与的夹角是()8、函数y=(x≠-5)的反函数是()(A)y=x-5(x∈R)(B)y=-+5(x≠0)(C)y=x+5(x∈R)(D)y=(x≠0)9、不等式的解集是()(A){x|0<x<1}(B){x|1<x<∞}(C){x|-∞<x<0}(D){x|-∞<x<0}10、已知函数之,则F(x)是区间()(A)()上的增函数(B)上的增函数(C)上的增函数(D)上的增函数11、已知直线L过点(-1,1),且与直线x-2y-3=0垂直,则直线L的方程是()(A)2x+y-1=0(B)2x+y-3=0(C)2x-y-3=0(D)2x-y-1=012、已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是()(A)6π(B)12π(C)18π(D)36π13、是等差数列{}的前n项合和,已知=-12,=-6,则公差d=()(A)-1(B)-2(C)1(D)214、将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有()(A)90中(B)180种(C)270种(D)360种15、吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美。
2023年对口单独招生考试数学试卷(含答案)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A.cb a << B.b ac <<C.bc a << D.a b c <<2、不等式152x x ---<的解集是()A.(,4)-∞ B.(,1)-∞ C.(1,4) D.(1,5)3、函数x x y 2cos sin =是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数,也是偶函数4、若(12)a +1<(12)4-2a ,则实数a 的取值范围是()A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)5、化简3a a 的结果是()A .aB .12a C .41a D .83a 6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B. C. D.7.抛物线上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1、求满足xx ->⎪⎭⎫⎝⎛22162-的x 取值范围的集合是______(用集合表示)2、不等式0)5(1<--x x )(的解集是______.(用集合表示)3、已知log5[log2(log3x)]=0,那么21x =______.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知f(x)=2x +3,g(x +2)=f(x),求g(x)参考答案:一、选择题:1-5:BABAB 6-10:ADDBD11-15:ABDCA 16-20:BABCB二、填空题:1、}32{<<-x x ;2、(1,5);3、3;4、2512-;5、36;6、2;7、π;8、1;9、1532-;10、x-y-1=0。
2023年河南省驻马店市普通高校对口单招数学自考测试卷(含答案)

2023年河南省驻马店市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-82.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2D.|a|=|b|3.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-44.A.B.C.D.5.设a>b>0,c<0,则下列不等式中成立的是A.ac>bcB.C.D.6.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R7.函数和在同一直角坐标系内的图像可以是()A.B.C.D.8.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B( )A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]9.若函数f(x) = kx + b,在R上是增函数,则( )A.k>0B.k<0C.b<0D.b>010.设集合,则A与B的关系是()A.B.C.D.二、填空题(10题)11.则a·b夹角为_____.12.某程序框图如下图所示,该程序运行后输出的a的最大值为______.13.设集合,则AB=_____.14.设x>0,则:y=3-2x-1/x的最大值等于______.15.等比数列中,a2=3,a6=6,则a4=_____.16.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.17.已知函数,若f(x)=2,则x=_____.18.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.19.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
20.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.三、计算题(5题)21.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.22.己知{a n}为等差数列,其前n项和为S n,若a3=6, S3= 12,求公差d.23.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2 .24.已知函数f(x)的定义域为{x|x≠0 },且满足.(1) 求函数f(x)的解析式;(2) 判断函数f(x)的奇偶性,并简单说明理由.25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1) 求f(-1)的值;(2) 若f(t2-3t+1)>-2,求t的取值范围.四、简答题(10题)26.化简27.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.28.已知是等差数列的前n项和,若,.求公差d.29.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率30.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程31.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
全国对口单独招生考试数学试卷(答案) (1)

全国对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分) 1.向量)3,1(),1,1(+=-=x b x a ,则“x=2”是“b a //"的( ) A. 充分但不必要条件 B. 必要但不充分条件 C. 充要条件 D. 既不充分也不必要条件 2.简2+cos2-sin21的结果是( )A .-cos1B .cos1 C.3cos1 D .-3cos1 3.函数(其中)的图象如图所示,为了得到的图像,则只需将的图像( )A .向右平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向左平移个长度单位4、函数)32(log )(22-+=x x x f 的定义域是( ) A.[3,1] B.(-3,1) C.(][)+∞-∞-,13, D.()()+∞-∞-,13,5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是( )A.c b a <<B.b c a <<C.c a b <<D.a c b <<()sin()f x A x ωϕ=+0,||2A πϕ><x x g 2sin )(=()f x 6π12π6π12π6.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( )A. 280种B. 240种C. 180种D. 144种7、函数,若,则的值为( ) .3 .0 . .8、若函数的定义域是,则函数的定义域是( ). . . .9、已知为上的减函数,则满足的实数的取值范围是( ). . . .10、下列函数中,在其定义域内既是奇函数又是减函数的是( ). . . .11.已知平面向量βα,的夹角为1800()1,2,52-==β,则α= ( )A .()2,4-B .()2,4-C .()2,4--D .()2,412.已知函数0)1(),0()(2=->++=f a c bx ax x f ,则“b<0”是“f (1) < 0”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条 13. 若 ,且 为第四象限角,则 的值等于 ( )A.B.C.D.14. 函数的定义域是 ( ))(1sin )(3Rx x x x f ∈++=2)(=a f )(a f -A B C 1-D 2-)(x f y =[]2,01)2()(-=x x f x g A []1,0B [)1,0C [)(]4,11,0 D ()1,0)(x f R )1()1(f x f <x A ()1,1-B ()1,0C ()()1,00,1 -D ()()+∞-∞-,11, A R x x y ∈-=,3B R x x y ∈=,sinC R x x y ∈=,D R x y x∈⎪⎭⎫⎝⎛=,21A. C.15. 若,,则的坐标是 ( )A. B. C. D. 以上都不对16. 在等差数列中,已知,且,则与的值分别为 ( )A. -2,3B. 2,-3C. -3,2D. 3,-217. 设,“”是“”的 ( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件18. 函数的图象如图所示,则最大、最小值分别为 ( )A. B.C. D.19. 设,,,其中为自然对数的底数,则,,的大小关系是 ( )A. B. C. D.20. 设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是 ( )B.C.D.二、填空题(共10小题,每小题3分;共计30分) 1、已知点)1,5(),1,(-N m M ,且13=MN ,则=m _________.2.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________; 3.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;4.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;5.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 三、大题:(满分30分)1、求过直线0123=++y x 与0532=+-y x 的交点,且与直线0526:=+-y x l 垂直的直线方程.2、图①,图②均是4x4的正方形网格,每个小正方形的顶点称为格点。
江苏省2024年普通高校对口单招文化统考数学试卷

江苏省2024年一般高校单独招生统一考试试卷数 学一、选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的。
)1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T = ( )A. },4|{N n n x x ∈=B. },2|{N n n x x ∈=C. },|{N n n x x ∈=D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 ( )A .充要条件 B. 必要而非充分条件C .充分而非必要条件 D. 既非充分也非必要条件3、已知2tan -=α,且0sin >α,则αcos 为( ) A.55- B. 55± C. 55 D. 552 4、若函数a x y +=2及bx y -=4互为反函数,则b a ,的值分别为 ( )A .2,4- B. 2,2- C.21,8-- D. 8,21--5、若数列}{n a 的通项为)1(1+=n n a n ,则其前10项的和10S 等于 ( ) A.109 B.1011 C. 910 D. 1110 6、已知向量)1,1(=a 及)3,2(-=b ,若b a k 2-及a 垂直,则实数k 等于( )A.1-B. 1C.5D.07、已知x a x f =)(,)1,0(log )(≠>=a a x x g a ,若0)21()21(>⋅g f ,则)(x f y =及)(x g y =在同一坐标系内的图象可能是( )A B C D8、过点)4,2(-,且在两坐标轴上的截距之和为0的直线有( )A. 1条B. 2条C. 3条D. 4条9、三个数6.0log ,2,6.026.02的大小关系是 ( )A. 6.0log 26.026.02<<B. 6.02226.06.0log <<C. 26.026.026.0log <<D. 6.02226.0log 6.0<<10、假如事务A 及B 互斥,那么( )A. A 及B 是对立事务B. B A 是必定事务C. B A 是必定事务D. B A 与互不相容11、椭圆159)1(22=+-y x 的左焦点坐标为( )A.)0,3(-B.)0,0(C. )0,2(-D. )0,1(-12、已知函数)(x f 在),(+∞-∞上是偶函数,且)(x f 在)0,(-∞上是减函数,那么)43(-f 及)1(2+-a a f 的大小关系是 ( ) A. >-)43(f )1(2+-a a f B. ≥-)43(f )1(2+-a a f C. <-)43(f )1(2+-a a f D. ≤-)43(f )1(2+-a a f 二、填空题(本大题共6题,每小题4分,共24分,把答案填在题中的横线上。
2023年对口单独招生考试数学试卷(答案

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1、已知集{1,2,3},B {1,3}A ==,则A B = ()A.{2}B.{2,3}C.{1,3}D.{1,2,3}2、已知集合{}{}3,2,3,2,1==B A ,则()A.B A =B.=B A ∅C.B A ⊆D.AB ⊆3、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A.{0,-1}B.{1}C.{0}D.{-1,1}4、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为()A .0B .1C .2D .56.椭圆标准方程为x 22t+4+y 24−t =1,一个焦点为(-3,0),则t 的值为()A.-1B.0C.1D.37.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能8.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(4,-1),4B.(4,-1),2C.(-4,1),4D.(-4,1),29.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A.110000 B.150 C.3100D.1710010.a 、b 、c 为实数,则下列各选项中正确的是()A.a-b <0⇔a-c <b-cB.a-b >0⇔a >-bC.a-b >0⇔-2a >-2bD.a >b >c >0⇔ab >ac11.sin1050°的值为()A.22 B.32 C.−12D.1212.双曲线x 2a 2−y 2b 2=1的实轴长为10,焦距为26,则双曲线的渐渐近线方程为()A.y =±135x B.y =±125x C.y =±512xD.y =±513x13.方程y =x 2−4x +4所对应曲线的图形是()174.若角α的终边经过点(4,-3),则cos2α的值为(A )A.725 B.−1625C.−725D.162514、函数12--=x x y 的图像是()A .开口向上,顶点坐标为(45,21-的一条抛物线;B .开口向下,顶点坐标为)(45,21-的一条抛物线;C .开口向上,顶点坐标为(45,21-的一条抛物线;D .开口向下,顶点坐标为)(45,21-的一条抛物线;15.动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是()A.(1,6)B.(1,5)C.(0,4)D.(0,3)16.“2019k2−1=1”是“k=1”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件17.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折.按照购票费用最少原则,建立实际游览人数x 与购票费用y (元)的函数关系,以下正确的是()A.y =80x ,0≤x <24,x ∈N 1344,24≤x ≤30,x ∈N 56x ,x >30,x ∈NB.y =80x ,0≤x <21,x ∈N 1680,21≤x ≤30,x ∈N 56x ,x >30,x ∈NC.y =80x ,0≤x <24,x ∈N 1920,24≤x ≤30,x ∈N56x ,x >30,x ∈ND.y =80x ,0≤x <21,x ∈N 2400,21≤x ≤30,x ∈N 56x ,x >30,x ∈N18、设2a =5b =m ,且1a +1b =3,则m 等于()A.310B .10C .20D .10019、已知f(12x -1)=2x +3,f(m)=8,则m 等于()A .14 B.-14C.32D .-3220、函数y =lg x +lg(5-2x)的定义域是()A .)25,0[B .⎥⎦⎤⎢⎣⎡250,C .)251[,D .⎥⎦⎤⎢⎣⎡251,二、填空题(共10小题,每小题3分;共计30分)1、已知集合}3,2,1{=A ,}5,4,2{=B ,则集合B A 中元素的个数为_____.2、已知A ={-1,3,m},集合B ={3,4},若B ∩A =B ,则实数m =_____.3、设集合A ={-1,1,-2},B ={a +2,a2+4},A ∩B ={-2},则实数a =_____.4、已知集合}42<<=x x A {,B=}0)3)(1{<--x x x (,则B A =_____.(用区间表示)5、已知集合}32|{2≥-=x x x P ,}42|{<<=x x Q ,则=Q P _____.(用区间表示)6、设集合{}xx x M ==2,{}0lg ≤=x x N ,则=N M _____.(用区间表示)7、已知f(x5)=lg x ,则f(2)=_____.8、3-2,213,5log 2三个数中最大的数是_____.9、16log 01.0lg 2+的值是_____.10、=-+-1)21(2lg 225lg _____.三、大题:(满分30分)1、在△ABC 中,已知4,5b c ==,A 为钝角,且4sin 5A =,求a.2、判断函数32(+-=x x f )在),(+∞-∞上是减函数.3、已知函数f(x)=x2-2x +2.求f(x)在区间[12,3]上的最大值和最小值。
2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)

2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R2.下列句子不是命题的是A.5+1-3=4B.正数都大于0C.x>5D.3.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.不存在x∈R,使得x2<04.下列函数为偶函数的是A.B.C.5.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.A.2B.3C.4D.57.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/38.A.B.C.D.9.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数10.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5B.2/5C.D.二、填空题(10题)11.等差数列中,a2=2,a6=18,则S8=_____.12.抛物线y2=2x的焦点坐标是。
13.若=_____.14.函数的最小正周期T=_____.15.已知那么m=_____.16.设{a n}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q= 。
17.18.椭圆9x2+16y2=144的短轴长等于。
19.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
20.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b =______.三、计算题(5题)21.在等差数列{a n}中,前n项和为S n ,且S4 =-62,S6=-75,求等差数列{an}的通项公式a n.22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城市2017年普通高校单独招生第二次调研考试试卷
数 学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.
第Ⅰ卷(共40分)
注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上
一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的) 1. 设{}{}{}==⋂--=-=
a 9,1,5,9,,12,4-2
,则已知,B A a a B a a A ( )
A .3
B .10
C . -3
D .10和3± 2.设z 的共轭复数为z ,若4=+z z
,8=⋅z z ,则
z
z
等于( ) A .i B .i - C .1± D .i ± 3. 在如图所示的电路中,用逻辑变量A 、B 、C 表示S ,则S=( ) A .C B A ++
B .
C B A ⋅⋅
C .)(C B A +⋅
D .C B A ⋅+
4. 某项工程的流程图如下(单位:天
)
则此工程的关键路径是( )
A .A →F →
B →E →G B .A →L →
C →F →B →E →G C .A →F →M →
D →
E →G D .A →L →C →
F →M →D →E →
G 5. 正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A. ︒75
B. ︒60
C. ︒45
D. ︒30
6.已知偶函数()f x 在[]0,3内递增,则23
1
(3),(),(log )2
4f f f -之间的大小关系是( ) A .2
13(3)(log )()42
f f f ->> B .231
(3)()(log )24
f f f ->>
A
C
C .231
()(log )(3)24
f f f >>- D .2
13
(log )()(3)42
f f f >>- 7. 函数2)2cos(3cos 2
+--=x x y π的最小值是( )
A .2
B .0
C .4
1
D .6
8. 8)1(x
x -
的展开式中5x 的系数为( )
A .56
B .-56
C .28
D .-28
9.已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于( )
A .π
B .π4
C .π8
D .π9
10.设
⎪⎩⎪⎨⎧>-≤-=)
0(),1()
0(,)3
1()(x x f x a x f x
,若x x f =)(仅有二个解,则实数a 的取值范围为( ) A .]2,1[ B .)2,(-∞ C .)3,2( D .)3,1( 第Ⅰ卷的答题纸
第Ⅱ卷(共110
分)
二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11.如果执行右面的程序框图,那么输出的S = . 12. 某商场小家电组2014年12月购进一批货物,商品验收单如下表:
则这一批货物的利润率为 .
13. 若函数sin ,sin cos ()cos ,sin cos x x x
f x x x x
≥⎧=⎨
<⎩,则()f x 的最小值为 .
14. 若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 . 15.已知三个函数x y
2=,2x y =,x
y 8
=
的图象都经过点A ,且点A 在直线 12=+n
y m x ,0(>m )0>n 上,则n m 22log log +的最小值为 . 三、解答题:(本大题共8题,共90分) 16.(本题满分8分)已知指数函数
)(x g y =满足:g(2)=4.定义域为R
的函数
m
x g n
x g x f ++-=
)(2)()(是奇函数.
(1)求)(x g y =的解析式;
(2)求m ,n 的值.
17.(本题满分10分)已知函数
]1)1[(log )(2+--=a x a x f 的定义域为),1(+∞.
(1)求a 的取值范围;(2)解不等式:x x
x a a 382-->.
18.(本题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos
2A =
,3AB AC ⋅=
.
(1)求ABC ∆的面积; (2)若6b c +=,求a 的值.
19.(本题满分12分)求下列事件的概率:(1)口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,事件 A ={第二个人摸到白球}; (2) 已知函数f (x )=-x 2+ax -b ,若a 、b 都是从区间[0,4]任取的一个数,事件B ={f (1)>0成立}.
20.(本题满分10分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,
该企业在经销这个产品期间第x 个月的利润1, 120,()1, 2160,10
x x N
f x x x x N ≤≤∈⎧⎪
=⎨≤≤∈⎪⎩(单位:万
元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x 个月的当月利润率()x g x x =
第个月的利润第个月前的资金总和,例如:(3)
(3)81(1)(2)
f g f f =++.
(1)求(10)g ;(2)求第x 个月的当月利润率()g x ;
(3)该企业经销此产品期间,哪一个月的当月利润率最大,并求该月的当月利润率.
21.(本题满分14分)椭圆C 的对称中心为原点O ,焦点在x 轴上,离心率为
1
2
, 且点(1,3
2
)在该椭圆上. (1)求椭圆C 的方程;
(2)过椭圆C 的左焦点1F 的直线l 与椭圆C 相交于,A B 两点,若AOB ∆的面积为7
2
6,求圆心在原点O 且与直线l 相切的圆的方程.
22.(本题满分10分)某钢材厂要将两种大小不同的钢板截成A 、B 、C 三种规格,加工数据如下表:
每张第一种钢板的面积为1m ,第二种为2 m ,请你为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?
23.(本题满分14分)已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (1)求证:数列{
n
n
a 2}是等差数列;(2)求数列{n a }的通项公式; (3)设数列{n a }的前n 项之和n S ,求证:322
->n S n n
.。