线性代数上机作业

合集下载

线性代数上机作业一

线性代数上机作业一

线性代数机算与应用作业题主要练习线性代数课本上所讲函数的用法以及用这些函数解简单的实际问题 一、机算题1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。

(1)计算A +B ,A -B 和6A (2)计算()TAB ,TTB A 和()100AB(3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1A -和1B - (5)计算矩阵A 和矩阵B 的秩。

2.求解下列方程组(1)求非齐次线性方程组1234123412341234224514171278776652921710x x x x x x x x x x x x x x x x +++=⎧⎪-+-+=⎪⎨+++=⎪⎪--+-=⎩的唯一解。

(2)求非齐次线性方程组123451234512345123455972844228252398881266977x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩的通解。

3.已知向量组134083α⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,211022α⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=160323α,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=212394α,50822110α⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,求出它的最大无关组,并用该最大无关组来线性表示其它向量。

4.求向量空间3R 中向量325α⎛⎫ ⎪= ⎪ ⎪⎝⎭在基1231230,1,2001βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标5.求下列矩阵的特征值和特征向量,并判断其正定性。

(1)1232563625A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;(2)203131061622B -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦6.用正交变换法将下列二次型化为标准形。

()222123123112213323,,23f x x x x x x k x x k x x k x x =+++++其中“123k k k ”为自己学号的后三位。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

西交《线性代数》在线作业(资料答案)

西交《线性代数》在线作业(资料答案)

西交《线性代数》在线作业-0001试卷总分:100 得分:100一、单选题 (共 35 道试题,共 70 分)1.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A^-1CB^-1B.CA^-1B^-1C.B^-1A^-1CD.CB^-1A^-1答案:A2.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A3.n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的( )。

A.充分必要条件;B.必要而非充分条件;C.充分而非必要条件;D.既非充分也非必要条件答案:C4.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。

A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B5.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).A.31B.32C.33D.34答案:B6.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A.A=EB.B=OC.A=BD.AB=BA答案:D7.设A3*2,B2*3,C3*3,则下列( )运算有意义A.ACB.BCC.A+BD.AB-BC答案:B8.设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=A.-1B.-2C.1D.2答案:B9.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B10.设A为三阶方阵,|A|=2,则 |2A-1| = ( )A.1B.2C.3D.4答案:D11.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).A.3B.15C.-10D.8答案:C12.设a1,a2,a3,a4,a5是四维向量,则( )A.a1,a2,a3,a4,a5一定线性无关B.a1,a2,a3,a4,a5一定线性相关C.a5一定可以由a1,a2,a3,a4线性表示D.a1一定可以由a2,a3,a4,a5线性表出答案:B13.设u1, u2是非齐次线性方程组Ax=b的两个解, 若c1u1-c2u2是其导出组Ax=o的解, 则有( ).A.c1+c2=1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:B14.n阶对称矩阵A为正定矩阵的充分必要条件是( ).A.∣A∣>0B.存在n阶矩阵P,使得A=PTPC.负惯性指数为0D.各阶顺序主子式均为正数答案:D15.用一初等矩阵左乘一矩阵B,等于对B施行相应的( )变换A.行变换B.列变换C.既不是行变换也不是列变换答案:A16.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.A≠B,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|答案:A17.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )A.-3B.-7C.3D.7答案:A18.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解答案:C19.设u1, u2是非齐次线性方程组Ax = b的两个解,若c1u1+c2u2也是方程组Ax = b的解,则( ).A.c1+c2 =1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:A20.设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为( ).A.3,5B.1,2C.1,1,2D.3,3,5答案:D21.设A,B,C均为n阶非零方阵,下列选项正确的是( ).A.若AB=AC,则B=CB.(A-C)^2 = A^2-2AC+C^2C.ABC= BCAD.|ABC| = |A| |B| |C|答案:D22.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )A.k≤3B.k<3C.k=3D.k>3答案:A23.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A24.设 A、B、C为同阶方阵,若由AB = AC必能推出 B = C,则A应满足( ).A.A≠OB.A=OC.|A|=0D.|A|≠0答案:D25.设A,B均为n阶非零方阵,下列选项正确的是( ).A.(A+B)(A-B) = A^2-B^2B.(AB)^-1 = B^-1A^-1C.若AB= O, 则A=O或B=OD.|AB| = |A| |B|答案:D26.设A,B均为n阶方阵,则( )A.若|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-1答案:A27.设A为m*n矩阵,则有( )。

西工大2020年4月《线性代数》作业机考参考答案

西工大2020年4月《线性代数》作业机考参考答案

西工大2020年4月《线性代数》作业机考参考答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII西工大2020年4月《线性代数》作业机考参考答案试卷总分:100 得分:98要答案:wangjiaofudao一、单选题 (共 7 道试题,共 14 分)1.{A.rankA < rankBB.rankA > rankBC.rankA ≤ rankBD.rankA ≥ rankB正确答案:C2.6.{A.A=0B.B=0C.AB=BAD.A=B正确答案:C3.4.{A.是对称矩阵B.是反对称矩阵C.是零矩阵。

正确答案:A4.1.{A.不可逆B.可逆C.也许可逆,也许不可逆正确答案:A5.7.设A为n阶实对称矩阵,判断A为正定矩阵的充要条件是()。

A.A的各阶顺序主子式小于0B.A的所有特征值均大于0C.A的所有特征值均大于等于0D.A的所有特征值均小于0正确答案:6.3.如果A可逆,B可逆,则AB()。

A.不可逆B.可逆C.也许可逆,也许不可逆正确答案:7.2.{A.不是正交矩阵B.也是正交矩阵C.是对称矩阵正确答案:二、判断题 (共 43 道试题,共 86 分)1.{A.错误B.正确正确答案:2. {A.错误B.正确正确答案:3. {A.错误B.正确正确答案:4. {A.错误B.正确正确答案:5.38.{A.错误B.正确正确答案:6.35.n阶行列式A的第i行元素是第j行对应元素的m倍,则A=0。

A.错误B.正确正确答案:7. {A.错误B.正确正确答案:8.26.{A.错误B.正确正确答案:9.36.若齐次线性方程组的系数行列式不为0,则该方程组必有非零解。

A.错误B.正确正确答案:10.21.{A.错误B.正确正确答案:11.正定矩阵的特征值均大于零。

A.错误B.正确正确答案:12. {A.错误B.正确正确答案:13. 若非齐次线性方程组的系数行列式不为0,则该方程组必有无穷多组解。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

线代上机作业

线代上机作业

上机作业(一)随机生成5阶方阵A,B,C及5维列向量b,求:①A+B,A-B.解:在Matlab中输入:A=rand(5,5);B=rand(5,5);C=rand(5,5);b=rand(5,1);得:输入A+B;A-B.得:②A*B+B*A.解:输入A*B+B*A.得:③Ax=b的解,并验证克莱姆法则.解:输入:x=A\b.得:输入:D=A;D1=A;D2=A;D3=A;D4=A;D5=A;D1(:,1)=b;D2(:,2)=b;D3(:,3)=b;D4(:,4)=b;D5(:,5)=b; Y=[det(D1)/det(D);det(D2)/det(D);det(D3)/det(D);det(D4)/det(D);det(D5)/det(D)].得:发现:x=y,故克莱姆法则成立.④A,B的行列式,逆,秩.解:输入:det(A);det(B);inv(A);inv(B);rank(A);rank(B).得:⑤A*B的行列式,逆,秩,并验证det(A*B)=det(A)*det(B).解:输入det(A*B);det(A)*det(B).得:可见det(A*B)=det(A)*det(B).⑥验证(AB)T=B T A T,(AB)−1=B−1A−1,AB≠BA.解:输入(A*B)’;B’*A’;inv(A*B);inv(B)*inv(A);A*B;B*A.由此可见(AB)T =B T A T ,(AB)−1=B −1A −1,AB ≠BA . ⑦求矩阵X 使得AXB=C. 解:输入X=(A\C)/B. 得:上机作业(二)验证:对于一般的方阵A,B,C,D , 若A,C 均为对角矩阵,且A 可逆,则:解:输入:A=rand(3,3);B=rand(3,3);C=rand(3,3);D=rand(3,3);E(1:3,1:3)=A;E(1:3,4:6)=B;E(4:6,1:3)=C;E(4:6,4:6)=D;det(E);det(A)*det(D)-det(B)*det(C).A B A D B CC D≠-A B AD CB C D =-由此可见在Matlab中输入:A=diag(diag(rand(3,3)));B=rand(3,3);C=diag(diag(rand(3,3)));D=rand(3,3);E(1:3,1:3)=A;E(1:3,4:6)= B;E(4:6,1:3)=C;E(4:6,4:6)=D;det(E);det(A*D-C*B).由此可见上机作业(三)N= 201465004共9位 a=最后两位 04. b=第4-5位 46. c=第6-7位 50. d=第4,8位 40. e=第1,8位 20. f=第5,9位 64. g=第4,9位 44. h=第5,7位 60.求A 列向量组的一个最大无关组,并把不属于 极大无关组的向量利用极大无关组表示.解:由题意可得该矩阵为:A=[44650123403444312152220644417576080]. 在MAtlab 中输入A=[4,46,50,40,3,4;1,2,3,4,4,3;12,15,22,17,5,7;20,64,44,60,8,0];b=rref(A).所以α1,α2,α3,α4是一个极大无关组,且有:α5=−0.2945α1−1.4863α2−0.0062α3+1.8214α4 α6=−0.0863α1−1.3001α2+0.3643α3+1.1484α4上机作业(四)Ax=b的解在下列不同的取值时变化如何?34123443121522175780a b c dA e f g h ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解:在Matlab 中输入syms x; syms y; B=[1;2+x;64;50];A=[4,46,50,40;1+y,2+2*y,3+3*y,4+4*y;12,15,22,17;20,64,44,60]; A\B. 得:即X=[(2∗(12597∗ε − 362∗δ + 11873))/(3975∗(ε + 1)) −(3298∗δ − 4563∗ ε+ 2033)/(7950∗(ε + 1))(4791∗ε − 61∗δ + 4669)/(3975∗(ε + 1)) −(4413∗ε − 818∗δ + 2777)/(1590∗(ε + 1))].上机作业(五)随机生成4个5维向量,并进行正交化.解:在Matlab 中输a=rand(5,1);b=rand(5,1);c=rand(5,1);d=rand(5,1);M=[a,b,c,d];N=orth(M). 得:121223344,,121522170.1,0.2,0.5,0.7,0.9,0.95ab c d b A f c ef g h δεεεεδε⎡⎤⎡⎤⎢⎥⎢⎥+++++⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=--=----即:四个五维向量为: [ 0.78030.38970.24170.40390.0965] 、[ 0.13200.94210.95610.57520.0598] 、[ 0.23480.35320.82120.01540.0430] 、[ 0.16900.64910.73170.64770.4509].正交化向量为: [ −0.2454−0.5709−0.6522−0.4052−0.1559] 、[ 0.8748−0.0664−0.42190.22230.0533] 、[ −0.40650.1428−0.47270.64500.4182] 、[ 0.0895−0.50680.2989−0.12680.7935]. 在Matlab 中输入N’*N 验证答案,得:由结果可知答案正确.上机作业(六)I 、随机生成5阶矩阵 ,求其特征值及对应特征向量. 解:在Matlab 中输入A=rand(5,5); [X,B]=eig(A).其中B 的对角线元素是特征值, X 的列是相应的特征向量.II 、随机生成5维列向量x ,求矩阵XX′的特征值并观察结果,尝试得出一般性结论.解:在Matlab 中输入syms a; syms b; syms c; syms d; syms e; x=[a;b;c;d;e]; y=x*x’; [X,B]=eig(y).故当a,b,c,d,e 是实数时,矩阵XX′的特征值为(0,0,0,0,a 2+b 2+c 2+d 2+e 2).上机作业(七)化简下列二次型,并判断正定性:()2221231122233,,32fx x x x x x x x x x =+-++()22123121323,,44fx x x x x x x x x =-+-解:在Matlab中输入A=[1,1.5,0;1.5,-1,1;0,1,1];[P,D]=schur(A).得:P就是所求的正交矩阵,使得P’AP=D,所以令X=PY,化简后的二次型为g=−2.0616y12+ y22+2.0616y32.此二次型非正定非负定.在Matlab中输入A=[1,0,2;0,-1,-2;2,-2,0] ;[P,D]=schur(A).得:P就是所求的正交矩阵,使得P’AP=D,所以令X=PY,化简后的二次型为g=−3y12+3y32.此二次型非正定非负定.上机作业(八)某城市共30万人从事农业、工业、商业工作,假定此人数不变,另外,社会调查表明:(1)在此30万人中,目前约15万人从事农业,9万人从事工业,6万人从事商业;(2)农业人员中,每年20%转为工业,10%转为商业;(3)工业人员中,每年20%转为农业,10%转为商业;(4)商业人员中,每年10%转为农业,10%转为工业;预测一、二年后各行业人数,及若干年后各行业人数。

第三章上机作业

第三章上机作业

第三章上机作业
一、上机要求
已知Hilbert矩阵H的元素为: =1/(i+j-1), 完成如下实验:
(1)编程计算H的行范数函数;
(2)编写计算H的行范数条件数函数(可以调用求逆函数,Mathematica为Inverse[H],Matlab为
inv(H), 其它语言自己去查找相应的逆矩阵程序使用);
(3)对n=1,2,…,20, 计算H的行范数条件数, 画出n同条件数的对数之间的关系图;
(4)令x=(1,1,…,1), 计算b=Hx, 对n=1,2,…,20, 求解=b,并计算x-的无穷范数和b-H.
(5)通过以上的数值实验, 你理解到了什么.
二、程序截图及结果
三、心得体会
通过实验对向量范数和矩阵范数有了更深的理解。

学习了通过编程实现对Hillbert矩阵行范数函数和行范数条件数的计算。

线性代数上机作业

线性代数上机作业

线性代数上机作业一、单项选择题。

1、可逆矩阵用用det()函数求行列式判断,选C 代码如下:A = [2 3 0; 0 -2 -3; -6 -5 6];B = [-3 2 3; 2 2 -1; -1 4 2];C = [3 -2 2;3 -1 2 ; 0 -1 -1];D = [2 1 1; -6 -3 -3; 3 -2 2];det(A)ans =>> det(B)ans =1.1102e-15>> det(C)ans =-3>> det(D)ans =Det(B) 可近似为02、用代数余子式求行列式:C>> 1*(-9)+(-5)*2+5*(-6)+(-9)*(-6)ans =53、n阶线性相关即行列式为0:A>> syms x>> A = [-35 56 x -43;-10 17 21 -14;-5 8 9 -6;20 -31 -34 23] A =[ -35, 56, x, -43][ -10, 17, 21, -14][ -5, 8, 9, -6][ 20, -31, -34, 23]>> det(A)ans =5*x - 320>> x = 320/5x =644、f为正定二次型,用特殊值判断t的范围:At=2行列式大于0和t = 5时行列式小于0A =1 -5 4-5 26 184 -22 22>> det(A)ans =82>> A = [1 -5 -10; -5 26 -52; -10 48 22];>> det(A)ans =-282.00005、因特征值与特征向量对应,选D二、填空题:1、147:由行列式互换行列改变符号,所以|B|=7,>> (-3)^3*(-7)-6*7ans =1472、B = [-2 2 0 ] 由B = 2*(A-E)^-1*A得[-6 6 -2][ 0 -2 4]A = [2 -1 -1; 3 -1 -2; 3 -2 0];>> B = 2*(A-eye(3))^-1*AB =-2.0000 2.0000 0-6.0000 6.0000 -2.00000 -2.0000 4.00003、-13 -7 -13 由f(A)=f(λ) f(x) = -x^2+x-1 所以特征值为f(-3)= -13 ;f(3)=-7; f(4)=-134、10 -4 2 化为行最简型:A = [1 4 4; 0 1 4; 0 0 1];>> a = [2 4 2]';>> rref([A a])ans =1 0 0 100 1 0 -40 0 1 25、>> A = [3 0 2 4; 4 4 0 -3; 4 0 4 4; 2 3 1 0];>> B = [4 -3 4 0; 2 0 4 0; 0 2 -1 2; 0 4 3 1];>> (A*B)^2ans =872 100 1197 34338 1128 471 5341032 128 1432 404404 470 710 3566、-3 求行列式直接用det()即可A = [1 3 2 -3 3; 5 0 1 9 -6; 5 3 3 4 -2; 3 5 1 1 6; 0 0 2 -2 -1];>> det(A)-3.00007、3 求秩用rank()函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求:写出所用命令及最后答案
文档名保存为自己的学号及姓名,如:03101***_***.doc
1、生成以下矩阵:
A=⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9 3 2(1) 6 5 66 6 0 A=⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1 0 0(2)0 1 00 0 1 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1 1 1 11 1 1 1(3)A=1 1 1 11 1 1 1
2、已知矩阵:
6 9 5A=0 5 22 9 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 6 6 2B=1 0 42 8 1⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦ 且满足PA=B AQ=B ,,计算矩阵P 和Q 。

3、求下面非齐次线性方程的通解:
12345123451234512345244162362623736461923
2521943X +X -X +X +X =-⎧⎪-X -X +X -X -X =⎪⎨X +X -X +X +X =-⎪⎪X +X +X +X +X =⎩
4、已知矩阵:
1102A=1212101--⎡⎤
⎢⎥-⎢⎥--⎢⎥⎣⎦ 求下列矩阵的特征值及特征向量:
(1) A ;
(2) 32
5A 2A 3-+I ;
(3) 123-I -A ; 5、设
14710=2581136912⎡⎤
⎢⎥A ⎢⎥⎢⎥⎣⎦ 分别提取A 中元 23a ,提取A 中的第一行,提取A 中的前两行的第一、第三、四列元组成
的子矩阵,修改矩阵的元素
23a 为15,修改矩阵的第二行为5 10 15 20,及删除整个第一行。

6、分别求:
123A =221343⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 1123
1112341113451B=⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 的逆矩阵。

7、计算行列式 22
224444
11
11a b
c d a b c d a b c d 的值。

8、求矩阵A 的列向量组的一个最大无关组,并用最大无关组表示其余的向量,其中
1210224266A=2102333334--⎡⎤
⎢⎥--⎢⎥-⎢⎥⎢⎥⎣⎦ 9、调用函数diag 生成矩阵
56001560A=01560015⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。

相关文档
最新文档