空间直角坐标系第一课时

合集下载

《空间向量的坐标与空间直角坐标系》第一课时示范公开课教学设计【高中数学】

《空间向量的坐标与空间直角坐标系》第一课时示范公开课教学设计【高中数学】

《空间向量的坐标与空间直角坐标系》教学设计第一课时◆教学目标1、在理解空间向量基本定理的基础上掌握空间向量正交分解的原理及坐标表示..提升学生的数学抽象素养.2、能正确地运用空间向量的坐标,进行向量的线性运算与数量积运算.提高逻辑推理、数学运算的数学素养.◆教学重难点◆教学重点:掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.教学难点:掌握空间向量的坐标运算◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第17-19页,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:(1)本节课主要学习空间向量的坐标与空间直角坐标系第一课时空间中向量的坐标及坐标运算的知识内容.(2)通过类比平面向量及其运算的坐标表示,从而引入空间向量及其运算的坐标表示,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间,在学生学习了空间向量的几何形式和运算,以及在空间向量基本定理的基础上进一步学习空间向量的坐标运算及其规律,是平面向量的坐标运算在空间推广和拓展,为运用向量坐标运算解决几何问题奠定了知识和方法基础.设计意图:通过对本节知识内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架. 平面向量中,我们借助平面向量基本定理以及两个互相垂直的单位向量,引进了平面向量的坐标.空间向量是否可以引进类似的坐标?这就是本小节我们要研究的内容(板书:空间向量的坐标系与空间直角坐标系第一课时)二、探索新知 第一部分 空间中向量的坐标问题2:如图所示,已知123,,===OA e OB e OC e ,且OADB-CEGF 是棱长为1的正方体,111111-OF E A A DC B 是一个长方体,1A 为OC 的中点,1FO=2,. (1)设1,,==OG a OC b 将向量,a b 都用123,,e e e 表示;(2)如果p 是空间中任意一个向量,怎样才能写出p 在基底{123,,e e e }下的分解式?师生活动:学生在教师的指导下写出答案.预设的答案:123,=++a e e e 12312,2=-+b e e e 设计意图:问题既是对上一小节空间向量基本定理的检测与巩固,又为引出本小节的空间向量的坐标做了铺垫.追问:根据空间向量基本定理,任意向量p 都可以在基底{123,,e e e }下进行分解;如果123=++p xe ye ze ,那么它的坐标如何表示?师生活动:学生在教师的指导下写出答案.预设的答案:如果123=++p xe ye ze ,那么它的坐标为(x ,y ,z ).设计意图:把问题分解,分层次、设梯度来进行研究,培养学生的数学抽象核心素养.2、形成定义一般地,如果空间向量的基底{123,,e e e }中,123,,e e e 都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底;在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果123=++p xe ye ze ,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ),其中x ,y ,z 都称为p 的坐标分量.三、初步应用例1已知{123,,e e e }是单位正交基底,分别求出下列空间向量的坐标;(1)12323=++p e e e ;(2)1232=-+-q e e e ;(3)232=--r e e ;(4)0师生活动:学生根据所学知识做出解答,由老师指定学生给出答案.预设的答案:(1)(2,3,1)=p ;(2)(1,1,2)=--q ;(3)(0,2,1)=--r ;(4)(0,0,0)设计意图:通过例题的训练,强化学生对概念的理解和简单应用.练习:已知{123,,e e e }是单位正交基底,分别求出下列空间向量的坐标;(1)13-2=+p e e ;(2)2132=-+-q e e e ;(3)3=-r e ;师生活动:学生根据例1的讲解做出解答,并由教师给出答案.预设的答案:(1)(-2,0,1)=p ;(2)(1,1,2)=--q ;(3)(0,0,1)=-r设计意图:通过练习题的训练,强化学生对概念的理解和简单应用.第二部分.空间向量的运算与坐标的关系问题3:与平面向量的坐标类似,空间向量有了坐标之后,向量的相等以及加法运算与它们对应的坐标之间有什么关系?师生活动:学生先由平面向量的坐标运算猜测空间向量的坐标运算,教师给出答案. 预设的答案:假设空间中两个向量,a b 满足111222(,,),(,,)==a x y z b x y z ,则121212,,=⇔===a b x x y y z z 121212(,,)+=+++a b x x y y z z ;121212(,,)+=+++ua vb ux vx uy vy uz vz设计意图:利用向量的加法、减法、数乘等运算来证明结论这种类比的探究对于建立新的数学概念、提出新的数学猜想、发现新的规律起着十分重要的作用,也有利于培养学生的数学抽象、逻辑推理等数学学科核心素养.追问:能否证明上述结论?师生活动:学生先尝试自己证明,教师给出证明过程.预设的答案:假设空间中两个向量,a b 满足111222(,,),(,,)==a x y z b x y z ,则111213212223,=++=++a x e y e z e b x e y e z e ,则当=a b 时,111213212223++=++x e y e z e x e y e z e 由{123,,e e e }是单位正交基底和空间向量基本定理可知,121212,,===x x y y z z ,反之,结论也成立,这就是说,空间两个向量相等的充要条件是他们的坐标分量相等.111213212223+=+++++a b x e y e z e x e y e z e =112112221323+++++x e x e y e y e z e z e =121122123)()()+++++(x x e y y e z z e ,所以,121212(,,)+=+++a b x x y y z z .问题4:通过上面的学习,你是否可以得出,||,cos ,⋅〈〉a b a a b 的坐标运算公式?并给出证明?师生活动:学生先尝试自己得出结论并证明,教师给出证明过程.预设的答案:121212⋅=++a b x x y y z z ;21||=⋅=+a a a x211122cos ,||||⋅〈〉==+++a b a b a b x y z x y 证明:又因为{123,,e e e }是单位正交基底,所以1122331223311,0⋅=⋅=⋅=⋅=⋅=⋅=e e e e e e e e e e e e ,因此,⋅=a b 111213212223)()++⋅++(x e y e z e x e y e z e=121112221233122112)⋅+⋅+⋅++⋅(x x e e y y e e z z e e x y x y e e122123122131))++⋅++⋅((y z y z e e x z x z e e 121212=++x x y y z z设计意图:利用向量的数量积等运算来证明结论这种类比的探究对于建立新的数学概念,有利于培养学生的数学抽象、逻辑推理等数学学科核心素养.初步应用例2:已知(2,3,5),(3,3,2)=-=-a b ,求下列向量的坐标;(1)-a b ;(2)2+a b ;(3)5-b师生活动:学生先自行解答,教师给出规范解答过程.预设的答案:(1)-a b =(2,3,5)-(3,3,2)-5,6,3--=() (2)2+a b =2(2,3,5)(3,3,2)-1,3,12-+-=();(3)5-53,3,2(15,15,10)-=-=--()b设计意图:空间向量坐标运算的简单应用,培养学生的数学运算数学学科核心素养.例3:已知(1,0,1),(2,2,0)==-a b ,求,〈〉a b ;师生活动:学生先自行解答,教师给出规范解答过程.预设的答案:120(2)102⋅=⨯+⨯-+⨯=a b ,2||10=+=a2||2(=+=b ,所以,21cos ,2||||2⋅〈〉===⨯a b a b a b ,因此,,〈〉a b =60. 设计意图:空间向量坐标运算的简单应用,也为后面学习直线与平面的夹角、二面角等做准备.培养学生的数学运算数学学科核心素养.练习:在例3的条件下,求:(1)⋅a b ;(2)在a b 上正射影的数量;师生活动:学生根据例题思路尝试自己解答,教师给出规范解答过程.预设的答案:(1)⋅a b =2;(2)2设计意图:空间向量坐标运算的简单应用,培养学生的数学运算数学学科核心素养.四、归纳小结,布置作业问题5:(1)什么是单位正交基底,单位正交分解,坐标,坐标分量?(2)空间向量的坐标运算有哪些? 师生活动:学生尝试总结,老师适当补充.预设的答案:(1)一般地,如果空间向量的基底{123,,e e e }中,123,,e e e 都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底;在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果123=++p xe ye ze ,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ),其中x ,y ,z 都称为p 的坐标分量.(2)121212,,=⇔===a b x x y y z z 121212(,,)+=+++a b x x y y z z ;121212(,,)+=+++ua vb ux vx uy vy uz vz121212⋅=++a b x x y y z z ;21||=⋅=+a a a x21cos ,||||⋅〈〉==+a b a b a b x设计意图:通过梳理本节课的内容,能让学生更加明确空间向量坐标运算的有关知识. 布置作业:教科书第25页练习A1,2题.五、目标检测设计1.已知向量a =(1,1,0),b =(-1,0,2),则3a +b 为( )A .(-2,-3,-2)B .(2,3,2)C .(-2,3,2)D .(4,3,2)设计意图:考查学生对空间向量坐标运算的应用.2.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.设计意图:考查学生对空间向量夹角简单应用.3.已知{e1,e2,e3}是单位正交基底,则p=-e1+2e2+3e3的坐标为________.设计意图:考查学生对空间向量坐标概念的应用.参考答案:1.B[3a+b=3(1,1,0)+(-1,0,2)=(3,3,0)+(-1,0,2)=(2,3,2).]2.120°[由于AB→=(-2,-1,3),CA→=(-1,3,-2),所以AB→·CA→=(-2)×(-1)+(-1)×3+3×(-2)=-7,|AB→|=14,|CA→|=14,所以cos θ=cos〈AB→,CA→〉=-714×14=-12,则θ=120°.]3.(-1,2,3)[p=(-1,2,3).。

空间直角坐标系PPT课件

空间直角坐标系PPT课件
通过透视变换将三维图形投影 到某一平面上,产生近大远小
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。

第一节空间直角坐标系

第一节空间直角坐标系
第一节 空间直角坐标系
一 、空间点的直角坐标 二、空间两点间的距离
一、空间点的直角坐标
三个坐标轴的正方向 符合右手系.
z 竖轴
即以右手握住 z
轴,当右手的四个
手指从正向x 轴以
2
角度转向正向y 轴
时,大拇指的指向
就是z 轴的正向.
定点 o
y 纵轴
横轴 x 空间直角坐标系

yoz面

xoy面
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
xபைடு நூலகம்
d 2 M1P 2 PN 2 NM 2 2 ,
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
zR
M1
P
o x
d M1P 2 PN 2 NM2 2
M2
o
y
Q(0, y,0)
x P( x,0,0)
A( x, y,0)
M ( x, y, z), x、y、z 分别叫横坐标、纵坐标、竖坐标。
二、空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
zR
M1
P o
d M1M2 ?
M2
Q N

x

z zox 面

o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
空间的点 11 有序数组 ( x, y, z)
特殊点的表示: 坐标轴上的点 P, Q, R, 坐标面上的点 A, B, C, O(0,0,0)
z
R(0,0, z)
B(0, y, z)

1.3.1空间直角坐标系课件

1.3.1空间直角坐标系课件

P3(-x,y,-z);
P(x,y,z)
P4(-x,-y,z).
(3)P(x,y,z)
P5(x,y,-z);
P(x,y,z)
P6(-x,y,z);
P(x,y,z)
P7(x,-y,zபைடு நூலகம்.
记忆口诀:“关于谁对称谁不变,其余相反”.
[针对训练] 在空间直角坐标系中,点(2,-1,3)关于平面
Ozx的对称点的坐标是(
D选项,点P关于y轴的对称点P4的坐标为(-1,-1,-2),故D正确.
4.已知A(3,2,-4),B(5,-2,2),则线段AB中点的坐标为
(4,0,-1) .
解析:设中点坐标为(x0,y0,z0),
+
-
-+



则 x0=
=4,y0=
=0,z0=
=-1,
所以线段 AB 中点的坐标为(4,0,-1).
A.点P关于Oxy平面的对称点P1的坐标为(1,-1,-2)
B.点P关于x轴的对称点P2的坐标为(-1,-1,2)
C.点P关于Oyz平面的对称点P3的坐标为(-1,-1,2)
D.点P关于y轴的对称点P4的坐标为(-1,-1,-2)
解析:求点关于坐标轴或坐标平面对称的点的坐标,其规律是“关于
谁对称,谁不变”,如点(x,y,z)关于y轴的对称点为(-x,y,-z),
和z轴的平面,则这三个平面的唯一交点就是有序实数组
(x,y,z)所确定的点P.
空间中的点P与有序实数组(x,y,z)之间可以建立一一对
应关系.
1.点(2,0,3)在空间直角坐标系中的( C )
A.y轴上
B.Oxy平面上
C.Ozx平面上

空间直角坐标系课件

空间直角坐标系课件
空间直角坐标系课件
contents
目录
• 空间直角坐标系的基本概念 • 空间直角坐标系的表示方法 • 空间直角坐标系的应用 • 空间直角坐标系与三维图形的关系 • 空间直角坐标系中的曲线方程 • 空间直角坐标系中的曲面方程
01
空间直角坐标系的基 本概念
定义与性质
定义
空间直角坐标系是由三个互相垂 直的坐标轴组成的,通常称为x轴 、y轴、z轴。
曲面方程的基本概念
曲面方程的定义
曲面方程是描述曲面形状和大小的一种数学表达式,通常由两个 或三个变量的方程组成。
曲面方程的分类
根据曲面形状的不同,曲面方程可以分为平面方程、球面方程、 旋转曲面方程等。
曲面方程的几何意义
曲面方程的解对应着三维空间中的点集,这些点集构成了一个特 定的曲面。
曲面方程的求解方法
性质
空间直角坐标系具有方向性,每 个轴的正方向都有确定的指向, 且三个轴互相垂直,满足勾股定 理。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是坐标系的起点和中心 点。
确定坐标轴
根据需要选择三个互相垂 直的平面,分别确定x轴 、y轴、z轴的方向。
单位长度
根据需要确定坐标轴上的 单位长度,可以是厘米、 米、千米等。
地球表面模型
地球表面的形状可以用球面方程来表示,通过球面方程可以计算地 球上任意一点的经纬度和海拔高度。
建筑设计
在建筑设计中,可以利用曲面方程来描述建筑物的外观和结构,如 穹顶、弧形墙面等。
工程制图
在工程制图中,曲面方程可以用来绘制各种机械零件、电子元件等的 三维图形。
THANK YOU
向量的模和向量的数量积

空间直角坐标系课件(整理版)

空间直角坐标系课件(整理版)

空间两点间的距离公式
(1) 在空间直角坐标系中,任意一点 P(x,y,z)到原点的距离:
z
| OP | x2 y2 z2
O x
P(x,y,z)
y
P`(x,y,0)
(1) 在空间直角坐标系中,任意两点 P1(x1,y1,z1)和P2(x2,y2,z2)间的距离:
| P1P2 | ( x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
M2M3 M3M1 , 原结论成立.
右手系
Z Y
X
右手直角坐标系:在空间直角坐标系中, 让右手拇指指向 x 轴的正方向,食指指向 y 轴的正方向,如果中指指向 z轴的正方向,则 称这个坐标系为右手直角坐标系。
二、构建新知
z
O为坐标原点
D'
C'
x轴,y轴,z轴叫 坐标轴 A' B'
O
y
通过每两个坐标轴的 A
C B
平面叫 坐标平面, x
2 D'(0, 0, 2)
C'
A'
o
3
x A (3, 0, 0)
B ' (3, 4, 2)
4y
C (0, 4, 0) B (3, 4, 0)
三、空间中点的射影点与对称点坐标
1.点P(x , y , z) 在下列坐
标平面中的射影点为:
(1)在xoy平面射影点为 P1__(_x_,y_,_0)____;
问题导入 平面坐标系中的点
y
y O
P (x,y) xx
平面中的点可以用 有序实数对(x,y)
来表示点
构建新知
z
1、空间直角坐标系的建立

空间直角坐标系PPT

空间直角坐标系PPT

八个部分,每一个称为一个


卦限. x、y、z 轴的正半轴
的卦限称为第 I 卦限,
O
Ⅶx

Ⅵy
八卦限

从第 I 卦限开始,从 Oz 轴的正向向下看,按逆时 针的方向,先后出现的卦限依次称为第 Ⅱ、Ⅲ、
Ⅳ 卦限; 第Ⅰ、Ⅱ 、 Ⅲ、 Ⅳ 卦限下面的空间部
分依次称为第 Ⅴ、Ⅵ、Ⅶ、Ⅷ 卦限.
空间的点就与一组有序数组 x,y,z 之间建
y
轴的
正向,这时大拇指所指的方向就是 z 轴的正向. 这个
法则叫做右手法则.
这样就组成了空间直角坐标系. O 称为坐标原
点,每两个坐标轴确定的平面称为坐标平面,简称为
坐标面. x 轴与 y 轴所确定的坐标面称为 x y 坐表
面,类似地有 y z 坐标面,z x 坐标面. z
这些坐标面把空间分成


() () ()
这样,三元一次方程组的解,可用三阶行列式表示,
当 D 0 时,
x Dx , y Dy , z Dz .
D
D
D
a1 b1 c1
其中D a2 b2 c2 称为方程组的系数行列式,
a3 b3 c3
Dx , D y 和 Dz 是系数行列式中x 、 y 和 z 的系数
依次分别换成方程组右端的常数项而成的行列式.
行列式 a1 c1 是把系数行列式中 y 的系数 a2 c2
b1,b2 换成常数项 c1,c2 而成的行列式 ,记为 Dy .
所以,二元一次方程组的解又可表示为:
x Dx , y Dy (其中D 0)
D
D
例 1 解方程组
2x 3 y 7 0 5x 4 y 6 0

高中数学必修二4.3.1空间直角坐标系课件

高中数学必修二4.3.1空间直角坐标系课件

( 1 ,0, 1 ),(1, 1 , 1 ),( 1 ,1, 1 ),(0, 1 , 1 );
2 2 22 2 2 22
z
ቤተ መጻሕፍቲ ባይዱ
上层这五个钠原子所 在位置的坐标分别是
(0,0,1), (1,0,1), (1,1,1),
(0,1,1),( 1 , 1 ,1);
22
y
x
练习:在空间直角坐标系中描出下列各点, 并说明这些点的位置。
图:建立空间直角坐标系 O xyz 后,
试写出全部钠原子所在位置的坐标。
z
y x
解: 把图中的钠原子分成下,中,上三层来 写它们所在位置的坐标.
下层五个钠原子所在位置的坐标分别是
(0,0,0),(1,0,0),(1,1,0),(0,1,0),( 1 , 1 ,0);
22
中层这四个钠原子所在位置的坐标分别是
A(0,1,1) B(0,0,2) C(0,2,0)
D(1,0,3) E(2,2,0) F(1,0,0)
解:
z
3 D•
2• B
1 •A C
F• O 1 •2 y 21
•E
x
课后练习:
z
解:
D
P
C
A
B
O xA
Cy B
解:
z
D A
O xA
C
B Q
Cy B
练习:点M(x,y,z)是空间直角坐标系Oxyz中的一点 ,写出满足下列条件的点的坐标.(课本138题1)
A
x -1
0
y
P
N
0
Mx
12
数轴上的点可用与 这个点对应的实数 x来表示。
平面直角坐标系上的点用 它对应的横纵坐标,即一 对有序实数对(x,y)表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
z
坐标,简称为坐标,记作P(x,y,z),三个 P3
数值叫做P点的x坐标,y坐标,z坐标。

1
• P
1
P点坐标为 y •P 2
x• 1 x P1
• o
y
(x,y,z)
方法二:过P点作xoy面的垂线,垂足P0点为P在xoy平
面上的射影,点P0在坐标系xOy中的坐标x、y依次是P点的
横坐标、纵坐标。再过P点作z轴的垂线,垂足P1为P在z轴
上的射影,点P1在z轴上的坐标z就是P点的竖坐标。
z
z P1
P
1

y
1
P点坐标为
x
1
• o
y
(x,y,z)
x
•P
0
注意:在建立了空间直角坐标系后,空间
中任何一点P就与有序实数组(x,y,z)建立了
一一对应关系,(x,y,z)就叫做P的空间直角坐
标,简称为坐标,记作P(x,y,z)。三个数值x、y、 z分别叫做P点的横坐标、纵坐标、竖坐标。
新课导入
数轴Ox上的点M,用代数的方法怎样表示呢? M x x
O
数轴Ox上的点M,可用与它对应的实数x表示;
直角坐标平面上的点M,怎样表示呢? y
y O
M (x,y) x
x
直角坐标平面上的点M,可用一对有序实数(x, y)表示。
空间中的点M用代数的方法又怎样表示呢? z z
M (x,y,z)
O x x 当建立空间直角坐标系后,空间中的点M,可以 用有序实数(x,y,z)表示。 y y
4.3.1 空间直角坐标系
一、空间直角坐标系建立
以单位正方体 OABC DA BC 的顶点O为原点,分别以射线 OA,OC,OD 的方向 为正方 向,以线段OA,OC,OD 的 长为单位长,建立三条数轴: x轴,y轴,z轴,这时我们建立了一 x 个空间直角坐标系 O xyz
(7)与点M关于yoz平面对称的点(

结论:关于谁谁不变,其余的相反。
例1:如图
在长方体 OABC DA BC 中 , 3, OA OC 4, D 2, 写 出D,C,A ,B O 四点的坐标 .
z
D' C'
A' O
B'
C y
x A
B
例3: 结晶体的基本单位称为晶胞,如图是食 盐晶胞示意图(可看成是八个棱长为1/2 的小正方体堆积成的正方体),其中红 色点代表钠原子,黑点代表氯原子,如 图:建立空间直角 坐标系 O xyz 后, 试写出全部钠原子 所在位置的坐标。
y x
z
解:把图中的钠原子分成上、中、下三层来写 它们所在位置的坐标。 下层的原子全部在平面xOy上,它们所在位置 的竖坐标全是0,所以这五个钠原子的坐标分别是: (0,0,0),(1,0,0),(1,1,0),(0,1,0), z 1 1
( , ,0) 2 2
y
x
中层的原子所在的平面平行于平面xOy,与轴 交点的竖坐标为0,所以,这四个钠原子所在位置 的坐标分别是
D
E
F
(x,y,0)
(0,y,z)
(x,0,z)
பைடு நூலகம்
1、点M(x,y,z)是空间直角坐标系o-xyz内一点 , 写出满足下列条件的点的坐标。
(1)与点M关于x轴对称的点( )
(2)与点M关于y轴对称的点(
(3)与点M关于z轴对称的点(

) ) ) )
(4)与点M关于坐标原点轴对称的点( (5)与点M关于xoy平面对称的点( (6)与点M关于xoz平面对称的点(
2、空间直角坐标系的划分

z
zx 面
Ⅱ Ⅰ Ⅵ
yz 面
Ⅳ •
O
xy 面
Ⅶ Ⅷ
y
x

空间直角坐标系共有八个卦限
3、空间中点的坐标
对于空间任意一点P,要求它的坐标 方法一:过P点分别做三个平面垂直于 x,y,z轴,平面与三个坐标轴的交点分别为
P1、P2、P3,在其相应轴上的坐标依次为
x,y,z,那么(x,y,z)就叫做点P的空间直角
4、特殊位置的点的坐标
z

F
C
小提示:坐标轴

x
1
O

1
E


D
B y
上的点至少有两个 坐标等于0;坐标面 上的点至少有一个 坐标等于0。
• A1

点P的位置 坐标形式 点P的位置 坐标形式
原点
O
X轴上
A
Y轴上
B
Z轴上
C
(0,0,0)
XoY面内
(x,0,0)
YoZ面内
(0,y,0)
ZoX面内
(0,0,z)
1 1 1 1 1 1 1 1 ( ,0, ), (1, , ), ( ,1, ), (0, , ); 2 2 2 2 2 2 2 2
z
y x
上层的原子所在的平面平行于平面,与轴交点的 竖坐标为1,所以,这五个钠原子所在位置的坐标分 别是: (0,0,1),(1,0,1),(1,1,1),(0,1, 1 1 1),( , ,1)。 z 2 2
y
x
课堂小结
1、空间直角坐标系的建立(三步) 2、空间直角坐标系的划分(八个卦限) 3、空间中点的坐标(一一对应) 4、特殊位置的点的坐标(表格)
z D' C' A' O C y A B B'
O为坐标原点, x轴,y轴,z轴叫坐标轴,通过每两 个坐标轴的平面叫坐标平面,分别为xoy平面, yoz平面,xoz平面。
右手直角坐标系:在空间直角坐标系中, 让右手拇指指向 x 轴的正方向,食指指向 y 轴的正方向,如果中指指向 z轴的正方向,则 称这个坐标系为右手直角坐标系。
相关文档
最新文档