数学文化结课论文

合集下载

民族数学文化范例论文

民族数学文化范例论文

民族数学文化范例论文民族数学文化范例论文一、引言数学是一门抽象的科学,有着普遍的适用性和客观性,但不同的民族文化对于数学的理解和应用方式也有着独特的特点。

本文旨在通过探讨若干个民族数学文化范例,以期深入了解不同民族对于数学的理解和应用方式。

二、古埃及数学文化古埃及是一个有着悠久历史的古老文明,其数学文化具有独特的特点。

古埃及人在建筑、商业和农业方面运用数学进行测量和计算。

古埃及人使用分数来表示和计算数字,这在当时是非常先进的。

例如,他们发展了用于计算面积和容积的算法,这些算法在当时是前所未有的。

三、古希腊数学文化古希腊是古代文明的重要代表之一,其数学文化对于后世产生了深远的影响。

古希腊的数学注重逻辑推理和证明,他们制定了严密的证明体系,为后来的数学发展奠定了基础。

例如,古希腊人发展了几何学,并发表了《几何原本》这样的重要著作,对于几何学的发展做出了巨大贡献。

四、中国古代数学文化中国古代数学文化源远流长,具有独特的传统和特点。

中国古代数学注重实用性和应用性,在农业、建筑、天文等领域都发挥了重要作用。

例如,中国古代人民发展了算盘和九九乘法表等工具,这些工具在计算过程中起到了重要的辅助作用。

此外,中国古代人民还发展了求解二次方程和开平方的方法,这在当时是非常先进的。

五、阿拉伯数学文化阿拉伯文化对于数学的贡献是不可忽视的。

阿拉伯人将印度数字系统引入欧洲并推广了计算方法,这成为了现代数学表示法的基础。

此外,阿拉伯人在代数学、三角学和算术等方面做出了重要贡献。

例如,阿拉伯人发展了代数学中的“代数方程”概念,并引入了字母表示数值,这对于后来的代数学发展产生了重大影响。

六、结论不同民族的数学文化具有各自的特点和贡献,这反映了不同民族在数学理解和应用上的创新能力和特点。

通过探讨民族数学文化的范例,我们可以更好地理解数学对于不同民族文化的意义和价值,也可以更好地促进不同民族之间的数学交流和互动。

希望本文能够为进一步研究民族数学文化提供一定的借鉴和参考。

数学知识论文(5篇)

数学知识论文(5篇)

数学知识论文(5篇)数学学问论文篇1一、引导同学学会识图,让同学感受数学的“形之美”在教学有关“圆”的学问时,老师可以举例,把“圆”比作太阳、苹果等有形的东西,加深同学对“圆”的熟悉。

老师还可以利用多媒体来展现和我们的日常生活有紧密联系的有关“圆”的东西,如水面上激起的涟漪,既有静感又有动感,使同学如身临其境,有所感受,比老师单纯在课堂上用圆规画圆要形象得多、生动得多、鲜亮得多。

这样的课堂教学自然能激发同学的学习爱好,使同学深刻感受到数学的美。

二、让同学学会鉴赏,在鉴赏中感受数学的“和谐美”美是人们所憧憬和追求的,美感不但表达在艺术领域,在数学教学中也有肯定的美。

所以,老师要教给同学如何发觉和鉴赏数学之美,要让同学学会用审美的视角来观看数学,深化挖掘数学的结果美、过程美。

首先,老师要引导同学树立在数学中发觉和鉴赏数学美的观念,调动同学的主动性。

例如,在讲解“黄金分割”时,同学一开头会很生疏,不知道什么是黄金分割,这时,老师可以让同学测量一下自己身体的黄金分割点,并讲解有关黄金分割点的意义,让同学在实际生活中去找黄金分割点。

这样,同学自然会发觉其中存在的美感,从而产生深厚的学习爱好,由被动学习变为主动主动学习。

再如,老师在讲授数学应用题时,可以借助线段图形让同学理解题意。

同学在线段的引导下既能理解应用题的题意,又能感受到数学学问的系统性和关联性,感受到数学深层次的体系美。

总之,数学的美表达在方方面面,只要老师擅长引导,使同学树立发觉美的观念,就肯定能使同学感受到数学的美。

三、让同学在嬉戏中体验数学的“趣味美”传统的数学教学过分重视学问,缺乏对同学力量的培育,主要以老师为中心,同学只是被动地接受学问,严峻抑制了同学独特的进展。

新课程改革对数学教学提出了更高的要求,对教学方式进行了大胆的改革和创新,更加注意同学的参加性和主动性。

所以,数学老师应转变教学观念,尽量让同学主动参加到数学教学中。

其中,一种重要的参加方式就是让同学在数学课堂上参加嬉戏,在嬉戏中感受数学的趣味美。

数学文化的论文范文参考

数学文化的论文范文参考

数学文化的论文范文参考(2)推荐文章学校廉政文化方面论文热度:建筑文化的论文发表热度:关于日本文化概论方面论文热度:日本文化毕业论文优秀范文怎么写热度:中国民俗文化论文范文参考论文热度:数学文化的论文篇3浅谈高中数学文化的传播途径一、结合数学史,举办文化讲座数学史教育对于了解数学这一门学科起着重要作用.数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质.比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望.此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展.二、结合教学内容,穿插数学故事数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上.教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科.例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感.三、结合生活实际,例解数学问题作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性.教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中.例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题.四、结合其他学科,共享文化精华科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域.数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享.可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体.实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情.例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系.五、结合课外活动,小组合作探究由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化.要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中.可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田.书籍类有美国数学家西奥妮•帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔玆奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书.还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化.例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质.这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命.六、结合教学评价,纳入数学考试虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视.平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端.要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容.这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授.高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能.与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师.首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫.教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

关于数学文化的价值获奖论文优秀范文

关于数学文化的价值获奖论文优秀范文

关于数学文化的价值获奖论文优秀范文数学文化可以表述为以数学科学为核心,以数学的思想、精神、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大功能的动态系统。

下文是店铺为大家整理的关于数学文化的论文的内容,欢迎大家阅读参考!数学文化的论文篇1浅析数学的独特文化美感【摘要】数学在普通人的心目中似乎永远是枯燥学科的代名词,正是这种先入为主的误解阻碍着更多人欣赏其独特宏大的自然学术之美。

本文结合美学的相关知识和作者本人数学专业学习的心得感受,从理性、简约、确定、基础四个方面,力图展示数学的独特文化美感,揭示其美中之最上者的学术文化地位。

【关键词】数学之美;文化美学相信在大多数人的眼中,世界上最枯燥的学科非数学莫属。

枯燥的数字,枯燥的定理,枯燥的推演方式,关于数学的一切都枯燥得令人敬畏。

学校里,同学们谈数学色变,偶然遇到一位学生,且不论其专业课成绩如何,有勇气选择这个充满挑战性的专业学习本身已经很值得佩服了。

这样一门世人眼中乏味枯燥的学科,为什么能让那么多拥有天赐之才的科学家为之着迷?为什么人类追求美的天性并没有让他们对似乎没有任何美感的数学退避三舍?直到最近一次偶然机会,才让我有时间仔细寻找学习数学的十几年在我的思想深处留下的痕迹,我终于能够明白“天堂里也有数学之美”是出自对于怎样一种宏大之美的敬畏与向往。

1 美之理性篇如果说培根的科学研究思想开启了人类认识世界的系统理性大门,那么最能够体现这种理性美的学科当之无愧非数学莫属。

无论是推理演绎的方法,还是严格的假设与证伪,都是数学研究中随处可见的思想,更不用说著名的庞加来猜想、歌德巴赫猜想等等人类对客观世界的理性扣问。

在古希腊时代,《几何原本》影响巨大,直到今天,它都是印刷数量、版本仅次于《圣经》的读物;文艺复兴延续到17、18世纪的近代文明,牛顿发明了微积分,连同他的力学理论把整个科学带到了新的境界;以爱因斯坦相对论为基础的现代文明中,高斯、黎曼准备了很多数学工作,黎曼几何就是相对论的数学基础;20世纪下半叶的信息时代,就是冯·诺伊曼创造了计算机的数学基础,开启了通往今日世界繁荣的大门。

数学史与数学文化论文

数学史与数学文化论文

数学史与数学文化论文一、内容概览本文将深入探讨数学史与数学文化之间的相互影响和交融。

文章首先概述数学史的发展历程,从古代文明如埃及、巴比伦、希腊的数学起源开始,到现代数学的蓬勃发展。

阐述数学文化在这一过程中所扮演的重要角色,包括数学观念、思维方式以及其在社会、科技、艺术等领域的应用和影响。

文章还将分析不同文化背景下数学发展的独特性,以及数学在不同历史时期和地域的演变如何影响并塑造了独特的数学文化。

本文将讨论数学史与数学文化研究的现状和未来发展趋势,以及这一研究领域对于教育、社会科学和人文科学的贡献。

通过深入研究数学史与数学文化的关系,本文旨在揭示数学的内在价值及其在人类文明进程中的重要地位。

1. 介绍数学史与数学文化的重要性。

传承文明,记录历史进程:数学史是一部人类文明发展的历史记录。

数学的进步总是伴随着社会、科技、文化和经济的变革。

通过研究数学史,我们可以了解不同历史时期的社会背景、科技水平和人们的思维方式,从而更全面地认识人类文明的发展历程。

促进数学教育与学习:数学史与数学文化的研究对于数学教育有着重要的启示作用。

了解数学知识的历史背景和文化内涵,有助于学生更好地理解数学知识的本质,增强学习数学的兴趣和动力。

通过历史人物和故事,可以帮助学生树立正确的学术观念,培养科学精神。

弘扬科学精神,提升文化素养:数学文化作为人类文化的重要组成部分,体现了人类对自然世界的探索精神和科学思维。

研究数学文化有助于弘扬科学精神,提高公众的科学素养和文化水平。

通过数学文化的传播,可以促进不同文化之间的交流和理解,增进人们对世界的认识。

激发创新,推动科技发展:数学史的研究可以让我们了解前人如何解决问题,进而激发我们面对新问题的创新思维。

通过对历史上数学家的研究方法和思路的学习,可以培养我们的创新能力和解决问题的能力,推动科技的不断进步和发展。

数学史与数学文化的研究对于传承文明、促进数学教育、弘扬科学精神和推动科技发展具有重要意义。

数学文化的论文

数学文化的论文

数学文化的论文导言数学是一种全球通用的语言,不仅仅是一门学科,更是一种文化。

在这篇论文中,我们将探讨数学与文化之间的关系,并分析数学文化的影响和价值。

数学与文化的关系数学与文化之间存在着密切的联系。

首先,数学是人类智慧的结晶,它体现了不同文化的思维方式和观念。

不同文化背景下的人们对数学的理解和应用方式有所不同。

其次,数学也受到文化环境的影响。

不同文化中的数学问题和解决方法往往是基于特定的背景和需求而产生的。

数学文化的影响数学作为一种文化现象,对人们的思维、生活和社会发展都产生着深远的影响。

对思维的影响数学培养了人们的逻辑思维能力和分析问题的能力。

通过数学的学习,人们能够锻炼出严密的逻辑思维,培养出辨别问题本质和解决问题的能力。

对生活的影响数学在生活中无处不在,它影响着我们的日常决策和行为。

例如,在购物时,我们需要计算折扣和价格比较;在理财时,我们需要进行利息计算和资产管理。

数学使我们能够更好地理解和应用数字,提高我们的生活质量。

对社会的影响数学在社会中扮演着重要角色。

它是科学研究和技术发展的基础。

无论是医学、工程还是经济等领域,都离不开数学的支持。

数学促进了社会进步和创新,推动了科学技术的发展,对社会经济具有重要影响。

数学文化的价值数学文化具有独特的价值,主要体现在以下几个方面:智力培养数学是培养人们智力的重要途径之一。

通过数学的学习,人们能够提高逻辑思维和问题解决能力,培养出创造力和创新精神。

人文素养数学是一门人文学科,它不仅仅是一种技术或工具,更是一种文化表达和思考方式。

通过学习数学,人们能够深入了解数学的历史、发展和应用,增强人文素养和对数学文化的欣赏。

跨学科交叉数学作为一门跨学科性质强的学科,与其他学科有着广泛的联系和交叉。

数学文化能够促进不同学科之间的交流和合作,推动知识的整合与创新。

数学文化的传承与发展为了促进数学文化的传承和发展,我们应该采取以下措施:1.在教育中重视数学文化的培养,将数学教育与人文教育相结合,加强对数学文化的宣传和教育。

数学思想与文化论文

数学思想与文化论文

数学思想与文化论文第一篇:数学思想与文化论文浅谈数学与文化与思想的教育作用摘要:数学文化与思想对教师、学生的教学和学习有重要的作用。

数学文化主要包括数学史,数学美,数学思想等。

本文主要从数学文化与思想的概念和教学作用这两方面论述数学文化与思想对数学教学的促进作用。

关键词:数学文化数学思想教学教育作用正文:一、数学思想与文化的概念“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。

关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。

这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。

可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。

通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。

这些都是对数学活动经验通过概括而获得的认识成果。

既然是认识就会有不同的见解,不同的看法。

数学文化,不只是数学本身,它更是一种文化。

文化即人文,即人的精神。

数学不只是关于数学的世界、形的世界或更广阔世界的科学,数学还是一门充满人文精神的科学。

最早系统提出数学文化观的是美国学者怀德尔(R.Wilder,1896——1982),他认为数学是一个由于其内在力量与外在力量共同作用而处于不断发展和变化之中的文化系统。

数学文化即由数学传统及数学本身组成[1]。

张奠宙教授指出:“数学文化是什么样子呢?就是人人喜爱数学,在公众当中树立美好的数学形象”。

他认为数学文化的含义是“在特定的社会历史下,数学团体和个人在从事数学活动时,说现示的民族特征、传统习惯、规则约定、以及思想方法等的总和。

丰富多彩的数学文化,以符号化、逻辑化、形式化的数学体系为载体,隐形地存在着”。

数学文化课结课论文

数学文化课结课论文

数学文化结课论文——数学与数学美姓名:班级:学号:专业:数学与数学美作者:单位:学号:摘要:要激发学生学习数学的兴趣,就得把要学生学数学变成学生自己要学数学,让枯燥无味的数学变得“有趣、有味、有惑”。

学习数学中简单图形的美,使学生感到学习“有味”。

通过发现数学中的和谐美,使学生感到学习数学“有趣”。

发现数学中的残缺美,提高学生分析问题的能力,使学生感到学习数学也“有惑”,激发学生想学习下去的欲望。

正文:学习兴趣是学生学习自觉的核心因素,是学习动力的源泉,是一种无形的力量,是学生学习的强化剂和学好数学的保证。

学生怕学数学,甚至是讨厌数学,症结就在于对数学缺乏兴趣。

要激发学生学习数学的兴趣,就得把要学生学数学变成学生自己要学数学,让枯燥无味的数学变得“有趣、有味、有惑”。

因而,如何解决这一难题,我认为利用数学中的美来激发学生学习数学的兴趣是一种行之有效的方法。

在教学中,我一直都在探讨这样一些问题:如何用数学美来唤起学生学习数学的兴趣?数学究竟美在哪里?我认为:数学美在数量关系与空间形式上表现出来的简单美、和谐美和残缺美。

法国数学家庞加莱说得十分中肯:“到底是什么使我们感到一种解法、一种证明的优美呢?那就是各部分间的和谐、对称与恰到好处的平衡。

”我发现若能在数学教学中引导学生体味其中的美,特别是若能用数学美来解答数学问题,定能激发学生的学习欲望,大大提高学生学习的兴趣,以下是我的几点尝试:一、学习数学中简单图形的美,使学生感到学习“有味”。

1、优美的图形总带给人们美的享受。

如华东师大版初一数学(上)第一章P13第六题:请以给定的图形(两个圆、两个三角形、两条平行线)为构件,构思独特且有意义的图形,并写一两句诙谐的解说词。

在教学中我让学生先个人设计,发挥想象,并相互交流,然后对全班同学中的优秀作品展示并评奖。

如“战车”、“风筝”、“夕阳夹山”、“倒影入溪”等许多构思巧妙、意义丰富的图形加上诙谐的解说词,让同学们体会到成功的乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学文化论文
由数学文化对极限的认识
学院:文理学院
班级:11级统计班
学号:1120602002
姓名:陈红
数学文化结课论文
——由数学文化对极限的认识
文理学院,11级统计班陈红
摘要:许多同学报怨数学很难学习,老师讲的总是听得丈二和尚——摸不着头脑。

我认为,学数学是有方法的,只要你掌握了这些方法并加以运用。

在我们学过的高等数学中,数列极限的求法一直是数列中一个比较重要的问题,先由在学习了数学文化这门课程后通过归纳和总结,从不同的方面罗列了它的几种求法.
关键词:高等数学、数列极限、定义、洛比达法则、
在学习过程中将老师讲授的东西进行分类整理,了解道路的来龙去脉,掌握知识的真面目。

把老师交的融会贯通了。

取得事半功倍的好成绩。

数学是深奥的,变化莫测的。

正如一个挖井的人,挖了很深,就快接近水源时,却放弃了。

一.引言
高等数学第二章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。

一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。

树没有根,活不下去,没有皮,只能枯萎,可见极限的重要性。

极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。

求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两
个重要极限,其中,可以利用等量代 换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的 四则运算法则计算。

夹逼性定理和单调有界原理是很重要的定理,在求的时候要 重点注意运用。

泰勒公式、 洛必达法则、黎曼引理是针对某些特殊的数列而言的。

正文
一、 极限定义、运算法则和一些结果
1.定义:设函数 f(x) 在的某一空心邻域内有定义,如果当自变量x 在内无限接近于时,相应的函数值无限接近于常数 A ,则 A 为 时函数 f(x) 的极限,记作或。

2.极限运算法则
定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有
(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ⋅=⋅)()(lim (3))0(,)()(lim
成立此时需≠=B B
A
x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的
条件,当条件不满足时,不能用。

3.两个重要极限
(1) 1sin lim 0
=→x
x
x
(2) e x x
x =+→1
)1(lim ; e x x x =+∞→)11(l i m 说明:( 1 )不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式.
(2)一定注意两个重要极限成立的条件。

一定注意两个重要极限
成立的条件。

例如:133sin lim 0
=→x
x
x ,e x x
x =--→21
0)
21(lim ,e x
x
x =+∞
→3
)31(lim ;等等。

4.洛比达法则
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:
x ~x sin ~x tan ~x arcsin
~x arctan ~)1ln(x +~1-x e 。

说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍
有上面的等价
关系成立,例如:当0→x 时,
13-x e ~ x 3 ;)1ln(2x - ~
2x -。

定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且
)(x f ~)(1x f ,)(x g ~)(1x g ,则当)
()(lim
110
x g x f x x →存在时,)()
(lim 0x g x f x x →也存在且等于)(x f )()(lim 110
x g x f x
x
→,即)()
(lim 0x g x f x x →=)()(lim 1
10x g x f x x →。

5.洛比达法则
定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)
(x f 和)(x g 满足:(1))(x f 和)(x g 的极限都是0或都是无穷大;
(2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3))
()
(lim x g x f ''存在(或是无穷大); 则极限)()(l i m
x g x f 也一定存在,且等于)
()
(lim x g x f '',即
)()(l i m x g x f =)
()
(lim x g x f '' 。

说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是
否满足,只要有一条不满足,洛比达法则就不能应用。

特别要注意条件(1)是否满足,即验证所求极限是否为“0
0”型或“∞
∞”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。

另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。

6.连续性
定理6 一切连续函数在其定义去间内的点处都连续,即如果0x 是
函数)(x f 的定义去间内的一点,则有)()(lim 00
x f x f x
x
=→ 。

7.极限存在准则
定理7(准则1) 单调有界数列必有极限。

定理8(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:
(1) ),3,2,1(, =≤≤n z x y n n n (2) a y n n =∞
→lim ,a z n n =∞
→lim
则极限∞
→n n x lim 一定存在,且极限值也是a ,即a x n n =∞
→lim 。

四. 结束语
上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。

另外,求极限还有其它一些方法,如用定积分求极限等。

在极限的教学过程中渗透数学史,可使抽象的极限概念和理论显得生动而易于接受, 可使学生加深对极限概念和理论的理解和掌握,从而提高教学质量. 通过营造数学文化意境,提高学生的数学素养。

感谢词
在这学期对数学文化的学习中,我们11级统计班的学生不仅提高了自身的数学文化素养,而且还锻炼了说话的口才能力、提高了公共演讲的勇气,在这一学期中唐老师给我们传授了很多解决现实生活难题的各种数学方法,激发了大家对数学知识的兴趣,让大家受益匪浅。

再次,代表全班同学,对您说声辛苦了!在今后的生活中我们也将遵循您的教诲,多学习、多看书,让知识丰富我们,成为真正有气质的人。

相关文档
最新文档