平面弯曲习题解答
工程力学习题集(二)

组合变形思考题1.何谓组合变形?如何计算组合变形杆件横截面上任一点的应力?2.何谓平面弯曲?何谓斜弯曲?二者有何区别?3.何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)?4.将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负?5.对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力?6.什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内?习题1.如图所示木制悬臂梁在水平对称平面内受力F1=1.6kN,竖直对称平面内受力F2=0.8KN的作用,梁的矩形截面尺寸为9×18,,试求梁的最大拉压应力数值及其位置。
题1图2.矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F =1.2kN,l=2m,,材料的容许正应力[σ]=10MPa,试确定b和h的尺寸。
题2图3.承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa,试求梁能承受的最大分布荷载。
题3图4.如图所示斜梁横截面为正方形,a=10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。
题4图5.柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深。
求开槽前后柱内的最大压应力值。
题5图6.砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN的作用,试求截面1-1和2-2上的应力分布图。
题6图7.矩形截面偏心受拉木杆,偏心力F=160kN,e=5cm,[σ]=10MPa,矩形截面宽度b=16cm,试确定木杆的截面高度h。
题7图8.一混凝土重力坝,坝高H=30m,底宽B=19m,受水压力和自重作用。
已知坝前水深H=30m,坝体材料容重,许用应力[]=10MPa,坝体底面不允许出现拉应力,试校核该截面正应力强度。
材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
( × )2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。
三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
弯曲变形例题

第20页/共65页
解:
解除B点约束 以反力qa代替
vB
q(2a) 4 8EI
qa (2a ) 3 3EI
14qa 4 3EI
vD
vB 2
2qa (2a ) 3 48EI
8qa 4 3EI
21
第21页/共65页
例8:求图示梁 C、D两点的挠度 vC、 vD。
22
第22页/共65页
解:
可由载荷等效法求得弯 矩和剪力的大小及方向
30
3)如图(d)所示,B端由于 而引起的挠度为:
fD ,D
(a) A
P
I
I1=2I
C
D
B
fB2
fD
D
l 4
5 pl3 768 EI
3Pl 2 64 EI
l 4
l/4
13 pl3 768 EI
4)叠加 f B1和 fB2,可求出作为
自由端B处的挠度为:
f f f pl3 3pl3 3pl3 B B1 B2 384EI 768EI 256EI
f2 C
0
(表7.1.7)
叠加:
f
f1
f2
5q l 4 0
C
C
C
768EI
18
第18页/共65页
第七章
例6-2 试用叠加法求简支梁在图示载荷作用下跨度中
点C的挠度。
q2
q1-q2
+
q1
=
q2
C
C
C
(b)
(c)
(a)
解:图(a)分解为图(b)和图(c)之和
图(b)中点C的挠度为:
f1 C
5q2l 4 384EI
工程力学习题及答案

工程力学习题及答案1.力在平面上的投影(矢量)与力在坐标轴上的投影(代数量)均为代数量。
正确2.力对物体的作用是不会在产生外效应的同时产生内效应。
错误3.在静力学中,将受力物体视为刚体(D)A. 没有特别必要的理由B. 是因为物体本身就是刚体C. 是因为自然界中的物体都是刚体D. 是为了简化以便研究分析。
4.力在垂直坐标轴上的投影的绝对值与该力的正交分力大小一定相等。
正确5.轴力图、扭矩图是内力图,弯矩图是外力图。
错误6.胡克定律表明,在材料的弹性变形范围内,应力和应变(A)A .成正比B .相等C .互为倒数 D. 成反比7.材料力学的主要研究对象是(B)A.刚体B.等直杆C.静平衡物体D.弹性体8.通常工程中,不允许构件发生(A)变形A.塑性B.弹性C.任何D.小9.圆轴扭转时,同一圆周上的切应力大小(A)A.全相同B.全不同C.部分相同D.部分不同10.杆件两端受到等值、反向且共线的两个外力作用时,一定产生轴向拉伸或压缩变形。
正确1.材料力学的主要研究对象是(B)A.刚体B.等直杆C.静平衡物体D.弹性体2.构件的许用应力是保证构件安全工作的(B)A.最低工作应力B.最高工作应力C.平均工作应力D.极限工作应力3.低碳钢等塑性材料的极限应力是材料的(A)A.屈服极限B.许用应力C.强度极限D.比例极限4.一个力作平行移动后,新点的附加力偶矩一定(B)A.存在B.存在且与平移距离有关C.不存在D.存在且与平移距离无关5.力矩不为零的条件是(A)A.作用力和力臂均不为零B.作用力和力臂均为零C. 作用力不为零D.力臂不为零6.构件抵抗变形的能力称为(B)B.刚度C.稳定性D.弹性7.工程实际计算中,认为切应力在构件的剪切面上分布不均匀。
错误8.力在垂直坐标轴上的投影的绝对值与该力的正交分力大小一定相等。
正确9.圆轴扭转时,横截面上的正应力与截面直径成正比。
错误10.扭转时的内力是弯矩。
错误1.各力作用线互相平行的力系,都是平面平行力系。
材料力学学生习题解答

E F N1F N3F N2β(c)2-1 试绘出下列各杆的轴力图。
2-2 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:041088=⨯⨯-⨯A F 40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=⨯+⨯-⨯q F F A N2(404402)36.36kN 2.2N F ⨯-⨯==3262236.361031.62MPa 115010N F A σ-⨯===⨯杆(3)分析铰E ,示力图见(c )∑=0ixF:0sin 12=-βN N F F22122140.65kN 2N N F F +=⨯= 3161137.961035.3MPa 115010N F A σ-⨯===⨯杆F 2F F N 2F F N A ECDB F AF BCF A F CyF CxN2(b)2-3 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F -=+⨯⨯⨯=AB 段最大轴力在A 处6N 1212(0.5300.540)107812.0kN A F -=++⨯+⨯⨯⨯=3N 2612.010400MPa 30mm 3010B B F σ--⨯===⨯ 3N 2612.010300MPa 40mm4010AA F σ--⨯===⨯杆件最大正应力为400MPa ,发生在B 截面。
2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比ν。
工程力学习题册第八章 - 答案

第八章 直梁弯曲一、填空题1.工程中 发生弯曲 或以 弯曲变形 为主的杆件称为梁。
2.常见梁的力学模型有 简支梁 、 外伸梁 和 悬臂梁 。
3.平面弯曲变形的受力特点是 外力垂直于杆件的轴线,且外力和力偶都作用在梁的纵向对称面内 ;平面弯曲变形的变形特点是 梁的轴线由直线变成了在外力作用面内的一条曲线 ;发生平面弯曲变形的构件特征是 具有一个以上对称面的等截面直梁 。
4.作用在梁上的载荷有 集中力 、 集中力偶 和 分布载荷 。
5.梁弯曲时,横截面上的内力一般包括 剪力 和 弯矩 两个分量,其中对梁的强度影响较大的是 弯矩 。
6.在计算梁的内力时,当梁的长度大于横截面尺寸 五 倍以上时,可将剪力略去不计。
7.梁弯曲时,某一截面上的弯矩,在数值上等于 该截面左侧或右侧梁上各外力对截面形心的力矩 的代数和。
其正负号规定为:当梁弯曲成 凹面向上 时,截面上弯矩为正;当梁弯曲成凸面向上 时,截面上弯矩为负。
8.在集中力偶作用处,弯矩发生突变,突变值等于 集中力偶矩 。
9.横截面上弯矩为 常数 而剪力为 零 的平面弯曲变形称为 纯弯曲变形 。
10.梁纯弯曲变形实验中,横向线仍为直线,且仍与 梁轴线 正交,但两线不再 平行 ,相对倾斜角度θ。
纵向线变为 弧线 ,轴线以上的纵向线缩短,称为 缩短 区,此区梁的宽度 增大 ;轴线以下的纵向线伸长,称为 伸长 区,此区梁的宽度 减小 。
情况与轴向拉伸、压缩时的变形相似。
11.中性层与横截面的交线称为 中性轴 ,变形时梁的 所有横截面 均绕此线相对旋转。
12.在中性层凸出一侧的梁内各点,其正应力均为 正 值,即为 拉 应力。
13.根据弯曲强度条件可以解决 强度校核 、 截面选取 和 确定许可载荷 等三类问题。
14.产生最大正应力的截面又称为 危险截面 ,最大正应力所在的点称为 危险点 。
15.在截面积A 相同的条件下, 抗弯截面系数 越大,则梁的承载能力就越高。
《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
工程力学第7章 弯曲强度答案

43第 7 章 弯曲强度7-1 直径为 d 的圆截面梁,两端在对称面内承受力偶矩为 M 的力偶作用,如图所示。
若已知变形后中性层的曲率半径为 ρ ;材料的弹性模量为 E 。
根据 d 、 ρ 、E 可以求得梁所承受 的力偶矩 M 。
现在有 4 种答案,请判断哪一种是正确的。
(A)M =E π d 习题 7-1 图(B) 64ρ M =64 ρ(C) E π d 4 M =E π d(D)32 ρ M = 32ρ E π d 3正确答案是 A 。
7-2关于平面弯曲正应力公式的应用条件,有以下 4 种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载; (B) 弹性范围内加载、载荷加在对称面或主轴平面内; (C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷 q 作用的梁,有图中所示的 4 种支承方式,如果从 梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题 7-3 图正确答案是 d 。
7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为 mm 。
求:梁的 1-1 截面上 A 、−⎜ ⎟ A I zB 两点的正应力。
习题 7-4 图解:1. 计算梁的 1-1 截面上的弯矩:M = ⎛1×103N ×1m+600N/m ×1m ×1m ⎞ =−1300 N ⋅ m ⎝2 ⎠ 2. 确定梁的 1-1 截面上 A 、B 两点的正应力:A 点:⎛150 ×10−3 m ⎞ 1300 N ⋅ m ×⎜− 20 ×10−3m ⎟ σ = M z y = ⎝ 2 ⎠=2.54×106 Pa = 2.54 MPa (拉应力) I zB 点:100 ×10-3m ×(150 ×10-3m )3121300N ⋅ m ×⎜ 0.150m − 0.04m ⎟⎛ ⎞ σ = M z y ⎝ 2 ⎠ =1.62 ×106 Pa =1.62MPa(压应力) B ()127-5 简支梁如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..第8-9章 平面弯曲主要知识点:(1)平面弯曲的概念;(2)平面弯曲力——剪力和弯矩; (3)剪力图和弯矩图; 平面弯曲力——剪力和弯矩1. 计算下图所示各梁1、2、3、4截面上的剪力和弯矩。
解:a) (1)考虑整体平衡,可解A 、D 支座反力03251321,0)(21=⨯+⋅⨯-⋅⨯⨯-=∑=D ni i A F m kN m kN F M 得 kN F D 83.3=0513,01=+-⨯-=∑=D A ni iy F kN kN F F得 kN F A 17.4=(2)计算截面1处的剪力和弯矩假想截面在1处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
013,011=-⨯-=∑=Q A ni iy F kN F F得 kN F Q 17.11=011321,0)(1121=+⨯-⋅⨯⨯-=∑=M F m kN F M Q ni i A 得 m kN M ⋅=67.21(3) 计算截面2处的剪力和弯矩假想截面2在处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
013,021=-⨯-=∑=Q A ni iy F kN F F得 kN F Q 17.12=011321,0)(2221=+⨯-⋅⨯⨯-=∑=M F m kN F M Q ni i A 得 m kN M ⋅=67.22(4) 计算截面3处的剪力和弯矩假想截面在3处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
05,031=+-=∑=D Q ni iy F kN F F得 kN F Q 17.13=01,0)(31=⨯+-=∑=D ni i C F M F M得 m kN M ⋅=83.33(5) 计算截面4处的剪力和弯矩假想截面在4处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
0,041=+=∑=D Q ni iy F F F得 kN F Q 83.34-=01,0)(41=⨯+-=∑=D ni i C F M F M得 m kN M ⋅=83.34b) (1)考虑整体平衡,可解A 、C 支座反力05.41244,0)(1=⋅⨯⨯-⨯+⋅=∑=m kN F m kN F M C ni i A得 kN F C 25.1=012,01=⨯-+=∑=kN F F F C A ni iy得 kN F A 75.0=..(2)计算截面1处的剪力和弯矩假想截面在1处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
0,011=-=∑=Q A ni iy F F F得 kN F Q 75.01=02,0)(111=+⨯-=∑=M F F M Q ni i A得 m kN M ⋅=5.11 (3) 计算截面2处的剪力和弯矩假想截面2在处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
0,021=-=∑=Q A ni iy F F F得 kN F Q 75.02=042,0)(221=+⋅+⨯-=∑=M m kN F F M Q ni i A得 m kN M ⋅-=5.22(4) 计算截面3处的剪力和弯矩假想截面在3处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
012,031=⨯-+=∑=kN F F F C Q ni iy得 kN F Q 75.03=01221,0)(231=⋅⨯⨯--=∑=m kN M F M ni i C得 m kN M ⋅-=13(5) 计算截面4处的剪力和弯矩假想截面在4处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
0)(1A =∑=in i M F l M F M l F ==+⋅-BB 00)(1B =∑=i ni M F l M F M l F ==+⋅-A A 0)0()(A Q a x l M F x F ≤≤==)()(A Q l x a lMF x F ≤≤==)0( )(Q l x lMx F ≤≤=⎪⎩⎪⎨⎧≤≤--≤≤=)()()0()(l x a x l lMa x x l Mx M012,041=⨯-=∑=kN F F Q ni iy得 kN F Q 24=01221,0)(241=⋅⨯⨯--=∑=m kN M F M ni i C得 m kN M ⋅-=14截面 1 2 3 4 剪力(kN ) 0.750.75 0.75 2 弯矩(m kN ⋅)1.5 -2.5 -1 -1剪力图和弯矩图2. 建立图示梁的剪力方程和弯矩方程,并画剪力图和弯矩图。
(a ) (b )解:a)(1)求支座反力(2)求剪力方程和弯矩方程(分段建立方程)AC 段CB 段)0()(A a x x l Mx F x M ≤≤=⋅=)()()()(B l x a x l l Mx l F x M ≤≤--=-⋅=..(3)作剪力图和弯矩图弯矩图是两斜直线,在C 截面处有突变,突变量为M 。
b) (1)求支座反力由整体平衡方程(见图8-2b ):0)(1=∑=ni i A F M , 03102=⋅⨯+⨯-m kN F B , kN F B 15= 0)(1=∑=ni i B F M , 01102=⋅⨯+⨯-m kN F A , kN F A 5-=(2)求剪力方程和弯矩方程梁上任取一截面(见图8-2b),到支座A 的距离为x ,由截面法得该截面的剪力方程和弯矩方程AB 段:kN x F Q 5)(-=, x x M 5)(-=, (m x 20<≤)BC 段: kN x F Q 10)(=, )(x x M --=310)(,即3010)(-=x x M ,(m x m 32≤<)图8-2b(3)作剪力图和弯矩图:AB 、BC 段剪力都为常数,剪力图各为一水平直线。
AB 、BC 段弯矩方程是x 的一次函数,弯矩图各为一斜直线。
两点可以确定一条直线,当0=x 时,0)0(=M ;当m x 2=时,m kN M ⋅-=10)2(;当m x 3=时,0)3(=M ,连A 、B 两点可得AB 段弯矩图,连B 、C 两点可得BC 段弯矩图,如图8-2b 所示。
3. 剪力和弯矩的正负号如何确定?梁在集中力、集中力偶及均布载荷作用下的剪力图和弯矩图有何特点?答:在计算力时,为了使考虑左段梁平衡与考虑右段梁平衡的结果一致,对剪力和弯矩的正负号作以下规定: 剪力:使截面绕其侧任一点有顺时针转趋势的剪力为正,反之为负。
弯矩:使受弯杆件下侧纤维受拉为正,使受弯杆件上侧纤维受拉为负。
或者使受弯杆件向下凸时为正,反之为负。
(1) 当梁上有集中力作用时,剪力图在集中力作用处有突变,突变量是集中力的大小; 弯矩图在集中力作用处产生尖角。
(2) 当梁上有集中力偶作用时,剪力图在集中力偶作用处不变;弯矩图在集中力偶作用处有突变,突变量是集中力偶的大小。
(3)梁的某一段有均布载荷作用,则剪力)(x F Q 是x 的一次函数,弯矩)(x M 是x 的二次函数。
剪力图为斜直线;若)(x q 为正值,斜线向上倾斜;若)(x q 负值,斜线向下倾斜。
弯矩图为二次抛物线,当)(x q 为正值,弯矩图为凹曲线;当)(x q 为负值,弯矩图为凸曲线。
4. 什么是剪力、弯矩和载荷集度的微分关系?如何利用微分关系作梁的剪力图和弯矩图?答:载荷集度)(x q 、剪力)(x F Q 和弯矩)(x M 之间的微分关系如下:)(d )(d x q x x F Q = )(d )(d x F x x M Q =)(d )(d 22x q x x M =利用微分关系作梁的剪力图和弯矩图:1. 无分布载荷作用的梁段(q =0)由于0)(=dx x dF Q ,因此)(x F Q =常数,即剪力图为水平直线。
而)()(x F dxx dM Q =为常数,)(x M 是x 的一次函数,即弯矩图为斜直线,其斜率由)(x F Q 值确定。
(1) 当梁上仅有集中力作用时,剪力图在集中力作用处有突变,突变量是集中力的大小;弯矩图在集中力作用处产生尖角。
(2) 当梁上仅有集中力偶作用时,剪力图在集中力偶作用处不变;弯矩图在集中力偶作用处有突变,突变量是集中力偶的大小。
2. 均布载荷作用的梁段()(x q 为常数)由于q x q =)(,因此q dxx dF Q =)(,即)(x F Q 是x 的一次函数,M(x)是x 的二次函数,所以剪力图为斜直线,其斜率由q 确定;弯矩图为二次抛物线。
当分布载荷向上(即q >0)时,q xd x M d =22)(>0,弯矩图为凹曲线;反之,当分布载荷向下(即q <0)时,q xd x M d =22)(<0,弯矩图为凸曲线。
5. 指出下图所示各弯矩图的错误,画出正确的弯矩图。
.解:a)弯矩图的斜率、起点错误,图8-5a为正确的弯矩图;b)弯矩图应该是斜直线,图8-5b为正确的弯矩图;图8-5解:c)弯矩图中间一段不为0,图8-5c为正确的弯矩图;d)弯矩图在支撑处没有突变,图8-5d为正确的弯矩图(设l>2a)。
.图8-56. 利用剪力、弯矩与载荷集度的微分关系作图示各梁的剪力图和弯矩图。
解:a)(1)求支座反力由整体平衡方程(见图8-6a ):01=∑=ni iy F , 0=--qa qa F A , qa F A 2=0)(1=∑=ni i A F M , 05.2=⨯-⨯--a qa a qa M A , 25.3qa M A -=图8-6a(2)作剪力图..AC 段剪力图是水平线,大小为2qa ,CD 段剪力图也是水平线,大小为qa ,DB 是斜直线,确定两个控制点qa F QD =,0=QB F ,作剪力图如图8-6a 所示。
(3)作弯矩图AC 段与CD 段的弯矩图是斜直线,求出以下控制截面的弯矩25.3qa M A -=,25.1qa M C -=,25.0qa M D -=,可作这两段斜直线。
DB 段由于有均布载荷作用,弯矩图是一段抛物线,如图8-6a 所示。
b) (1)求支座反力由整体平衡方程(见图8-6b ):0)(1=∑=ni i A F M , 0322=⨯++⨯⨯-a F qa a a q B , 得3qaF B = 01=∑=ni iy F , 02=+⨯-B A F a q F , 得35qaF A =图8-6b(2)作剪力图CB 段剪力图是水平线,大小为3qa -。
AC 段剪力图是斜直线,确定两个控制点35qaF QA =,=QC F 3qa-。
作剪力图如图8-6b 所示。
(3)作弯矩图CB 段的弯矩图是斜直线,求出以下控制截面的弯矩:231qa M C =+,0=B M ,作出这段斜直线。
AC 段由于有均布载荷作用,弯矩图是一段抛物线。
当剪力为0时(见图7-21所示D 点),弯矩出现极值,即当a x 35=时,2max 389.1)35(qa a M =。