2020年北师大版九年级数学上册 反比例函数 单元检测卷三 学生版

合集下载

2020-2021学年最新北师大版九年级数学上册《反比例函数》单元测试及答案解析-精品试题

2020-2021学年最新北师大版九年级数学上册《反比例函数》单元测试及答案解析-精品试题

九年级数学上册第六章:反比例函数检测题学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列各点在反比例函数6y x -=的图象上的是( ) A .(12,3) B.(12,12) C .(12,﹣3) D .(12,﹣12) 2.如图,点P 在反比例函数k y x=的图象上,且PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为6,则k 的值是( )A .6B .12C .﹣6D .﹣123.已知),(111y x P ,),(222y x P ,),(333y x P 是反比例函数xy 2=的图象上的三点,且3210x x x <<<,则321y y y 、、的大小关系是( )A. 123y y y << B .321y y y <<C. 312y y y <<D. 132y y y <<4.反比例函数x2y -=的图象位于( ) A .第一、二象限 B.第三、四象限C .第一、象限D .第二、四象限5.如图,已知双曲线(0)k y k x=<经过Rt AOB ∆斜边AO 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则AOC ∆的面积为( )A . 8B .9C .10D .18DBAyxOC6.已知点(1,﹣2)在反比例函数kyx=的图象上,那么这个函数图象一定经过点()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(2,1)7.函数y=1x的图象是().A.B.C.D.8.如图,是一次函数y=kx+b与反比例函数y=2x的图象,则关于x的方程kx+b=2x的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1C.x l=1,x2=﹣2 D.x l=2,x2=﹣19.已知k1<0<k2,则函数1y k x1=﹣和2kyx=的图象大致是()A.B.C .D .10.已知三角形的面积一定,则底边a 与其上的高h 之间的函数关系的图象大致是( )11.如图,点A 在双曲线y=x 1上,点B 在双曲线y=x3上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A.1B.2C.3D.412.下列函数中,当x >0时,y 随x 的增大而减小的是( )A .y=2xB .y=-4xC .y=3x+2D .y=x 2-3二、填空题13.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过顶点B ,则k 的值为 .14.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3y x(x >0)与此正方形的边有交点,则a 的取值范围是 .15.已知正比例函数x 2-y =与反比例函数x k y =的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 16.如图,已知点A ,C 在反比例函数y=a x(a >0)的图象上,点B ,D 在反比例函数y=b x(b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=3,CD=2,AB 与CD 的距离为5,则a ﹣b 的值是 .17.在反比例函数10y x=(x >0)的图象上,有一系列点A 1、A 2、A 3、…、A n 、A n+1,若A 1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴与y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,S n ,则S 1= ,S 1+S 2+S 3+…+S n = .(用n 的代数式表示).18.一次函数y=kx+b 与反比例函数y=2x 的图象如图所示,则使kx+b >2x的x 的取值范围是 .19.如图,反比例函数kyx=的图像上有两点A(2,4)、B(4,b) ,则△OAB的面积为.20.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.三、解答题21.如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线2kyx=(x<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2?22.某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?23.如图,已知一次函数b kx y +=1的图象与反比例函数x y m 2=的图象的两个交点是A (-2,-4),C (4,n ),与y 轴交于点B ,与x 轴交于点D .(1)求反比例函数xy m 2=和一次函数b kx y +=1的解析式;(2)连结OA ,OC ,求△AOC 的面积.参考答案1.D2.D .3.C4.D5.B6.A7.C.8.C .9.A10.D11.B12.A13.﹣3214≤a15.(1,-2)16.6.17.5,101n n +18.﹣2<x <0或x >1.19.620.100y x=21.(1)y 1=x+3,22y x=-; (2)D 点坐标为(﹣2,1);(3)当﹣2<x <﹣1时,y 1>y 2.22.(1)y=﹣0.1x+8(30≤x ≤60)(2)w=20.110210(3060)240070(6080)x x x x x ⎧-+-⎪⎨-+⎪⎩≤≤≤≤(3)当销售价格定为50元/件或80元/件,获得利润最大,最大利润是40万元23.(1)、y=x 8;y=x-2;(2)、6。

2019—2020年最新北师大版数学九年级上册(新)第六章反比例函数单元测试.doc

2019—2020年最新北师大版数学九年级上册(新)第六章反比例函数单元测试.doc

新北师大版九年级上册反比例函数测试题一、选择题1.下列函数中,y 是x 的反比例函数的是() (A )y=-x 21(B )y=-21x(C)y=11x (D)y=1-x1 2.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是()(A)成正比例(B )成反比例(C)有可能成正比例,也可能成反比例(D)无法确定3.如图,函数y=k(x+1)与y=x1在同一坐标系中,图像只能是下图中的()(A) (B) (C) (D) 4.已知反比例函数y=xk (k ﹤0)的图象上有两点A(1x ,1y ),B(2x ,2y ),且1x ﹤2x ,则1y -2y 的值是( ) (A)正数(B)负数(C)非正数(D)不能确定 5.三角形的面积为4c㎡,底边上的高y(㎝)与底边x(㎝)之6.已知反比例函数y=xk 的图象经过点(1,2),则函数y=-kx为()(A)y=-2x (B)y=-21x (C)y=21x (D)y=2x7.对于反比例函数y=x2,下列说法不正确的是( )(A)点(-2,-1)在它的图象上(B)它的图象在弟一、三象限(C)当x ﹥0时,y 随x 的增大而增大(D )当x ﹤0时,y 随x 的增大而减少8.已知(-2,1y ),(-1,2y ),(1,3y )在反比例函数y=-x1的图象上,则下列结论正确的是()(A)1y ﹤2y ﹤3y (B)3y ﹤1y ﹤2y (C)1y ﹥2y ﹥3y (D)1y ﹤3y ﹤2y二、填空题9.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面积s 与桶高h 有怎样的函数关系式 10.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是600Pa,翻过来放,对桌面的压强是11.设有反比例函数y=xk 1 ,(1x ,1y )、(2x ,2y )为其图象上两点,若1x ﹤0﹤2x ,1y ﹥2y ,则k 的取值范围 12.直线y=kx+b 过一、三、四象限,则函数y=kxb的图象在 象限,并且在每一象限内y 随x 的增大而 13.如图所示是三个反比例函数y=xk 1,y=xk 2,y=xk 3的图象,由此观察1k 、2k 、3k 的大小关系是(用“﹤”连接)14.若反比例函数的图象经过点(2-2),(m,1),m= 三、解答下列问题15.已知变量y 与(x+1)成反比例,且当x=2时,y=-1,求y 和x 之间的函数关系。

2020年北师大版数学九年级上册第六章反比例函数 单元测试卷(含答案)

2020年北师大版数学九年级上册第六章反比例函数 单元测试卷(含答案)

第六章 《反比例函数》测试题时间:100分钟 满分 120分 姓名 等级 。

一、选择题(本题一共10个小题,每个小题中有四个选项,只有一个选项是正确的,选错或不选都不得分,每小题3分,满分30分)1.下列函数的解析式中,y 是x 的反比例函数的是 ( )A.y=3xB.y=2x-1C. y=D.y=-2. 点A (﹣2,5)在反比例函数y=(k ≠0)的图象上,则k 的值是( )A .10B .5C .﹣5D .﹣103. (2019年株洲)如图1所示,在直角平面坐标系Oxy 中,点A 、B 、C 为反比例函数y =(k >0)上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF 垂直x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( )A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 324. (2019年枣庄)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m 、n ,那么点(m ,n )在函数y =图象的概率是 ( )A .B .C .D .5.(2019年湖北武汉) 已知反比例函数x k y 的图象分别位于第二、第四象限,A(x 1,y 1)、B(x 2,y 2)两点在该图象上,下列命题:① 过点A 作AC ⊥x 轴,C 为垂足,连接OA .若△ACO 的面积为3,则k =-6;②若x 1<0<x 2,则y 1>y 2;③ 若x 1+x 2=0,则y 1+y 2=0.其中真命题个数是 ( )A .0B .1C .2D .36.(2019•湖南衡阳)如图2,一次函数1y =kx+b (k ≠0)的图象与反比例函数2y =xm (m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则不等式kx+b >的解集是 ( )A .x <﹣1B .﹣1<x <0C .x <﹣1或0<x <2D .﹣1<x <0或x >27. (2019•海南)如果反比例函数y =(a 是常数)的图象在第一、三象限,那么a 的取值范围是 ( )A .a <0B .a >0C .a <2D .a >28. (2019•天津)若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数x y 12-=的图象上,则321,,y y y 的关系 ( )A. 312y y y <<B.213y y y <<C.321y y y <<D.123y y y <<9. (2019•广西贺州)已知ab <0,一次函数y =ax ﹣b 与反比例函数y =在同一直角坐标系中的图象可能 ( )A .B .C .D .10. (2019•湖北十堰)如图3,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = ( )A .﹣20B .﹣16C .﹣12D .﹣8二、填空题(本题一共6个小题,每小题3分,满分18分)11. (2019•云南)若点(3,5)在反比例函数)0(≠=k xk y 的图象上,则k = .12.(2019•江苏无锡)某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是(只要写出一个符合题意的答案即可).13.(2019湖南益阳)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=.14.(2019•浙江绍兴)如图4,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.15.(2019•黑龙江省绥化市)一次函数y1=﹣x+6与反比例函数y2=8x(x>0)的图象如图5所示,当y1>y2时,自变量x的取值范围是.16.(2019•浙江湖州)如图6,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD.若△COE的面积与△DOB的面积相等,则k的值是.三、解答题(本题一共9个小题,满分72分)17.(满分8分)(2019•浙江杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由..18.(满分8分)(2019•山东临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在图7给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.19.(满分8分)(2019•广西贵港)如图8,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点D(4,4)在反比例函数y=(x>0)的图象上,直线y=x+b经过点C,与y轴交于点E,连接AC,AE.(1)求k,b的值;(2)求△ACE的面积.20.(满分8分)( 2019•江苏苏州)如图9,A 为反比例函数k y x =()0x >其中图像上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且210OA AB ==.(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数k y x=()0x >其中的图像于点C ,连接OC 交AB 于点D ,求AD DB的值.21. (满分8分)(2019年铜仁)如图10,一次函数y =kx+b (k ,b 为常数,k ≠0)的图象与反比例函数y= -12x的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB 的面积;(3)写出不等式kx+b >﹣的解集.22.(满分8分)(2019•湖南岳阳)如图11,双曲线y=经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.23.(满分8分)(2019年四川遂宁)如图12,一次函数y=x﹣3的图象与反比例函数y=kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.24.(满分8分)(2019•四川自贡)如图13,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.25. (满分8分)(2019•河南)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=(x>0)的图象如图14所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到.请在同一直角坐标系中直接画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为8 ;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为.参考答案:一、选择题1.答案:C.解析:A 是正比例函数,B 是一次函数,C 是反比例函数,D 是二次函数(以后会学到).2. 答案: D 解析:根据k=xy=-2×5=-10,所以选D.3. 答案:D. 解析:因为点A 、B 、C 为反比例函数y =(k >0)上不同的三点,AD ⊥y 轴,BE ,CF 垂直x 轴于点E 、F ,所以S 3=k ,S △BOE =S △COF =k ,因为S △BOE ﹣S OME =S △CDF ﹣S △OME , 所以S 1=S 2,所以S 1<S 3,S 2<S 3,所以A ,B ,C 选项错误,故选D .4.答案:B.解析:因为点(m ,n )在函数y =的图象上,所以mn =6. 列表如下: m ﹣1 ﹣1 ﹣1 2 2 2333 ﹣6 ﹣6 ﹣6n23 ﹣6 ﹣1 3 ﹣6 ﹣1 2 ﹣6 ﹣1 23mn ﹣2 ﹣3 6 ﹣2 6 ﹣12 ﹣3 6 ﹣18 6 ﹣12 ﹣18 所以mn 的值为6的概率是=.故选B .5.答案:D 解析:反比例函数xky =的图象分别位于第二、第四象限, 所以k 〈0,设A (x ,y ),则△ACO 的面积为:S =1|32xy =|,又因为点A 在函数图象上,所以xy k =,所以1|32k =|,解得:k =-6,①正确;对于②,若x 1<0<x 2,则y 1>0,y 2〈0,所以y 1>y 2成立,正确;对于③ ,由反比例函数的图象关于原点对称,所以,若x 1+x 2=0,则y 1+y 2=0成立,正确, 所以选D.6.答案:C.解析:由函数图象可知,当一次函数y 1=kx+b (k ≠0)的图象在反比例函数y 2=(m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2, 所以不等式kx+b >的解集是x <﹣1或0<x <2,故选:C .7. 故选:D .8. 答案:B.解析:将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B.9. 答案:A.解析:若反比例函数y =经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限.故选项A 正确;故选:A . 10.答案:C.解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示:则△BDE ≌△FDE ,所以BD =FD ,BE =FE ,∠DFE =∠DBE =90°, 易证△ADF ∽△GFE ,所以,因为A (﹣8,0),B (﹣8,4),C (0,4),所以AB =OC =EG =4,OA =BC =8,因为D.E 在反比例函数y =的图象上, 所以E (,4)、D (﹣8,),所以OG =EC =,AD =﹣,所以BD =4+,BE =8+,所以,所以AF =,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2 即:(﹣)2+22=(4+)2得:k =﹣12 故选:C .二、填空题11. 答案:15 .解:因为点(3,5)在反比例函数xky =上,所以35k =,所以1553=⨯=k .12.答案不唯一:正比例函数型:y=2x ;一次函数型:y=x+1;反比例函数型:y=-x2.只要合理即可.13. 答案:6.解:因为点P 的坐标为(2,n ),则点Q 的坐标为(3,n ﹣1),依题意得: k =2n =3(n ﹣1),解得:n =3,所以k =2×3=6,故答案为:6.14.答案:y =x .解析:因为D (5,3),所以A (,3),C (5,),B (,), 设直线BD 的解析式为y =mx+n ,把D (5,3),B (,)代入得,解得,所以直线BD 的解析式为y =x .故答案为y =x .15.答案:2<x <4.解析:由图可知,当2<x <4时,有y 1>y 2,在x <2, x >4时,都有y 1<y 2时, 所以2<x <4.16. 答案:2.解析:令x =0,得y =x ﹣1=﹣1,所以OB =1,把y =x ﹣1代入y 2=(x <0)中得,x ﹣1=(x <0),解得,x =1﹣,所以, 所以,因为CE ⊥x 轴,所以,所以△COE的面积与△DOB的面积相等,所以,所以k=2,或k=0(舍去).故答案为:2.三、解答题17.解:(1)因为vt=480,且全程速度限定为不超过120千米/小时,所以v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.所以小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地..18.解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y =x+1, 因此放水前y 与x 的关系式为:y =x+14 (0<x <8);观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144. 因此放水后y 与x 的关系最符合反比例函数,关系式为:.(x >8),所以开闸放水前和放水后最符合表中数据的函数解析式为:y =x+14 (0<x <8)和.(x >8);(3)当y =6时,6=,解得:x =24,因此预计24h 水位达到6m .19.解:(1)由已知可得AD=5,因为菱形ABCD ,所以B (6,0),C (9,4), 因为点D (4,4)在反比例函数y=(x >0)的图象上,所以k=16, 将点C (9,4)代入y=x+b ,所以b=﹣2;(2)E (0,﹣2),直线y=x ﹣2与x 轴交点为(3,0),所以S △AEC =2×(2+4)=6;20. 解:(1)过点作AH OB ⊥交A x 轴于点H ,交OC 于点M .210,4OA AB OB === 2OH ∴=6AH ∴=()2,6A ∴12k ∴= (2)124x y x==将代入()4,3D 得 3BC ∴= 1322MH BC ==92AM ∴=AH x BC x ⊥⊥轴,轴AH BC ∴∥ADM BDC ∴△∽△32AD AM BD BC ∴==21. 解:(1)根据题意,得点A (3,-4),点B(-4,3),所以3443k b k b +=-⎧⎪⎨⎪-+=⎩,解得11k b =-⎧⎪⎨⎪=-⎩,所以一次函数的解析式为y=-x-1;(2)根据题意,得斜拉三角形AOB 可以分割成以OC 为底边的两个三角形的面积和,所以S 三角形AOB =S 三角形AOC +S 三角形BOC =1122OC AE OC BF ⨯⨯+⨯⨯=1()2OC AE BF ⨯⨯+.因为y=-x-1,所以点C (-1,0),所以OC=1, S 三角形AOB =171(43)22⨯⨯+=; (3)从图像看出,不等式kx+b >﹣的解集是x <-4或0<x <3.22.解:(1)因为双曲线y =经过点P (2,1),所以m =2×1=2;(2)因为双曲线y =与直线y =kx ﹣4(k <0)有两个不同的交点,所以=kx ﹣4,整理为:kx 2﹣4x ﹣2=0,所以△=(﹣4)2﹣4k •(﹣2)>0,所以k >﹣2,所以k 的取值范围是﹣2<k <0.23.解:(1)将B (a ,﹣4)代入一次函数y =x ﹣3中,得:a =﹣1,所以B (﹣1,﹣4) 将B (﹣1,﹣4)代入反比例函数y=kx(k ≠0)中,得:k =4,所以反比例函数的表达式为y =4x; (2)如图3,设点P 的坐标为(m ,4m)(m >0),则C (m ,m ﹣3),点O 到直线PC 的距离为m ;当点P 在点C 的上方时,PC=4m -m+3,所以△POC 的面积=12×m ×(4m-m+3)=3, 整理,得2m -3m+2=0,解方程,得m=1或m=2;当点P在点C的下方时,PC=m﹣3-4m,所以△POC的面积=12×m×(m﹣3-4m)=3,整理,得2m-3m-10=0,解方程,得m=5或m=-2;因为m>0,所以m=5或1或2所以点P的坐标为(5,45)或(1,4)或(2,2).24.解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,所以反比例函数的解析式为y2=;把点B(a,﹣3)代入,可得a=﹣5,所以B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,所以一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,所以一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,所以C(﹣2,0),所以BC==3.(3)当y1>y2时,﹣5<x<0或x>3.25.解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入y =﹣x+得:2=﹣2+,解得:m =8, 即:0个交点时,m <8;1个交点时,m =8; 2个交点时,m >8; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y =和y =﹣x+并整理得:x 2﹣mx+4=0, △=m 2﹣4×4≥0时,两个函数有交点,解得:m ≥8; (4)由(3)得:m ≥8.1、盛年不重来,一日难再晨。

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题解析】北师大版九年级数学上册第六章反比例函数一、单选题(共10题;共30分)1.下列函数中,反比例函数是( )A. B. C. D.2.点A(3,2)在反比例函数y=(x>0),则点B的坐标不可能的是()A. (2,3)B. (,)C. (,)D. (tan60°,)3.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥34.如图,双曲线y= 的一个分支为()A. ①B. ②C. ③D. ④5.已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度(km/h)的函数关系图像大致是()A. B.C. D.6.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y= 位于第二象限的图象上,矩形面积为6,则k的值是()A. 3B. 6C. ﹣6D. ﹣37.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的两点,若x2<0<x1,则有()A. 0<y1<y2B. 0<y2<y1C. y2<0<y1D. y1<0<y28.如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A. 1B. 2C. 3D. 49.函数y=x+m与在同一坐标系内的图象可以是()A. B.C. D.10.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB 上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的面积为()A. 2B. 4C. 6D. 12二、填空题(共10题;共30分)11.若点P(2,6)、点Q(-3,b)都是反比例函数y= (k≠0)图象上的点,则b=________.12.若函数的图象在其所在的每一象限内,函数值随自变量的增大而增大,则的取值范围是________13.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为________;14.如图,根据图中提供的信息,可以写出正比例函数的关系式是________;反比例函数关系式是________.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.16.函数y=- 的图象的两个分支分布在________象限.17.如图,反比例函数y= 的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=________18.如图,点A是反比例函数y= (x≠0)的图象上一点,AB⊥y轴于B,若△ABO的面积为4,则k的值为________.19.(2017•辽阳)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y= (x<0)的图象经过点B和CD边中点E,则k的值为________.20.如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.三、解答题(共7题;共60分)21.已知反比例函数y=的图象经过点(﹣1,﹣2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值22.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y1= (x<0)图象上一点,AO的延长线交函数y2= (x>0,k<0)的y2图象于点B,BC⊥x轴,若S△ABC= ,求函数y2.23.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.24.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.25.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,请回答下列问题:(1)求反比例函数解析式;(2)求C点坐标.26.如图,已知一次函数y= x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.(1)填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数的图象,当时,请直接写出自变量的取值范围.27.综合题(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数,的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a,b).①若,请用含n的代数式表示;②求证:;(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数,的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】B10.【答案】B二、填空题11.【答案】-412.【答案】m<-213.【答案】v =14.【答案】y=-2x;15.【答案】616.【答案】二、四17.【答案】-418.【答案】819.【答案】﹣420.【答案】9三、解答题21.【答案】解:(1)∵点(﹣1,﹣2)在反比例函数y=上,∴k=﹣1×(﹣2)=2,∴y与x的函数关系式为y=.(2)∵点(2,n)在这个图象上∴2n=2∴n=1.22.【答案】解:设A(m,)(m<0),直线AB的解析式为y=ax(k≠0),∵A(m,),∴ma= ,解得a= ,∴直线AB的解析式为y= x.∵AO的延长线交函数y= 的图象于点B,∴B(﹣mk,﹣),∵△ABC的面积等于,CB⊥x轴,∴×(﹣)×(﹣mk+|m|)= ,解得k1=﹣5(舍去),k2=3,∴y2=23.【答案】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴.解得.∴反比例函数解析式:y= ,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∠∠′,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).∠∠′∴,解得:.∴一次函数的表达式为y= x+3.24.【答案】解:(1)∵AC∥x轴,AD=1,∴A(1,k),∵∠C=90°,AC=2,BC=4,∴B(3,k﹣4),∵点B在y=的图象上,∴3(k﹣4)=k,解得k=6,∴该反比例函数的解析式为y=;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,∵△ABC绕点B顺时针旋转得到△EBF,∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,∵BC⊥x轴,A(1,6),∴BM=CM﹣BC=6﹣4=2,在Rt△BMF中,∵cos∠MBF===,∴∠MBF=60°,MF=BM=,∴∠CBF=180°﹣∠MBF=120°,∴旋转角为120°;∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,∴∠MBF=∠EFN,∴Rt△BMF∽Rt△FNE,∴==,即==,∴FN=1,EN=,∴ON=OM+MF+FN=1++1=2+,∴E点坐标为(2+,).25.【答案】(1)解:∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y= ;(2)解:∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组,得或,∵C在第一象限,∴C点坐标为(2,4).26.【答案】(1)解:把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)解:∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0);如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,∵AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,∠∠∠∠∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3;∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3)(3)解:当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.27.【答案】(1)①∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB=90°,又∵∠ACE=∠DCG,∴△ACE∽△DCG∴;②证明:易证△ACE∽△DCG∽△DBF又∵G(a,b)∴C( ) ,D(a,)∴即△ACE与△DBF都和△DCG相似,且相似比都为∴△ACE≌△DBF∴AC=BD.(2)如图,过点D作DH⊥x轴于点H由(2)可得AC=BD∵∴∴又∵∴∴∴.。

2020年北师版数学九年级上册 第6章 反比例函数单元检测卷(含答案)

2020年北师版数学九年级上册 第6章 反比例函数单元检测卷(含答案)

北师版九年级数学上册 第六章反比例函数测试卷题号 一 二 三 总分 得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.下列函数:①y =2x ;②3xy =1;③y =x -1;④y =1x +1;⑤x +y =8.其中,y 是x 的反比例函数的有()A .0个B .1个C .2个D .3个2.若函数y =(m -1)xm 2-2是反比例函数,则m 的值是( ) A .±1 B .-1 C .0 D .13.a 、b 是实数,点A(2,a)、B(3,b)在反比例函数y =-2x 的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a 4.下列说法中不正确的是( ) A .函数y =2x 的图象经过原点 B .函数y =1x 的图象位于第一、三象限 C .函数y =3x -1的图象不经过第二象限 D .函数y =-3x 的值随x 的值的增大而增大5. 若点A(-6,y 1),B(-2,y 2),C(3,y 3)在反比例函数y =a 2+1x (a 为常数)的图象上,则y 1,y 2,y 3大小关系为( ) A .y 1>y 2>y 3 B .y 2>y 3>y 1 C .y 3>y 2>y 1 D .y 3>y 1>y 26. 一次函数y=ax+b与反比例函数y=a-bx,其中ab<0,a,b为常数,它们在同一坐标系中的图象可以是( )7. 如图,是反比例函数y1=kx和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是( )A.1<x<6 B.x<1 C.x<6 D.x>18. 如图,在平面直角坐标系中,点A在函数y=4x(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=4x(x>0)的图象交于点D,连接AC,CB,BD,DA,则四边形ACBD的面积等于( )A.2 B.2 3 C.4 D.4 39. 如图,直线y=-12x+b与x轴交于点A,与双曲线y=-4x(x<0)交于点B,若S△AOB=2,则b的值是()A.4 B.3 C.2 D.110.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地.当他按照原路返回时,汽车的速度v(千米/小时)与时间t(小时)的函数关系是( ) A .v =320t B .v =320t C .v =20t D .v =20t第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.已知函数y =(n +2)xn 2+n -3(n 是常数),当n =_______时,此函数是反比例函数.12. 如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C ,D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的表达式为 _______________.13.已知函数y =(k 2+k -2)xk 2-k -7是关于x 的反比例函数,则k 的值是_______.14.如图,A ,B 是函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则________.15.如图,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx 的图象上,则k 的值为_____________.16. .已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO =AB ,则S △AOB =______.17. 已知点P(a ,b)是反比例函数y =1x 图象上异于点(-1,-1)的一个动点,则11+a +11+b =______.18.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为________.三.解答题(共7小题, 46分)19.(6分)如图,P 是反比例函数y =kx 的图象上的一点,过点P 分别向x 轴,y 轴引垂线,若S 阴影=3,求该函数的表达式.20. (6分)已知反比例函数y =(m -2)xm 2-m -7. (1)若它的图象位于第一、三象限,求m 的值;(2)若它的图象在每个象限内y 随x 的增大而增大,求m 的值.21. (6分)在函数y=-a2-1x(a为常数)的图象上有三点(-3,y1),(-1,y2),(2,y3),求函数值y1,y2,y3的大小关系.22.(6分) )已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;23.(6分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3 000元,则其单价应定为多少元?24.(8分)如图,正比例函数y=k1x与反比例函数y=k2x的图象交于点A,过点A向x轴,y轴分别作垂线,垂足为C,B,两条垂线与坐标轴所构成的正方形的面积为4.(1)分别求出正比例函数和反比例函数的表达式;(2)求出正比例函数与反比例函数图象的另一个交点D的坐标;(3)求△ODC的面积.25.(8分)如图,设反比例函数的表达式为y =3kx(k >0). (1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(-2,0)的直线l :y =kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的表达式.参考答案 1-5 CBADD 6-10 CACDB 11. 1 12. y =-3x13. 3 14.S =4 15. -6 16. 6 17.1 18.319. 解:设P(x 0,y 0)由S 阴影=|x 0y 0|=|k|=3, 解得k =±3.又∵y =kx 的图象在二、四象限,∴k<0.∴k =-3. ∴其表达式为y =-3x20. 解:(1)根据题意,得⎩⎪⎨⎪⎧m 2-m -7=-1,m -2>0,解得m =3(2)根据题意,得⎩⎪⎨⎪⎧m 2-m -7=-1,m -2<0,解得m =-221. 解:∵y =-a 2-1x 是反比例函数,且-a 2-1=-(a 2+1)<0,∴双曲线在第二、四象限,且在每个象限内,y 随x 的增大而增大.∵(-3,y 1)和(-1,y 2)在第二象限,且-3<-1,∴y 1<y 2.又∵(2,y 3)在第四象限,∴y 3<y 1,y 3<y 2.因此y 1,y 2,y 3的大小关系是y 3<y 1<y 222. 解:(1)将A(-4,2)代入y =mx ,解得m=-8,∴反比例函数表达式为y =-8x ,将B(n ,-4)代入y =-8x,解得n=2将A(-4,2)、B(2,-4)代入y =kx +b 解得k=-1,b=-2∴一次函数的表达式为y =-x -2(2)在y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点C(-2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=623. 解:(1)由表中数据得xy =6000,∴y =6000x . ∴y 是x 的反比例函数,且函数关系式为y =6000x(2)由题意,得(x -120)y =3000, 将y =6000x 代入,得(x -120)·6000x=3 000. 解得x =240.经检验,x =240是原方程的根.答:若商场计划每天的销售利润为3000元,则其单价应定为240元 24. 解:(1)∵正方形ABOC 的面积为4,∴|k 2|=4, ∴点A 的坐标为(2,2),∴y =4x .把点A 的坐标(2,2)代入y =k 1x , 得2=2k 1,解得k 1=1. ∴正比例函数的表达式为y =x(2)∵正比例函数与反比例函数的图象的交点关于坐标原点对称, ∴点A 与点D 关于坐标原点对称.∵点A 的的坐标为(2,2),∴点D 的坐标为(-2,-2) (3)∵OC =2,∴S △ODC =12×2×2=225. 解:(1)由题意得A(1,2),把A(1,2)代入y =3k x ,得到3k =2,∴k =23.(2)把M(-2,0)代入y =kx +b ,可得b =2k , ∴y =kx +2k ,由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k 消去y 得到x 2+2x -3=0, 解得x =-3或1, ∴B(-3,-k),A(1,3k),∵△ABO 的面积为163,∴12·2·3k +12·2·k =163,解得k =43, ∴直线l 的表达式为y =43x +83.1、盛年不重来,一日难再晨。

北师大版数学九年级上册第6章反比例函数检测题(含答案)

北师大版数学九年级上册第6章反比例函数检测题(含答案)

北师大版数学九年级上册第6章反比例函数检测题(含答案)(时间:120分钟 总分值:120分)一、选择题(每题3分,共30分)1.一正比例函数的图象经过点(-2,3),那么此函数的图象也经过点( A )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)2.如图,是我们学过的正比例函数图象,它的函数表达式能够是( B )A .y =x 2B .y =4xC .y =-3xD .y =12x 3.为了更好维护水资源,造福人类,某工厂方案建一个容积V (m 3)一定的污水处置池,池的底面积S (m 2)与其深度h (m)满足关系式:V =Sh (V ≠0),那么S 关于h 的函数图象大致是( C )4.正比例函数y =k x 的图象经过点(-2,32),那么它的图象位于( B ) A .第一、三象限 B .第二、四象限C .第一、二象限D .第三、四象限5.假定在同一坐标系中,直线y =k 1x 与双曲线y =k 2x有两个交点,那么有( C ) A .k 1+k 2>0 B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.正比例函数y =2x的图象上有两个点为(x 1,y 1),(x 2,y 2),且x 1<x 2,那么以下关系成立的是( D )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在正比例函数y =4x的图象上,阴影局部的面积不等于4的是( B ) 8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.正比例函数y =k x(x >0)的图象经过顶点B ,那么k 的值为( D ) A .12 B .20 C .24 D .32,第8题图) ,第9题图),第10题图)9.如图,函数y =-x 与函数y =-4x的图象相交于A ,B 两点,过A ,B 两点区分作y 轴的垂线,垂足区分为点C ,D ,那么四边形ACBD 的面积为( D )A .2B .4C .6D .810.正比例函数y =m x的图象如下图,以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③假定A (-1,h ),B (2,k )在图象上,那么h <k ;④假定P (x ,y )在图象上,那么P ′(-x ,-y )也在图象上.其中正确的选项是( C )A .①②B .②③C .③④D .①④二、填空题(每题3分,共18分)11.正比例函数y =k x 的图象经过点(1,-2),那么k 的值为__-2__. 12.正比例函数y =-2x 与正比例函数y =k x 的图象的一个交点坐标为(-1,2),那么另一个交点的坐标为__(1,-2)__.13.有一个可以改动体积的密闭容器内装有一定质量的二氧化碳,当改动容器的体积时,气体的密度也会随之改动,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的正比例函数,它的图象如下图,当V =5 m 3时,气体的密度是__1.6__kg/m 3.14.在某一电路中,坚持电压不变,电流I (安)与电阻R (欧)成正比例,其图象如下图,那么这一电路的电压为__12__伏.,第13题图) ,第14题图) ,第15题图) ,第16题图)15.如图,直线x =2与正比例函数y =2x ,y =-1x的图象区分交于A ,B 两点,假定点P 是y 轴上恣意一点,那么△P AB 的面积是__32__. 16.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 区分在x 轴,y 轴上,正比例函数的图象与正方形的两边AB ,BC 区分交于点M ,N ,ND ⊥x 轴,垂足为D ,衔接OM ,ON ,MN .以下结论:①△OCN ≌△OAM ;②ON =MN; ③四边形DAMN 与△MON 面积相等;④假定∠MON =45°,MN =2,那么点C 的坐标为(0,2+1).其中正确结论的序号是__①③④__.三、解答题(共72分)17.(10分)正比例函数的图象与直线y =2x 相交于点A (1,a ),求这个正比例函数的表达式.解:将点A (1,a )代入直线y =2x 得a =2×1=2.点A 的坐标为(1,2),代入y =k x.∴正比例函数的表达式为y =2x18.(10分)正比例函数的图象过点A (-2,3).(1)求这个正比例函数的表达式;(2)这个函数的图象散布在哪些象限?y 随x 的增大如何变化?(3)点B (1,-6),C (2,4)和D (2,-3)能否在这个函数的图象上?解:(1)y =-6x(2)散布在第二、四象限,在每个象限内y 随x 的增大而增大 (3)∵函数的表达式是y =-6x,∴x =1时,y =-6,x =2时,y =-3,∴点B 和点D 在这个函数图象上,点C 不在这个函数图象上19.(10分)如下图,直线y 1=x +m 与x 轴,y 轴区分交于A ,B 两点,与正比例函数y 2=k x(k ≠0,x <0)交于C ,D 两点,且C 点的坐标为(-1,2). (1)区分求出直线AB 及正比例函数的表达式;(2)求出点D 的坐标;(3)应用图象直接写出:当x 在什么范围内取值时,y 1>y 2.解:(1)y 1=x +3,y 2=-2x(2)D (-2,1) (3)由图象知-2<x<-1时,y 1>y 220.(10分)一次函数y =x +6和正比例函数y =k x(k ≠0). (1)k 满足什么条件时,这两个函数在同一坐标系中的图象有两个公共点?(2)设(1)中的公共点为A 和B ,那么∠AOB 是锐角还是钝角?解:(1)由⎩⎪⎨⎪⎧y =x +6,y =k x ,得x +6=k x ,∴x 2+6x -k =0,∴b 2-4ac =62-4×1×(-k )=36+4k.当36+4k>0时,即k>-9(k ≠0)时,这两个函数在同一坐标系中的图象有两个公共点(2)∵y =x +6的图象过第一、二、三象限,当-9<k<0时,函数y =k x的图象在第二、四象限,那么此时两函数图象的公共点A ,B 均在第二象限,∠AOB 显然为锐角;当k>0时,函数y =k x的图象位于第一、三象限,此时公共点A ,B 区分位于第一、三象限内,显然∠AOB 为钝角21.(10分)如图,四边形ABCD 为正方形,点A 的坐标为(0,2),点B 的坐标为(0,-3),正比例函数y =k x的图象经过点C ,一次函数y =ax +b 的图象经过点A ,C . (1)求正比例函数和一次函数的表达式;(2)假定点P 是正比例函数图象上的一点,△AOP 的面积恰恰等于正方形ABCD 的面积,求P 点的坐标.解:(1)由题意知,C 点坐标为(5,-3),把C (5,-3)代入y =k x 中,-3=k 5,∴k =-15.∴正比例函数的表达式为y =-15x.把A (0,2),C (5,-3)两点坐标区分代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2 (2)设P 点坐标为(x ,y ).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA ·|x|,S 正方形ABCD =52,∴12×OA ·|x|=52,12×2|x|=25,x =±25.把x =±25区分代入y =-15x 中,得y =±35.∴P 点坐标为(25,-35)或(-25,35) 22.(10分)如图,点B (3,3)在双曲线y =k x (x >0)上,点D 在双曲线y =-4x(x <0)上,点A 和点C 区分在x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形.(1)求k 的值;(2)求点A 的坐标.解:(1)∵点B (3,3)在双曲线y =k x上,∴k =3×3=9 (2)过点D 作DM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,垂足区分为点M ,N ,∵B (3,3),∴BN =ON =3,设MD =a ,OM =b ,∵D 在双曲线y =-4x(x <0)上,∴-ab =-4,即ab =4,那么∠DMA =∠ANB =90°,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB ,∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN ,在△ADM 和△BAN 中,⎩⎨⎧∠MDA =∠NAB ,∠DMA =∠ANB ,AD =AB ,∴△ADM ≌△BAN (AAS ),∴BN =AM =3,MD =AN =a ,∴OA =3-a ,即AM =b +3-a =3,a =b ,∵ab =4,∴a =b =2,∴OA =3-2=1,即点A 的坐标是(1,0)23.(12分)维护生态环境,树立绿色社会曾经从理念变为人们的举动,某化工厂2021年1月的利润为200万元.设2021年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决议从2021年1月底起适当限产,并投入资金停止治污改造,招致月利润清楚下降,从1月到5月,y 与x 成正比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月添加20万元(如图).(1)区分求该化工厂治污时期及治污改造工程完工后,y 与x 之间的函数关系式;(2)治污改造工程顺利完工后经过几个月,该厂月利润才干到达200万元?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?解:(1)①当1≤x ≤5时,设y =k x ,把(1,200)代入,得k =200,即y =200x;②当x =5时,y =40,所以当x >5时,设y =20x +b ,那么20×5+b =40,得b =-60,即x>5时,y =20x -60(2)当y =200时,20x -60=200,解得x =13.所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润到达200万元 (3)关于y =200x,当y =100时,x =2;关于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2-1=5个月。

2020北师大版九年级数学上册 反比例函数综合检测题

2020北师大版九年级数学上册 反比例函数综合检测题

【文库独家】北师大版九年级上册第六章 反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z成反比例,则y 与z 之间的关系是().A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,A . B . C . .y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >2110、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =2(x >0).画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ; (2)△BOC 的面积为2.24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA=21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

北师大版九年级上册 第6章《反比例函数》单元测试卷

北师大版九年级上册 第6章《反比例函数》单元测试卷

2020年北师大版九年级上册第6章《反比例函数》单元测试卷满分120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列函数中,属于反比例函数的是()A.y=﹣B.y=2x﹣1C.y=﹣x2D.y=x﹣22.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)3.下列两个变量成反比例函数关系的是()①三角形底边为定值,它的面积S和这条边上的高线h;②三角形的面积为定值,它的底边a与这条边上的高线h;③面积为定值的矩形的长与宽;④圆的周长与它的半径.A.①④B.①③C.②③D.②④4.反比例函数y=的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限5.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3为的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y16.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.7.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=(k为常数,k≠0),其图象如图所示,则k的值为()A.9B.﹣9C.4D.﹣48.如图,A,B是函数y=(m>0)的图象上关于原点对称的任意两点,BC∥x轴,AC ∥y轴,△ABC的面积记为S,则()A.S=m B.S=2m C.m<S<2m D.S>2m9.如图,函数y1=x+1与函数y2=的图象相交于点M(m,2),N(n,﹣1).若y1>y2,则x的取值范围是()A.x<﹣2或0<x<1B.x<﹣2或x>1C.﹣2<x<0或0<x<1D.﹣2<x<0或x>110.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在x反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8二.填空题(共6小题,满分24分,每小题4分)11.若y=(4﹣2a)x是反比例函数,则a的值是.12.已知反比例函数y=的图象经过点A(1,﹣3),则实数k的值为.13.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.14.点P(m,n)是函数和y=x+4图象的一个交点,则mn+n﹣m的值为.15.如图,已知点P在双曲线y=(k≠0)上,PH垂直于y轴,△POH的面积为2,则此双曲线的解析式为.16.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.三.解答题(共8小题,满分66分)17.(6分)已知x与y成反比例,且当x=﹣时,y=(1)求y关于x的函数表达式;(2)当x=﹣时,y的值是多少?18.(6分)一次函数y1=kx+b与反比例函数交于点A(1,3),B(3,m).(1)分别求两个函数的解析式;(2)根据图象直接写出,当x为何值时,y1<y2.19.(8分)一段绳子长26cm,用它围成一个面积为12cm2的矩形(绳子可以不用完),矩形的一边长为xcm,与它相邻的一边长为ycm.(1)求出y关于x的函数解析式;(2)求出自变量x的取值范围(要有计算过程);(3)画出函数图象.20.(8分)据医学研究,使用某种抗生素可治疗心肌炎,某一患者按规定剂量服用这种抗生素,已知刚服用该抗生素后,血液中的含药量y(微克)与服用的时间x成正比例药物浓度达到最高后,血液中的含药量y(微克)与服用的时间x成反比例,根据图中所提供的信息,回答下列问题:(1)抗生素服用小时,血液中药物浓度最大,每毫升血液的含药量有微克;(2)根据图象求出药物浓度达到最高值之后,y与x之间的函数解析式及定义域;(3)求出该患者服用该药物10小时时每毫升血液的含药量y.21.(8分)已知直线y=kx+b交x轴于点A(1,0),与双曲线y=﹣交于点B(﹣1,a).(1)求直线AB的解析式为;(2)若x轴上存在动点M(m,0),过点M且与x轴垂直的直线与直线AB交于点C,与双曲线交于点D(C、D两点不重合),当BC>BD时,写出m的取值范围.22.(9分)如图,一次函数y1=x﹣3的图象与反比例函数y2=(k≠0)的图象交于点A 与点B(﹣1,﹣4).(1)求反比例函数的表达式;(2)根据图象,直接写出不等式>x﹣3的解集;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP.过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3.求点P的坐标.23.(10分)如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.24.(11分)如图,在平面直角坐标系中,点A(2,m)在正比例函数y=x(x>0)的图象上,反比例函数y=(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P 作x轴的垂线,与正比例函数y=x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,x≤的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年北师大版九年级数学上册 反比例函数 单元检测卷三
一、选择题
1.下面的函数是反比例函数的是( )
A .y=3x -1
B .y=
C .y=
D .y=x 213x 2x -13
2.反比例函数y=的大致图象为( )
2x
3.若反比例函数y=的图象位于第二、四象限,则k 的取值可能是( )
k -1x A .4 B .3 C .2 D .0
4.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在( )
k x A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限
5.点A(-1,y 1),B(-2,y 2)在反比例函数y=的图象上,则y 1,y 2的大小关系是( )
2x A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定
6.已知反比例函数y=,当1<x <2时,y 的取值范围是( )
10x A .1<y <2 B .5<y <10 C .0<y <5 D .y >10
7.如果直角三角形的面积一定,那么下列关于这个直角三角形的关系中,正确的是( )
A .两条直角边长成正比例
B .两条直角边长成反比例
C .一条直角边长与斜边长成正比例
D .一条直角边长与斜边长成反比例
8.正比例函数y=-2x 与反比例函数y=的图象相交于A(m ,2),B 两点,则点B 的坐标是(

k x A .(-2,1) B .(1,-2) C .(-1,2) D .(2,-1)
9.已知反比例函数y=-,下列结论不正确的是( )
2x A .图象必经过点(-1,2) B .y 随x 的增大而减小
C .图象分布在第二、四象限内
D .若x >1,则-2<y <0
10.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V(m 3)的反比例函数,它的图象如图所示.当V=10m 3时,气体的密度是( )
A .5kg/m 3
B .2kg/m 3
C .100kg/m 3
D .1kg/m 3
11.百米赛跑中,队员所用的时间y(秒)与其速度x(米/秒)之间的函数图象应为( )
12.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=
的图象相交于A ,B 两点,其中点A 的横坐标为k2x
2.当y 1>y 2时,x 的取值范围是( )
A .x <-2或x >2
B .x <-2或0<x <2
C .-2<x <0或0<x <2
D .-2<x <0或x >2
13.在同一直角坐标系中,函数y=-与y=ax +1(a ≠0)的图象可能是( )a x
14.在下列反比例函数y=(k >0)的图象中,阴影部分的面积不等于k 的是( )k x
15.如图,直线y=-x +3与y 轴交于点A ,与反比例函数y=(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴k x
于点B ,AO=3BO ,则反比例函数的解析式为( )
A .y=
B .y=-
C .y=
D .y=-4x 4x 2x 2x
二、填空题
16.毕节市金沙县有长24000 米的新道路要铺上沥青,则铺路所需时间t(天)与铺路速度v(米/天)的函数关系式是 .
17.点P 在反比例函数y=(k ≠0)的图象上,点Q(2,4)与点P 关于y 轴对称,则反比例函数的解析式k x
为 .
18.如图,点A 是反比例函数y=图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为B 、C ,k x
矩形ABOC 的面积为4,则k= .
19.直线y=ax +b(a >0)与双曲线y=相交于A(x 1,y 1),B(x 2,y 2)两点,则x 1y 1+x 2y 2的值3x
为 .
20.如图,点A(3,n)在双曲线y=上,过点A 作AC ⊥x 轴,垂足为C ,线段OA 的垂直平分线交OC 于点3x
M ,则△AMC 的周长是 .
三、解答题
21.(8分)已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例.当x=1时,y=4;当x=2时,y=5,求当x=10时,y 的值.
22.(8分)已知一个反比例函数y=-.6x
(1)判断点B ,C(3,2)是否在这个函数的图象上;(18,-13)
(2)当y=-3时,求自变量x 的值.
23.(10分)已知函数y=的图象经过点(-3,4).k x
(1)求k 的值,并在右边正方形网格中画出这个函数的图象;
(2)当x 取什么值时,函数的值小于0?
24.(12分)已知反比例函数y=(m 为常数,且m ≠5).m -5x
(1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围;
(2)若其图象与一次函数y=-x +1图象的一个交点的纵坐标是3,求m 的值.
25.(12分)如图,一次函数y=-x +5的图象与反比例函数y=(k ≠0)在第一象限的图象交于A(1,n)和k x
B 两点.
(1)求反比例函数的解析式;
(2)在第一象限内,当一次函数y=-x +5的值大于反比例函数y=(k ≠0)的值时,写出自变量x 的取值范k x 围.
26.(14分)小明家贷款100万元购买了某山庄的一套住房,在交了首期付款后,每年需向银行付款y 万元,预计x 年后结清余款,y 与x 的函数关系如下图所示,试根据图象所提供的信息,回答下列问题:
(1)确定y 与x 之间的函数表达式,并说明小明家交了多少万元首付款;
(2)小明家若计划用15年时间结清余款,那么每年应向银行交付多少万元?
(3)若打算每年付款不超过6万元,小明家至少要多少年才能结清余款?
27.(16分)在矩形AOBC 中,OB=6,OA=4,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面
直角坐标系.F 是边BC 上一点(不与B ,C 两点重合),过点F 的反比例函数y=(k >0)图象与AC 边交于点k x
E.
(1)请用含k 的代数式表示点E ,F 的坐标;
(2)若△OEF 的面积为9,求反比例函数的解析式.。

相关文档
最新文档